Decidable models of integer-manipulating programs
with recursive parallelism

Matthew Hague

Royal Holloway, University of London

Anthony W. Lin

Department of Computer Science, University of Oxford

Abstract

We study safety verification for multithreaded programs with recursive paral-
lelism (i.e. unbounded thread creation and recursion) as well as unbounded
integer variables. Since the threads in each program configuration are struc-
tured in a hierarchical fashion, our model is state-extended ground-tree rewrite
systems equipped with shared unbounded integer counters that can be incre-
mented, decremented, and compared against an integer constant. Since the
model is Turing-complete, we propose a decidable underapproximation. First,
using a restriction similar to context-bounding, we underapproximate the global
control by a weak global control (i.e. DAGs possibly with self-loops), thereby
limiting the number of synchronisations between different threads. Second, we
bound the number of reversals between non-decrementing and non-incrementing
modes of the counters. Under this restriction, we show that reachability be-
comes NP-complete. In fact, it is poly-time reducible to satisfaction over ex-
istential Presburger formulas, which allows one to tap into highly optimised
SMT solvers. Our decidable approximation strictly generalises known decidable
models including (i) weakly-synchronised ground-tree rewrite systems, and (ii)
synchronisation/reversal-bounded concurrent pushdown systems systems with
counters. Finally, we show that, when equipped with reversal-bounded coun-
ters, relaxing the weak control restriction by the notion of senescence results in
undecidability.

Keywords: Reversal-bounded counters, Ground Tree Rewrite Systems,
Context-bounded, Presburger Arithmetic, Parallelism, Senescence, Automata

*This is the journal version of an article in RP 2016 [[l]. The article has been extended
with the inclusion of all proofs and an example to illustrate the model considered.
Email addresses: matthew.hague@rhul.ac.uk (Matthew Hague),
anthony.lin@cs.ox.ac.uk (Anthony W. Lin)

1. Introduction

Verification of multithreaded programs is well-known to be a challenging
problem. One approach that has proven effective in addressing the problem is
to bound the number of context switches [2, B]. [Recall that a context switch
occurs when the CPU switches from executing one thread to executing a dif-
ferent thread.] When the number of context switches is fixed, one may adopt
pushdown systems as a model of a single thread and show that reachability for
the concurrent extension of the abstraction (i.e. multi-pushdown systems) is
NP-complete [2]. This result has paved the way for an efficient use of highly op-
timised SMT solvers in verifying concurrent programs (e.g. see [4, b, 6]). Note
that without bounding the number of context switches the model is undecidable
7.

In the past decade the work of Qadeer and Rehof [2] has spawned a lot of re-
search in underapproximation techniques for verifying multithreaded programs,
e.g.,see U, B, 6, 8, 9, 10, L1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] among many
others. Other than unbounded recursions, some of these results simultaneously
address other sources of infinity, e.g., unbounded thread creation [12, [13, 9],
unbounded integer variables [4], and unbounded FIFO queues [b, [16].

Contributions. In this paper we generalise existing underapproximation tech-
niques [22, [12] so as to handle both shared unbounded integer variables and
recursive parallelism (unbounded thread creation and unbounded recursions).
The paper also provides a cleaner proof of the result in [4]: an NP upper bound
for synchronisation/reversal-bounded reachability analysis of concurrent push-
down systems with counters. We describe the details below.

We adopt state-extended ground-tree rewrite systems (sGTRS) [12] as a
model for multithreaded programs with recursive parallelism (e.g. program-
ming constructs including fork/join, parbegin/parend, and Parallel.For).
Ground-tree rewrite systems (GTRS) are known (see [23]) to strictly subsume
other well-known sequential and concurrent models like pushdown systems [24],
PA-processes [25], and PAD-processes [26], which are known to be suitable for
analysing concurrent programs. [One may think of GTRS as an extension of PA
and PAD processes with return values to parent threads [23].] We then equip
sGTRS with unbounded integer counters that can be incremented, decremented,
and compared against an integer constant.

Since our model is Turing-powerful, we provide an underapproximation of
the model for which safety verification becomes decidable. First, we under-
approximate the global control by a weak global control [27, 12] (i.e. DAGs
possibly with self-loops), thereby limiting the number of synchronisations be-
tween different threads. To this end, we may simply unfold the underlying
control-state graph of the sGTRS (see Section)@) in the standard way, while
preserving self-loops. This type of underapproximation is similar to loop accel-
eration in the symbolic acceleration framework of [2§]. Second, we bound the
number of reversals between non-decrementing and non-incrementing modes of

the counters [29]. Under these two restrictions, reachability is shown to be NP-
complete; in fact, it is poly-time reducible to satisfaction over existential Pres-
burger formulas, which allows one to tap into highly optimised SMT solvers.
Our result strictly generalises the decidability (in fact, NP-completeness) of
reachability for (i) weakly-synchronised ground-tree rewrite systems [12, 30],
and (ii) synchronisation/reversal-bounded concurrent pushdown systems with
counters [4].

Finally, we show one negative result that delineates the boundary of de-
cidability. If we relax the weak control underapproximation by the notion of
senescence (with age restrictions associated with nodes in the trees) [13], then
the resulting model becomes undecidable.

Related Work. Recursively-parallel program analysis was analysed in detail by
Bouajjani and Emmi [31]. However, in contrast to our systems, their model
does not allow processes to communicate during execution. Instead, processes
hold handles to other processes which allow them to wait on the completion
of others, and obtain the return value. They show that when handles can be
passed to child processes (during creation) then the state reachability problem
is undecidable. When handles may only be returned from a child to its parent,
state reachability is decidable, with the complexity depending on which of a
number of restrictions are imposed.

The work of Bouajjani and Emmi is closely related to branching vector addi-
tion systems [32] which can model a stack of counter values which can be incre-
mented and decremented (if they remain non-negative), but not tested. While
it is currently unknown whether reachability of a configuration is decidable,
control-state reachability and boundedness are both 2ExpTime-complete [33].

Another variant of vector addition systems with recursion are pushdown
vector addition systems, where a single (sequential) stack and several global
counters are permitted. As before, these counters can be incremented and
decremented, but not compared with a value. Reachability of a configuration,
and control-state reachability in these models remain open problems, but ter-
mination (all paths are finite) and boundedness are known to be decidable [34].
For reachability of a configuration, an under-approximation algorithm is pro-
posed by Atig and Ganty where the stack behaviour is approximated by a finite
index context-free language [35].

Lang and Loding study boundedness problems over sequential pushdown
systems [36]. In this model, the pushdown system is equipped with a counter
that can be incremented, reset, or recorded. Their model differs from ours
first in the restriction to sequential systems, and second because the counter
cannot effect execution or be decremented: it is a recording of resource usage.
These kind of cost functions have also been considered over static trees [37, Bg],
however, to our knowledge, they have not been studied over tree rewrite systems.

2. Preliminaries

We write N to denote the set of natural numbers {0,1,2,...} and Z the set
of integers.

2.1. Trees

A ranked alphabet is a finite set of characters X together with a rank function
p: X — N. A tree domain D C N* is a non-empty finite subset of N* that is
both prefiz-closed and younger-sibling-closed. That is, if ni € D, then we also
have n € D and, for all 0 < j <4, nj € D (respectively). A tree over a ranked
alphabet ¥ is a pair t = (D, A\) where D is a tree domain and A : D — ¥ such
that for all n € D, if A(n) = a and p(a) = n then n has exactly n children (i.e.
nn € D and n(n + 1) ¢ D). Let T denote the set of trees over X.

2.2. Context Trees

A context tree over the alphabet X with a set of context variables z1,...,z,
is a tree C = (D, A) over ¥ W {z1,...,x,} such that for each 1 <i < n we have
p(x;) = 0 and there exists a unique context node n; such that A(n;) = z;. By
unique, we mean 17; # 7); for all i # j. We will denote such a tree Clz1,. .., z,).
Given trees t; = (D;, A;) for each 1 < i < n, we denote by C[ty,...,t,] the tree
t' obtained by filling each variable x; with ¢;. That is, ¢’ = (D', \") where

D’:DUm-DlLJmUnn-Dn

and
A(n iftne DAY #mn;
Ny =20 e D
Ai(n') ifn=mm".

2.3. Tree Automata

A bottom-up non-deterministic tree automaton (NTA) over a ranked alphabet
Y is a tuple T = (Q, A, F) where Q is a finite set of states, 7 C Q is a set of
final (accepting) states, and A is a finite set of rules of the form (q1,...,q.) — ¢
where q1,...,4n,q € @, a € ¥ and p(a) =n. A run of T on a tree t = (D, \) is
a mapping 7 : D — Q such that for all n € D labelled \(n) = a with p(a) =n
we have (w(nl),...,m(nn)) = 7w(n). It is accepting if w(¢) € F. The language
defined by a tree automaton 7 over alphabet ¥ is a set £(7) C Tx of trees over
which there exists an accepting run of 7.

2.4. Parikh images

Given an alphabet ¥ = {v,...,7,} and a word w € ¥*, we write P(w)
to denote a mapping p : ¥ — N, where p(a) is defined to be the number of
occurrences of a in w. Given a language L C ¥*, we write P(L) to denote the
set {P(w) | w € L}. We say that P(L) is the Parikh image of L.

2.5. Presburger Arithmetic

Presburger formulas are first-order formulas over integers with addition.
Here, we use existential Presburger formulas ¢(y) = Jxp, where (i) x and
y are sets of variables, and (ii) ¢ is a boolean combination of expressions
Yot a;z; ~ b for variables z1,...,z, € x Uy, constants aq,...,an,b € Z,
and ~ € {<,>,<,>,=} with constants represented in binary. A solution to
© is a valuation b : y — Z to y such that ¢(x,b) is true. The formula ¢ is
satisfiable if it has a solution. Satisfiability of existential Presburger formulas is
known to be NP-complete [39].

3. Formal Models

In this section, we will define our formal models, which are based on ground-
tree rewrite systems. Ground-tree rewrite systems (GTRSs) [40] permit subtree
rewriting where rules are given as a pair of ground-trees. In the sequel, we use
the extension proposed by Loding [41] where NTA (instead of ground trees)
appear in the rewrite rules. Hence, a single rule may correspond to an infinite
number of concrete rules (i.e. containing concrete trees).

3.1. Ground Tree Rewrite Systems with State and Reversal Bounded Counters.

To capture synchronisations between different subthreads, we follow [12, 27,
30] and extend GTRS with state (a.k.a. global control). The resulting model
is denoted by sGTRS (state-extended GTRS). To capture integer variables,
we further extend the model with unbounded integer counters, which can be
incremented, decremented, and compared against an integer constant. Since
Minsky’s machines can easily be encoded in such a model, we apply a stan-
dard underapproximation technique: reversal-bounded analysis of the counters
[22, 29]. This means that one only analyses executions of the machines whose
number of reversals between nondecrementing and nonincrementing modes of
the counters is bounded by a given constant r € N (represented in unary). The
resulting model will be denoted by rbGTRS. We will now define this model in
more detail.

An atomic counter constraint on counter variables C' = {¢q,...,¢;} is an
expression of the form ¢; ~ v, where v € Z and ~€ {<,<,=,>,>}. A counter
constraint @ on C'is a boolean combination of atomic counter constraints on C'
(where T denotes “true”). Given a valuation v : C' +— Z to the counter variables,
we can determine whether 0[v] is true or false by replacing each variable ¢ by
v(c) and evaluating the resulting boolean expression in the obvious way. Let
Consc denote the set of all counter constraints on C'. Intuitively, these formulas
will act as guards to determine whether certain transitions can be fired. Given
two counter valuations v and u we define v 4 p as the pointwise addition of the
valuations. That is, (v + p)(c) = v(c) + p(c).

Given a sequence of counter values, a reversal occurs when a counter switches
from being incremented to being decremented or vice-versa. For example, if the
values of a counter ¢ along a run are 1,1,1,2,3,4,4,4,3,2,2,3, then the number

of reversals of ¢ is 2 (reversals occur in between the overlined positions). A
sequence of valuations is reversal-bounded whenever the number of reversals is
the sequence is bounded.

Definition 3.1 (r-Reversal-Bounded). For a counter ¢ from a set of coun-
ters C', a sequence vy, ...,y of counter valuations over C is r-reversal-bounded
for ¢ whenever we can partition vy, ... v, into (r + 1) sequences Ay, ..., Arq1
(with vg,...,vn = A1,...,Ary1) such that for all 1 < i < (r+ 1) there is
some ~€ {<,>} such that for all vj,vj41 appearing together in A;, we have

vj(e) ~e viti(c).
We define sGTRS with reversal-bounded counters.

Definition 3.2 (rbGTRS). A state-extended ground tree rewrite system with
r-reversal-bounded counters (rbGTRS) is a tuple G = (P, X, T, R,C,r) where
P is a finite set of control-states, ¥ is a finite ranked alphabet, T is a finite
alphabet of output symbols (i.e. transition labels), C is a finite set of counters,
R is a finite set of rules of the form (p1,7T1,0) 2, (p2, T2, 1t) where p1,ps € P,
veT, 0 € Consg, p€Cr—7Z, and T1, T2 are NTAs over X..

In the sequel, we will omit mention of the number r in the tuple G if it is clear
from the context.

A configuration of an sGTRS with counters is a tuple a = (p, t,v) where p is
a control-state, t a tree, and v a valuation of the counters. We have a transition
(p1,t1,11) 2 (pa,ta, v2) whenever there is a rule (p1,T1,6) L (p2, Too) € R
such that: (i) (dynamics of counters) 0[v1] is true and vo = 14 + p, and (ii)
(dynamics of trees) t; = C[t}] for some context C and tree t| € L(71) and
to = C[t5] for some tree th € L(T2). A run m over v1 ...7v,—1 IS a sequence

(platlayl) L> e %—71> (pnatnayn)

such that for all 1 < i < n we have (p;, ti, vi) =% (pit1,tis1, Vig1) is a transition
of G and for each ¢ € C the sequence vy, ...,V, is r-reversal-bounded for c.
We say that 71 ...7,_1 is the output string of 7. We write (p,t,v) 22
(p',t',v") (or simply (p,t,v) =* (p/,t', ")) whenever there is a run from (p, ¢, v)
to (p/,t',v') over v1 ...79,. Let € denote the empty output symbol.

Whenever we wish to discuss sGTRSs without counters, we simply omit the
counter components. That is, we have configurations of the form (p,t) and
transitions of the form (p1,77) = (p2,73). The standard notion of GTRS (i.e.
not state-extended) [#1] is simply sGTRS without counters with only one state.

We next define the problem of (global) reachability. To this end, we use a
tree automaton 7 (resp. an existential Presburger formula ¢) to represent the
tree (resp. counter) component of a configuration. More precisely, a symbolic
config-set of an rbGTRS G = (P, %, T, R,C,r) is a tuple (p, T,), where p € P,
T is an NTA over X, and (Z) is an existential Presburger formula with free
variables T = {z.}.ec (i.e. one free variable for each counter). Each symbolic

config-set (p, T, ¢) represents a set of configurations of G' defined as follows:

[(p, T,p)] ={(p,t,v):t € L(T), ©(v) is true}.

GLOBAL REACHABILITY

Instance: an rbGTRS G and two symbolic config-sets (p1, T1, 1) (p2, T2, p2)
Question: Decide whether (pi1,t1,v1) = (p2,ta,v2), for some (p1,t1,11) €
[(1, 71, ¢1)] and (p2,t2,va) € [(p2, T2, ¢2)]

The problem of control-state reachability can be defined by restricting (i) the
tree automata 7; and Tz to accept, respectively, a singleton tree and the set of
all trees, and (ii) the solutions to the formulas ¢ and @9 are, respectively, {vo}
(where vg is the valuation assigning 0 to all counters) and the set of all counter
valuations.

Remark 3.1. When we measure the complexity of reachability for rbGTRS,
the number r of reversals is represented in unary, while the numbers in counter
constraints and valuations are represented in binary. This is consistent with
the standard representation of numbers in previous work on reversal-bounded
counter machines (e.g. see [22, 4]). The unary representation for r can be
justified by the fact that bugs can often be discovered within a small number of
reversals.

3.2. Weakly Synchronised Ground Tree Rewrite Systems

The control-state and global reachability problems for sGTRS are known
to be undecidable [42, 23]. The problems become NP-complete for weakly-
synchronised sGTRS [[12, B0], where the underlying control-state graph (where
there is an edge between p; and po whenever there is a transition (p1,77) Z,
(p2, T2)) may only have cycles of length 1 (i.e. self-loops), i.e., a DAG (directed
acyclic graph) possibly with self-loops. Underapproximation by a weak control
is akin to loop acceleration in the symbolic acceleration framework of [28]. We
extend the definition to rbGTRSs. The original definition can be easily obtained
by omitting the counter components.

We define the underlying control graph of an rbGTRS G = (P, X, T, R,C)

as a tuple (P, A) where A = {(pl,pz) ’ (p1,T1,0) = (p1, To, 1) € R} .

Definition 3.3 (Weakly-Synchronised rbGTRS). An rbGTRS is weakly
synchronised if its underlying control graph (P,A) is a DAG possibly with self-
loops.

3.8. A simple example

We now provide a simple example of how weakly-sycnhronised rbGTRS can
be used in concurrent program verification. Consider the concurrent program in
Algorithm m (taken from [43]) that computes the nth Fibonacci number using
recursive paralleism. Note, the variable m takes the initial value 0. One
question we might be interested in is to check whether the value m is functionally
determined by n, i.e., whether the value of m can be different on the input n

Algorithm 1 A concurrent program F'ib(n) with a global int variable m

Input: A number n
Task: Put the nth Fibonacci number Fib(n) in the variable m
if n < 2 then
m:=m-+n
else
Spawn Fib(n — 1)
Spawn Fib(n — 2)
Sync (i.e. wait till both finished)
end if

due to concurrency. We can use the algorithm in the paper to prove a weaker
property: whether m is functionally determined for a given value of n (e.g.
n = 100). This is clearly not something that can be easily proven by testing.
It is possible to prove this using a finite-state model checker, but the search
space is exponential. To prove this using our algorithm (an NP algorithm that
may take advantage of highly optimised SMT-solvers), we first model the above
program as a weakly synchronised rbGTRS with two reversal-bounded counters.

Intuitively, we will use the tree of the rbGTRS to model the parent/child
relationships of the processes created by the spawn actions. The m variable
will be tracked over two runs of the program using two counters mi and ms.
The system will run in three stages. During the ith (i = 1,2) stage, it guesses
a possible output value of the above program and stores it in m;. During the
third stage, the system checks if the two output values are the same.

We provide the details of our weakly-synchronised rboGTRS model

G=(P,S,T,R,C,r).

The set P of control states consists of three states q1, g2, and ¢3. As we shall
see, g3 is the “bad” state. The finite ranked alphabet consists of labels f; and
f! for each i = 0,...,n. [Recall that n is a number that is provided in the input
to our analysis.] The ranks of f; and f! are, respectively, 0 and 2. Intuitively,
the label f; indicates that the function F'ib(i) is about to be called, while f/
indicates that the function F'ib(i) has been called and is currently executing.
We do not need special output symbols, so I' = {a} and we will omit mention of
a below. We have two 1-reversal-bounded counters m; and my. We use a term
representation of trees in our description of rules for G, e.g., f7(fs, f5) means
a tree with root labeled f} and two children labeled fs and f5 respectively.
Moreover, we denote by 0 the function that maps both m; and ms to 0. The
rules are given as follows:

. (qi, fja T) — (qi, fj/'(fj—lv fj—2)7 0), for each 7 € {1, 2}, and j S {2, ey n}
This covers the case when F'ib(j) is called with 2 < j < n.

° (QW fja T) - (Qi7 fjlu ,U/)a for each i € {17 2}7 .7 € {07 1}7 and o with :u’(mz) =
J (and p(x) = 0 for z € C'\ {m;}). This covers the case when Fib(j) is
called with j = 0,1, in which case m; will be incremented by j.

(qzaf]/(]/‘—1>f_§—2)7—|—) — (qiafj/'70)7 for each i € {172}7 andj € {27 s 777‘}'
This covers the case of the synchronisation step (i.e. two subtasks spawned
were completed).

o (q1,f1,T) = (g2, fn,0). This indicates that the system goes to the second
stage.

e (g2, fh,m1>0Amg >0) = (qo, fl, 1), for p with u(z) = —1 for all x €
C. This indicates that the second stage is complete and the two counters
are being decremented whenever none of them have emptied.

o (g2, f1,(m1=0Amg>0)V (m>0Amg=0)) — (g3, f),0). This indi-
cates that the values of the two counters are different and the system goes
to q3 (a bad state).

Let ag = (q1, fn,v) with v(xz) = 0 for each x € C. Observe that oy may reach
the control state g3 iff the value of m on input n is not functionally determined.

4. Decidability

In this section we will prove the main result of the paper:

Theorem 4.1 (Global Reachability for rbGTRS). Global reachability for
weakly synchronised rbGTRS is NP-complete. In fact, it is poly-time reducible
to satisfiability over existential Presburger formulas.

To prove this theorem, we fix notation for the input to the problem: an rbGTRS
G = (P,%,T,R,C,r) and two symbolic config-sets (p1, T1,¢1), (p2, T2, 2) of
G. Let C = {¢;}F_,. The gist of the proof is as follows. From G, we construct a
new sGTRS G’ (without counters) by encoding the dynamics of the counters in
the output symbols of G’. Of course, G’ has no way of comparing the values of
counters with constants. [In this sense, G’ only overapproximates the behavior
of G.] To deal with this problem, we use the result of [12] to compute an
existential Presburger formula ¢ capturing the Parikh images of the set of all
output strings of G’ from (p1, T1, 1) to (p2, T2, w2). The final formula is ¥ A1),
where 9’ is a constraint asserting that the desired counter comparisons are
performed throughout runs of G’. We sketch the details of the construction
below.

4.1. Modes of the counters

The first notion that is crucial in our proof is that of mode of a counter
[22, R9], which is an abstraction of the values of a counter in a run of an rbGTRS
containing three pieces of information: (i) the region of the counter value (i.e.
how it compares to constants occurring in counter constraints), (ii) the number
of reversals that has been performed by each counter (between 0 and r), and
(iii) whether a counter is currently non-decrementing (1) or non-incrementing
(J). A mode vector is simply a k-tuple of modes, one mode for each of the k
counters. We now formalise these notions.

Let dy < ... < d,, be the integer constants appearing in the counter con-
straints in G. This sequence of constants gives rise to the set REG of regions
defined as

REG = {Ag,..., A, B1,...,Bn}
where B; = {d;} (where 1 < i <m), A, ={n €Z:d; <n < di11} (where
1<i<m),Ag={ne€Z:n<d},and A, ={n€Z:n>dy}. A modeis
simply a tuple in REG x [0,7] x {1,)}. A mode vector is simply a tuple in

Modes = REG" x [0,7]F x {1,{}* .

4.2. Building the sGTRS G’

We might be tempted to build G’ by first removing the counters from G
and then embedding Modes into the control-states G’. This, however, causes
two problems. First, the number of control-states becomes exponential in k.
Second, the resulting system is no longer weakly synchronised even though G
originally was weakly synchronised. To circumvent this problem, we adapt a
technique from [22]. Every run 7 of G from (p1,7T1,¢1) to (p2, Tz, p2) can be
associated with a sequence o of mode vectors recording the information (i)—(iii)
for each counter. The crucial observation is that there are at most

Nmax = 2mk(r + 1)

different mode vectors in o. This is because a counter can only go through
at most 2m regions without incurring a reversal. For this reason, we may use
the control-states of G’ to store the number of mode vectors that G has gone
through, while the actual mode vector guessed by G’ will be made “visible” in the
output strings of G’. That way, we can use an additional existential Presburger
formula " (see below) to enforce that the run of G’ faithfully simulates runs of
G. In addition, the shape of the control-states (DAG with self-loops) of G’ is
preserved. [The product graph of two DAGs with self-loops is also a DAG with
self-loops.] We detail the construction below.
Define the weakly-synchronised sGTRS

G/ = (Pl7 Z’ Fl’ R/)
as follows.
o Let P' =P x [0, Nax]-

o The output alphabet I is defined as I" X R X [0, Npax] X {0, 1}, where the
boolean flag is used to denote whether the transition taken changes the
mode.

« We define R’ as follows. For each rule 7 = (p,7,0) = (p/, 7,) in R,
we add the rule ((p,i),7) 2% ((p/,i),77) for each i € [0, Nypa], and
((p,3), T) 225D, ((f i + 1), T7) for each i € [0, Nas).

Since G is weakly-synchronised and the mode counter never decreases, it follows
that G’ is weakly-synchronised too. Note also that this construction can be
performed in polynomial-time.

10

4.3. Constructing the formula 1 A\’

As we mentioned, 1 is an existential Presburger formula encoding the Parikh
image P(L) of the set L of all output strings of G’ from ((p1,0),71) to (S, 7z),
where S = {p2} X [0, Nax]. More precisely, the set z of free variables of
include z, for each a € I'. Furthermore, for each valuation p € z — Z, it
is the case that 1(u) is true iff u € P(L). Such a formula is known to be
polynomial-time computable since G’ is a weakly-synchronised sGTRS [12].

Recall that v’ should assert that the desired counter comparisons are per-
formed throughout a run of G’. To this end, the formula v’ will have extra
variables for guessing the existence of a sequence of Ny, distinct mode vectors
through a run of G’. More precisely,

©1(x) A w2(y) ADom(my, ..., my,.) A Init(mg)A

1’ = | GoodSeq(my, ..., my A Respect(z,my,...,my,___)A

max) max

EndVal(x,y,z)

The set x consists of variables x; (1 <4 < k) which contain the initial value of
the ith counter. Similarly, the set y consists of variables y; (1 <4 < k) which
contain the final value of the ith counter. Each m; denotes a set of variables
for the ith mode vector defined as follows:

» reg’ (for each j € [1,k]) — to encode which of the 2m + 1 possible regions
the jth counter is in.

. revé (for each j € [1,k]) — to encode how many reversals have been used
up by the jth counter.

o arrk (for each j € [1,k]) — to encode whether the jth counter is non-
incrementing or non-decrementing.

We detail each subformula below.

e The subformula Dom asserts that each variable in m; (for each i) has
the right domain (i.e. range of integer values). More precisely, for each
j € [1,k], we add the conjuncts: (i) 0 < reg? < 2m, (ii) 0 < rev} <r, and
(iii) 0 < arr§ < 1. For the first constraint, we use an even number of the
form 2i to represent the region A;, and an odd number 2i — 1 to represent
the region B;. The last constraint simply encodes non-decrementing (1)
as 1, and non-incrementing () as 0.

e The subformula Init asserts that myg is an initial mode vector. More

precisely, for each j € [1, k], we add the conjuncts Tev? =0.

e The subformula GoodSeq asserts that mg,..., my forms a valid se-

max

quence of mode vectors. More precisely, for each i € [0, Nyax) and each
j € [1,k], we add the conjuncts: (i) arr} # arr;H = revf‘l =rev; + 1,
(ii) arr;'-‘ = arrfl = rev;fl 4 (ifi) regh < regit!
(iv) reg; > regitt = arrj = 0. For example, the first constraint asserts

that a change in the direction (non-incrementing or non-decrementing) of
the counter incurs one reversal. The other constraints are similar.

= rev) = arrj =1, and

11

o The subformula Respect asserts that the Parikh image z of the run of G’
respects the sequence my, ..., my, of mode vectors. In effect, this sub-
formula ensures that G’ faithfully simulates G. Firstly, we need to assert
that the jth counter values at the start and at the end of the ith mode

of G’ (which are encoded in z) are in the right regions regé. To state this

more precisely, for each rule 7 = (p,T,0) = (p/, 7', p) in R, we let pu;(7)
denote the value yu(c;). For each i € [0, Nmax] and j € [1, k], we denote by
the notation StartCounteré— the term z; —&—ZZ;B T (T) X 2(5,7,5,0)5
where v, 7, and [, range over, respectively, I', R, and {0,1}. Similarly,
we denote by EndCounter’ the term StartCounter) + D (ymi0) 1 (T) X
Z(y,7,i,0)- We add the conjuncts: (i) regj- = 2h = (EndCounter§ €
Aj, A StartCounter’ € Ay), for each h € [0,m], and (i) reg} = 2h + 1 =
(EndCounter’ € Bj, A StartCounter’ € By), for each h € [0,m). [Note
that formulas of the form g € A, for a Presburger term g and a set
S € {4o,...,An,B1,...,Bn}, can be easily replaced by quantifier-free
Presburger formulas, e.g., g € Ag stands for g < dy.] To ensure that the
initial condition is correct, for each j € [1,k], we add the following con-
juncts: (1) StartCounter € A;, = reg? = 2h, and (2) StartCounter| €
By, = reg;-) = 2h + 1. Secondly, we need to state that the transitions
executed in each mode are valid (i.e. satisfy the counter constraints).
More precisely, for each v € I', 7 € R, i € [0, Nmax], and I € {0,1},
if 0 is the counter constraint in 7, we add the conjunct z(y r;; > 0 =
f(StartCounter},...,StartCounter},). Note that it is not necessary to
add f(EndCounterti,... 7EndCounter};) as a consequence of this implica-
tion because we have asserted that StartCounter§ is in the same region as
EndCounter’, and so we have f(StartCountery, ..., StartCounter}) <=
6(EndCounteri,...,EndCounter’). Next we assert that, when the jth
counter is non-incrementing (resp. non-decrementing), only non-negative
(resp. non-positive) counter increments are permitted. More precisely, for
each i € [0, Nmax), j € [1,k], 1 € {0,1}, and 7 € R, if p1;(7) > 0, then add
the conjunct arr§- = 0= 2(y,74,) = 0; if pj(7) <0, then add the conjunct

arry = 1= 2(y,7i1 = 0.

o Finally, the subformula EndVal simply asserts that, starting from the ini-
tial counter value x and following the transitions z, the end counter values
are y. To this end, we can simply add the conjunct y; = EndCounteréV max
for each j € [1,k].

This concludes the formula construction. It is immediate that G’ faith-
fully simulates G iff) A %)’ is true. In addition, the formula construction runs
in polynomial-time. Since satisfiability over existential Presburger formulas is
NP-complete [B9], the NP upper bound for Theorem @ follows. NP-hardness
already holds for the restricted model where the tree component is a stack [22].

12

(b) A transition that does not change the
control-state.

Figure 1: Transitions of a senescent GTRS.

5. Senescent Ground-Tree Rewrite Systems

A natural question arising from the result on weakly synchronised rbGTRS
is whether the “weakly synchronised” restriction can be relaxed while maintain-
ing decidability. It is known that allowing arbitrary underlying control-state
graphs leads to undecidability of reachability even without reversal bounded
counters. In this section we explore the notion of senescence [13], which is more
general than the weakly synchronised restriction, but still permits a decidable
reachability problem (without counters). After giving the formal definition of
senescent GTRS, we show the following result.

Theorem 5.1 (Undecidability for senescent rbGTRS). The control-state
reachability problem for senescent rbGTRS is undecidable.

5.1. Model Definition

Senescence allows the underlying control-state graph to have arbitrary cycles
(instead of only self-loops). For sGTRS, control-state reachability is decidable
under an “age restriction” that is imposed on the nodes that can be rewrit-
ten. That is, when the control-state changes, the nodes in the tree age by one
timestep. Once a node reaches an a priori fixed age r, it becomes fixed (i.e.
cannot be rewritten by further transitions in the run).

Before the formal definition, two example transitions of a senescent rbGTRS
are shown in Figure [I|. A configuration is written as its control-state and counter
values ((p,v) or (p/,v’)) with the tree appearing below. In the tree, the label of
each node appears in the centre of the node. The age of each node is depicted

13

as a subscript on the right. Dotted lines are used to indicate the part of the
tree rewritten by a rule. In Figure [la the transition changes the control-state,
causing the age of the nodes that are not rewritten to increase by 1. The
rewritten nodes are given the age 0 as they are new, fresh, nodes. The situation
when the control-state does not change is shown in Figure [Ih. In this case, the
nodes that are not rewritten maintain the same age. The senescence restriction
disallows runs where nodes older than a fixed age are rewritten.
More formally, given a run

(platth) ﬂf_l) e 'Yn_—l> (Pmtml/n)

of an rbGTRS, let Cy,...,C,—1 be the sequence of tree contexts used in the
transitions from which the run was constructed. That is, for all 1 < i < n, we
have ti = CZ [t?Ut] and ti-i—l = CZ [t;}ll] where (pi7 7;, 91) ’Y—i> (pi+1, 777 ,[LZ) was the
rewrite rule used in the transition and " € L(T;), 1%, € L(T;) were the trees
that were used in the tree update.

For a given position (p;,t;,7;) in the run and a given node 7 in the domain
of t;, the birthdate of the node is the largest 1 < j < 7 such that 5 is in the
domain of C;[ti"] and 7 is in the domain of C;[z] only if its label is . The age
of a node is the cardinality of the set {i’ | 7 <’ < i Apy # pyry1}. That is, the
age is the number of times the control-state changed between the jth and the
1th configurations in the run.

A lifespan-restricted run with a lifespan of r is a run such that each transition
(pi, Cilt9™], v;) = (pis1,Ci [t 1], vi+1) has the property that all nodes 7 in 51
have an age of at most r. That is, more precisely, that all nodes 7 in the domain
of C;[t9"*] but only in the domain of C;[z] if the label is have an age of at most
T

Definition 5.1 (Senescent rbGTRS). A senescent rbGTRS with lifespan r
is an rbGTRS G = (P, X, R, C) where runs are lifespan-restricted with a lifespan

of r.

Note that the senescence restriction is weaker than the weakly-synchronised
restriction in that the number of times the finite control could change state
is unbounded. In fact, a node could be affected by an unbounded number of
control-state changes so long as it is always rewritten without becoming fixed
(i.e. reaches age r).

5.2. Undecidability

We show control-state reachability for senescent rbGTRSs is undecidable.
First, we give the intuition behind the construction and then give the full details.

5.2.1. Intuition

In the following, we refer to nodes whose age is within the age bound as live.
We refer to nodes that are not live as fized. Note, each time a node is rewritten,
its age is reset to zero. Thus, we can keep leaves of the tree live by allowing

14

them to rewrite to themselves. That is, for all symbols a we wish to keep live
and all control-states p, we have a transition (p,a,) 2, (p,a, u) where 6 is a
formula that is always satisfied, and p assigns 0 to all counters (i.e. the rule
does not depend on, nor changes the counter values). In addition, by omitting
the above rules for certain control-states, we can prevent a node from keeping
itself fresh in certain situations.

We follow the proof that reachability for reset Petri nets is undecidable [44].
We simulate a two-counter machine. Testing whether such a machine can reach
a given control-state while having counters with value zero is undecidable.

Let the two counters be ¢y and c¢;. In the tree, we track the value of a
counter ¢ € {cp, c1} by the number of live leaves labelled with the counter name
c. E.g. the tree o(co,e(cy,*)) represents the situation where both counters
have value 1, assuming these leaves are live. We will always use internal nodes
labelled e. The node * is for adding new leaves when required. To increment
a counter we add a new leaf labelled ¢. To decrement a counter, we rewrite
a leaf labelled ¢ to a null label. Thus, we can easily increment and decrement
counters. Zero tests, however, are more subtle. To help with this, we track, using
reversal-bounded counters, the number of increments made to each counter,
and in separate reversal-bounded counters, the number of decrements. That
is, we have reversal bounded counters {ca' 2 Co cf, cl_}. When we simulate an
increment of ¢y we add a leaf and increment cg . When we simulate a decrement
of ¢y we rewrite a leaf to a null character and increment ¢, . Similarly for c;.
We simulate zero tests as follows.

To simulate a zero test on a counter ¢ we perform the following checks. First,
we “reset” the counter to zero by forcing enough control-state changes to fix the
nodes corresponding to the counter. That is, we move to a control-state p where
all leaf labels may rewrite to themselves, except those labelled c. After the move
to p all leaves will have age at least 1. Leaves not labelled ¢ can refresh their
age to 0 by rewriting themselves. Leaves labelled ¢ will stay aged at least 1.
Then, we move to the target control-state of the transition we are simulating.
Thus, after these moves, all leaves labelled ¢ will reach age at least 2, while all
node that have refreshed will only reach age 1. Thus, if our lifespan is 2, nodes
labelled ¢ will no longer be live. That is, the simulated value of ¢ in the tree
has been forced to 0. Note, other counters may see their value reduced if not
all nodes refresh. This is handled below.

After this reset operation, the counter value is definitely zero. However, we
did not enforce that the counter value was zero before the transition. Recall,
we track the number of increments and decrements to ¢ in the reversal bounded
counters. If the counter was not zero before the test, there will be a discrepancy
with the reversal bounded counters: more increments will be recorded than
decrements. E.g. for counter ¢y we will have ¢f > ¢;. This cannot be corrected
by the simulation. Thus, at the end of the run, we check whether the number
of increments is equal to the number of decrements. If not, we know the run
made a spurious transition. That is, it performed a zero test transition when
the counter was not zero. This test will also catch the case noted above where

15

some counters fail to fully refresh. If no spurious transitions were made, we
know the two-counter machine has a corresponding run.

5.2.2. Full Construction
A two-counter machine is a tuple M = (S,A) where S is a finite set of
control-states, A is a finite set of rules of the form s; — so where s1,5, € S,
op

and op € {incy, incy, decy, decy, zerog, zeroy }. A configuration of M is a tuple
(s,v0,v1) € S x N x N. We have a transition (si,v},v1) — (s2,v3,0%) if we
have a rule s; — s and

op

o if op =inc;, v = v} + 1 and v, =v]_,,

2

o if op = decy, v;

1

— 1 2
=wv; —1>0and vi_; =vy_,,

o if op = zero;, v} = v} =0, and v}_, = v}_,.

Let vy be the valuation assigning 0 to all counters. For given two-counter
machine M and control-states sy and sy we define a senescent rbGTRS Gy
such that there is a run

(807t07’/0) i> i> (f,t,V)
for some t and v iff there is a run
(50,0,0) — -+ —> (5£,0,0)

of M. Since this latter problem is well-known to be undecidable, we obtain
undecidability of control-state reachability for senescent rbGTRS.

In the following definition we use the following 1-reversal-bounded coun-
ters: car, cf, ¢, and ¢; . We use Rgesh to keep leaf nodes within the lifespan,
Rinc, Rdec, and R,ero to simulate the counter operations, and Rg, to check

c;r = c; for both i at the end of the run. Furthermore, let
_ .t
TECREE
¢ 0 otherwise,
_ 1 ¢c=¢
.\ C =
i () 0 otherwise, and
_ ~1 ce{c, e
pile) = {

0 otherwise.

Recall vg maps all counters to zero.

Given a node 7 and trees t1, ..., t,, we will often write n(¢1, ..., t,) to denote
the tree with root node n and left-to-right child sub-trees ¢1,...,¢,. When n
is labelled a, we may also write a(t1,...,t,) to denote the same tree. We will

often simply write a to denote the tree with a single node labelled a.
For a tree ¢, let T; be an NTA accepting only ¢. For example, 7, is the
automaton accepting only the tree a(b), and T, accepts only the tree containing

16

a single node labelled a. Note, we do not use natural numbers as tree labels,
hence 71,72, ... may range over all NTAs.

Definition 5.2 (Gaq). Given a two-counter machine M = (S,A) and two
control-states so, sy € S, we define a senescent rbGTRS with lifespan 1 and 1
counter reversal

Gm = (P,%,I,R,C,1)

where
P = Su{(s,i) | seSnie{0,1}}w{f p=}
by {o,*, 0,0,1}
r = {e}
C {co ,cf,cg,cf}
R = Rfresh U Rinc U Rdec U Rzero U 7?/ﬁm
where the character e has rank 2 and all other characters have rank 0 and
Riresh = (S,E,T)S(s,ﬁ],uo) ‘sES/\nE{*,G,T}} U
((s,4), Tn,"l') =5 ((5,4), Ty 1h0)] seSAne {xT1,2}\ {E}}

Rinc = 3177;; (525 2%)

SlﬁSQEA}

inc;

Raee = (51,75 T) > (52,73,%_)

Roore = { (3177;7) ((82’) 7;’V0)
((SQa) 7;a) (8277171/0)’

(57, T, T) = (=, Ta, 1

R (=T T) 5 o o
(p=, T, T) = (p=, T 1.

(p=,Tec§ =0Ncg =0AcT =0Acy

51—>52€A}

81—)SQEA

Zero;
) :

=l el
— —

) (faﬂaVO)

Property 5.1 (G simulates M). For a given two-counter machine M and
control-states so and s; there is a run

(50,0,0) — -+ — (s4,0,0)
of M iff there is a run
(507t07V0) (fvta V)

for some t and v of Gaq where tg = x is the tree containing only a single node
labelled .

Proof. Let s;1 = sg and s, = sy and suppose we have a run
(1,0,0) — -+ —> (85,0,0) .

We build the required run of G by induction such that for configuration
(3],110, vl) along the run of M, we have a run to a configuration (s;,¢;,v;) of
G Aq such that

17

o there is one leaf node labelled *, this node has age 0,

o the number of nodes 7 in ¢; is vf for each j € {0,1}, each having age 0,
and

o vi(ch) —vi(ey) = vf for each 7 € {0,1}.

In the base case the result holds trivially for the configuration (s1,*,19). Now
take a transition (s;, op, sj1+1) from the run of M. By induction we have a run
to (s;,t;,v;) as above. We show how to extend this run to (sj41,tj4+1,Vj+1)-
There are several cases depending on op. In each case we show how to reach a
tree satisfying the induction hypothesis, except the age of the leaf nodes. After
the case analysis we show how to satisfy the age requirement also.

o When op = inc;, we use (s;,7x, T) 5 <sj+1,7:(g *),uj). It is easy to

verify we reach (sjy1,tj41,Vj41) as required.

e When op = dec;, we know the ith counter must have a value greater than
zero, hence we can apply (s;, 7, T) — (sj41, Tos it) It is easy to verify
we reach (sj+1,%j41,V41) as required.

» When op = zero;, we know the ith counter must have value zero, hence
there are no leaves labelled 7 in ¢;. We can apply the following sequence
of rules.

1. (Sj,'];,—r) i> ((sj+1vi)’7;vy0)a
2. ((8441,1), Ty T) = ((8j41,%), Ty, v0) to each leaf labelled by some

It is easy to verify we reach (sj41,tj41,7j4+1) as required.

g

Finally, to obtain the age restriction on all leaf nodes, we apply (sj41,7;, T) =
(sj+1, Ty o) to each leaf labelled by some n € {*,0,1}.

Thus, by induction, we can reach a configuration (sy,t,v) such that, for
each i we have I/(C;r) = V(C;). Thus, we can apply a sequence of rules
from Ran to reach (f,t,10). In particular, we apply (sf, 7%, T) 5 (p=, Tay o)
and then simultaneously reduce each reversal-bounded counter to zero using
(p=, T2, T) = (p=, T+, i) repeatedly for each i, and then finally apply

('p:,7;,car =0Acy =0Acf =0Ac] :O) 5 (f, e, 0)
to complete this direction of the proof.
We prove the opposite direction via two inductions. First, take some run of

G aq, which necessarily has the form

(platlvyl) i> e i> (p’rut’ruyn) i> (=,tn,l/”) i> e i> (p=7tn7y0) i> (fatnaVO)

18

where the last sequence of transitions (from p,) are all from Rgn, p1 = So,
t1 =%, 11 =1, and p, = s¢. Let #;(t) be the number of leaves labelled i in t.
We first prove by induction over the run that for all 1 < j <n and i € {0,1}
we have #;(t;) = vj(cj) —v;(c;). This is a straightforward induction that can
be seen by observing

o the base case is immediate,
o all rules in Riresh U Ryero do not change #;(t;), v; (cj'), or v; (ci_),

o all rules in Ry, increase both #;(t;), and v; (cj), by one, and leave v; (c;)
unchanged,

o all rules in Ryec decrease #;(t;) by one, increase v; (ci_) by one, and leave
vj (c;r), unchanged, and
e there are no rules from Rgy.

Given #;(t;) = v; (cj) Sz (c;) for all j and i, we construct, also by induction,
a sequence

(sl,vé,v%) yevos (Sn, 00,07
of M such that for all j and i we have #;(t;) = v/ and p; € {s;, (s;,0), (s;,1)}
and, either

. (sj,v{),v{) — (sj+1,vé+ o)t) is a transition of M, or

J o0\ j+1 . g+1
. (Sj’vov”l) = (5j+1a”0 1).
In the base case we set (s1,v§,v3) = (s0,0,0). Next, take a transition

g
(Pjsty,vi) = (Pj+1s tis1, Vig1)
of G aq. There are several cases depending on which rule 7 was applied.
o If 7 € Riresn then we set (sj,vg,v{) = (sjﬂ,vgﬂ,v{“) and the prop-

erties follow from (sj, vg, v{) by induction.

o If 7 € Rine then for some i we have 7 = (s;, 7%, T) = (sj+1,7:(g *),,uf)

and s; — s;41 isarule of M. We apply this rule to obtain (Sj, v, v{) —
inc;

(Sj+1, vé“,v{“) and we can directly verify #;(t;11) = vf“ for each i
as required.

o If 7 € Ryec then for some ¢ we have 7 = (s;,7;, T) 5 (Sj+1,7;,p,;) and
S; d—) sj+1 is a rule of M. We apply this rule to obtain (sj, vé, v{) —

eCc;

(sj+1, 116“,1){“) and we can directly verify #;(t;+1) = vf“ for each @

as required.

19

o If 7 € R,ero there are two sub-cases.

— TIn the first case, for some i we have 7 = (s;, 7o, T) = ((8j41,1), T, 0)
and s; — s;41 is a rule of M. If we apply this rule we ob-
zero;

tain (sj,vé,v{) — (strl,véH,v{H) and we can directly verify

#i(tj41) = v] 1 for each i as required. However, we need to prove

J

sj — S;4+1 can be applied. That is, we need to prove v; is zero.

ZEero;

Here we use #;(t;/) = v (¢j) — vj(c;) for all . From the defi-
nition of Gy we know that the run from ((s;j41,%),%j41,7;41) must
eventually reach s;y; where (s;41,7) is the only control-state seen
before s;,1 is reached. During this time, we cannot refresh any node
labelled ¢. Thus, assume for contradiction that v{ is not zero. Since
#i(tj) = vf we know there is at least one leaf labelled i. Since this
node cannot refresh while the control-state is (s;j41,%) this node will
have age 2 once s;j;; is reached. Thus, since the lifespan is 1, this
node cannot be rewritten by the end of the run. This means ¢, has
at least one node labelled . Since 1 < #;(t,) = vy (cj') — Un (cl_)
we know v, (cj') # vy (cl_) However, the final transitions of the run
of G a4 use rules from Rg, and have the effect of ensuring v, (cj) =

Vn(c;). Hence, we have a contradiction, and v] = 0. Thus we can
apply s; — s;j41 as needed.
Zero;

— Ifwe have 7 = ((s,1), Te, T) = (8541, Tx, Vo) then we set (sj,vg,v{) =
(sj+1,vg+1,v{+1) which we know satisfies the required properties

since (sj, vg,vj) did by induction.

Thus, we have a sequence (sl, vé,v%) ye oy (Sn, 08, v7) from which we can im-
mediately extract a run of M from (s1,v},v{) = (50,0,0) to (s,,v§,0}) =
(sr,vy,v}). That v = v = 0 follows since the final transitions from p,, have
the effect of asserting vy, (¢;") — v, (¢;) = 0 from which we conclude #;(t,) = 0
and since v]' = #;(t,) we complete the proof as required. O

Thus, via Property @ we can reduce the reachability problem for two-
counter machines to the control-state reachability problem for senescent roGTRS.
Thus, we show the control-state reachability problem is undecidable and com-
plete the proof of Theorem p.1l.

6. Extensions and Future Work

We proposed sGTRS with counters as a model of recursively parallel pro-
grams with unbounded recursion, thread creation, and integer variables. To
obtain decidability, we gave an underapproximation in the form of weak sGTRS
with reversal-bounded counters. We showed that the reachability problem for

20

this model is NP-complete; in fact, polynomial-time reducible to satisfiability of
linear integer arithmetic, for which highly optimised SMT solvers are available
(e.g. Z3 [45]). Additionally, we explored the possibility of relaxing the weakly-
synchronised constraint to that of senescence, and showed that the resulting
model has an undecidable control-state reachability problem.

One possible avenue of future work is to investigate what happens when
local integer values are permitted. That is, reversal-bounded counters can be
stored on the nodes of the tree. We may also study techniques that allow nodes
to contain multiple labels, permitting the modelling of multiple local variables
without an immediate exponential blow up.

Acknowledgments. We thank anonymous reviewers of the conference and jour-
nal versions for their helpful feedback. This work was supported by the En-
gineering and Physical Sciences Research Council [EP/K009907/1] and Oxford
University Startup Fund.

References

[1] M. Hague, A. W. Lin, Decidable models of integer-manipulating programs
with recursive parallelism, in: Reachability Problems - 10th International
Workshop, RP 2016, Aalborg, Denmark, September 19-21, 2016, Proceed-
ings, 2016, pp. 148-162. doi:10.1007/978-3-319-45994-3 11.

URL http://dx.doi.org/10.1007/978-3-319-45994-3_11

[2] S. Qadeer, J. Rehof, Context-bounded model checking of concurrent soft-
ware., in: TACAS, 2005, pp. 93-107.

[3] S. Qadeer, The case for context-bounded verification of concurrent pro-
grams, in: SPIN, 2008, pp. 3-6.

[4] M. Hague, A. W. Lin. Synchronisation- and reversal-bounded analysis of
multithreaded programs with counters, in: CAV, 2012, pp. 260-276. doi:
10.1007/978-3-642-31424-7_22.

URL http://dx.doi.org/10.1007/978-3-642-31424-7_22

[5] P. A. Abdulla, M. F. Atig, J. Cederberg, Analysis of message pass-
ing programs using SMT-solvers, in: ATVA, 2013, pp. 272-286. doi:
10.1007/978-3-319-02444-8_20.

URL http://dx.doi.org/10.1007/978-3-319-02444-8_20

[6] J. Esparza, P. Ganty, T. Poch, Pattern-based verification for multithreaded
programs, ACM Trans. Program. Lang. Syst. 36 (3) (2014) 9:1-9:29. doi:
10.1145/2629644.

URL http://doi.acm.org/10.1145/2629644

[7] G. Ramalingam, Context-sensitive synchronization-sensitive analysis is
undecidable, Transactions on Programming Languages and Systems
(TOPLAS).

21

http://dx.doi.org/10.1007/978-3-319-45994-3_11
http://dx.doi.org/10.1007/978-3-319-45994-3_11
http://dx.doi.org/10.1007/978-3-319-45994-3_11
http://dx.doi.org/10.1007/978-3-319-45994-3_11
http://dx.doi.org/10.1007/978-3-642-31424-7_22
http://dx.doi.org/10.1007/978-3-642-31424-7_22
http://dx.doi.org/10.1007/978-3-642-31424-7_22
http://dx.doi.org/10.1007/978-3-642-31424-7_22
http://dx.doi.org/10.1007/978-3-642-31424-7_22
http://dx.doi.org/10.1007/978-3-319-02444-8_20
http://dx.doi.org/10.1007/978-3-319-02444-8_20
http://dx.doi.org/10.1007/978-3-319-02444-8_20
http://dx.doi.org/10.1007/978-3-319-02444-8_20
http://dx.doi.org/10.1007/978-3-319-02444-8_20
http://doi.acm.org/10.1145/2629644
http://doi.acm.org/10.1145/2629644
http://dx.doi.org/10.1145/2629644
http://dx.doi.org/10.1145/2629644
http://doi.acm.org/10.1145/2629644

8]

[9]

[10]

D. Suwimonteerabuth, J. Esparza, S. Schwoon, Symbolic context-bounded
analysis of multithreaded java programs, in: SPIN, 2008, pp. 270-287.

M. F. Atig, A. Bouajjani, S. Qadeer, Context-bounded analysis for con-
current programs with dynamic creation of threads, Logical Methods in
Computer Science 7 (4).

A. Lal, T. Touili, N. Kidd, T. Reps, [nterprocedural analysis of concurrent
programs under a context bound, in: TACAS, Springer-Verlag, Berlin,
Heidelberg, 2008, pp. 282—298.

URL http://portal.acm.org/citation.cfm?id=1792734.1792761

M. Musuvathi, S. Qadeer, Iterative context bounding for systematic testing
of multithreaded programs, in: PLDI, 2007, pp. 446-455.

A. W. Lin, Weakly-synchronized ground tree rewriting (with applications
to verifying multithreaded programs), in: MFCS, 2012, pp. 630-642.

M. Hague, Senescent ground tree rewrite systems, in: CSL-LICS, 2014, pp.
48:1-48:10.

S. L. Torre, P. Madhusudan, G. Parlato, A robust class of context-sensitive
languages, in: In LICS, IEEE Computer Society, 2007, pp. 161-170.

M. F. Atig, B. Bollig, P. Habermehl, Emptiness of multi-pushdown au-
tomata is 2etime-complete, in: DLT, 2008, pp. 121-133.

C. Aiswarya, P. Gastin, K. N. Kumar, Verifying communicating multi-
pushdown systems via split-width, in: ATVA, 2014, pp. 1-17.

M. F. Atig, K. N. Kumar, P. Saivasan, Adjacent ordered multi-pushdown
systems, Int. J. Found. Comput. Sci. 25 (8) (2014) 1083-1096.

P. Ganty, R. Majumdar, M. Monmege, Bounded underapproximations,
FMSD 40 (2).

P. Madhusudan, G. Parlato, The tree width of auxiliary storage, in: POPL,
2011, pp. 283-294.

S. La Torre, M. Napoli, G. Parlato, Scope-bounded pushdown languages,
in: DLT, 2014, pp. 116-128. doi:10.1007/978-3-319-09698-8 11.
URL http://dx.doi.org/10.1007/978-3-319-09698-8_11

W. Czerwinski, P. Hofman, S. Lasota, Reachability problem for weak multi-
pushdown automata, Logical Methods in Computer Science 9 (3). doi:
10.2168/LMCS-9(3:13)2013.

URL http://dx.doi.org/10.2168/LMCS-9(3:13)2013

M. Hague, A. W. Lin, Model checking recursive programs with numeric
data types, in: CAV, 2011, pp. 743-759.

22

http://portal.acm.org/citation.cfm?id=1792734.1792761
http://portal.acm.org/citation.cfm?id=1792734.1792761
http://portal.acm.org/citation.cfm?id=1792734.1792761
http://dx.doi.org/10.1007/978-3-319-09698-8_11
http://dx.doi.org/10.1007/978-3-319-09698-8_11
http://dx.doi.org/10.1007/978-3-319-09698-8_11
http://dx.doi.org/10.2168/LMCS-9(3:13)2013
http://dx.doi.org/10.2168/LMCS-9(3:13)2013
http://dx.doi.org/10.2168/LMCS-9(3:13)2013
http://dx.doi.org/10.2168/LMCS-9(3:13)2013
http://dx.doi.org/10.2168/LMCS-9(3:13)2013

[23]

[24]

[25]

[35]

S. Goller, A. W. Lin, Refining the process rewrite systems hierarchy via
ground tree rewrite systems, in: CONCUR, 2011, pp. 543-558.

A. Bouajjani, J. Esparza, O. Maler, Reachability analysis of pushdown
automata: Application to model-checking, in: CONCUR, 1997, pp. 135—
150.

J. Esparza, A. Podelski, Efficient algorithms for pre>|< and post* on inter-
procedural parallel flow graphs, in: POPL, 2000, pp. 1-11.

R. Mayr, Decidability and complexity of model checking problems for
infinite-state systems, Ph.D. thesis, TU-Munich (1998).

M. Kretinsky, V. Rehak, J. Strejcek, Extended process rewrite systems:
Expressiveness and reachability, in: CONCUR, 2004, pp. 355-370.

S. Bardin, A. Finkel, J. Leroux, P. Schnoebelen, Flat acceleration in sym-
bolic model checking, in: ATVA, 2005, pp. 474-488.

O. H. Ibarra, Reversal-bounded multicounter machines and their decision
problems, J. ACM 25 (1) (1978) 116-133.

A. W. To, L. Libkin, Algorithmic metatheorems for decidable LTL model
checking over infinite systems, in: FOSSACS, 2010, pp. 221-236.

A. Bouajjani, M. Emmi, Analysis of recursively parallel programs, ACM
Trans. Program. Lang. Syst. 35 (3) (2013) 10.

K. N. Verma, J. Goubault-Larrecq, Karp-Miller trees for a branching ex-
tension of VASS, Discrete Mathematics & Theoretical Computer Science
7 (1) (2005) 217-230.

URL http://www.dmtcs.org/volumes/abstracts/dm070113.abs.html

S. Demri, M. Jurdzinski, O. Lachish, R. Lazic, The covering and bounded-
ness problems for branching vector addition systems, J. Comput. Syst. Sci.
79 (1) (2013) 23-38. d0i:10.1016/j.jcss.2012.04.002.
URL http://dx.doi.org/10.1016/j.jcss.2012.04.002

J. Leroux, M. Praveen, G. Sutre, Hyper-ackermannian bounds for push-
down vector addition systems, in: CSL-LICS, 2014, pp. 63:1-63:10. doi:
10.1145/2603088.2603146.

URL http://doi.acm.org/10.1145/2603088.2603146

M. F. Atig, P. Ganty, Approximating petri net reachability along context-
free traces, in: FSTTCS, 2011, pp. 152-163. doi:10.4230/LIPIcs.
FSTTCS.2011.152.

URL http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.152

23

http://www.dmtcs.org/volumes/abstracts/dm070113.abs.html
http://www.dmtcs.org/volumes/abstracts/dm070113.abs.html
http://www.dmtcs.org/volumes/abstracts/dm070113.abs.html
http://dx.doi.org/10.1016/j.jcss.2012.04.002
http://dx.doi.org/10.1016/j.jcss.2012.04.002
http://dx.doi.org/10.1016/j.jcss.2012.04.002
http://dx.doi.org/10.1016/j.jcss.2012.04.002
http://doi.acm.org/10.1145/2603088.2603146
http://doi.acm.org/10.1145/2603088.2603146
http://dx.doi.org/10.1145/2603088.2603146
http://dx.doi.org/10.1145/2603088.2603146
http://doi.acm.org/10.1145/2603088.2603146
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.152
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.152
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.152
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.152
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.152

[36]

M. Lang, C. Loding, Modeling and verification of infinite systems with
resources, Logical Methods in Computer Science 9 (4). doi:10.2168/
LMCS-9(4:22)2013.

URL http://dx.doi.org/10.2168/LMCS-9 (4:22)2013

T. Colcombet, C. Léding, Regular cost functions over finite trees, in: LICS,
2010, pp. 70-79. doi:10.1109/LICS.2010.36.
URL http://dx.doi.org/10.1109/LICS.2010.36

A. Blumensath, T. Colcombet, D. Kuperberg, P. Parys, M. Vanden Boom,
Two-way cost automata and cost logics over infinite trees, in: CSL-LICS,
2014, pp. 16:1-16:9. doi:10.1145/2603088.2603104.

URL http://doi.acm.org/10.1145/2603088.2603104

B. Scarpellini, Complexity of subcases of Presburger arithmetic, Trans. of
AMS 284 (1) (1984) 203-218.

M. Dauchet, S. Tison, The theory of ground rewrite systems is decidable,
in: LICS, 1990, pp. 242-248.

C. Loding, Reachability problems on regular ground tree rewriting graphs,
Theory Coput. Syst. 39 (2) (2006) 347-383.

L. Bozzelli, M. Kretinsky, V. Rehdk, J. Strejcek, On decidability of LTL
model checking for process rewrite systems, Acta Inf. 46 (1) (2009) 1-28.

https://www.cilkplus.org/tutorial-cilk-plus-reducers (cited in
April 2017), Cilk with reducers.

T. Araki, T. Kasami, Some Decision Problems Related to the Reachability
Problem for Petri Nets, Theoretical Computer Science 3 (1) (1977) 85-104.

L. M. de Moura, N. Bjgrner, Z3: An efficient smt solver, in: TACAS, 2008,
pp- 337-340.

24

http://dx.doi.org/10.2168/LMCS-9(4:22)2013
http://dx.doi.org/10.2168/LMCS-9(4:22)2013
http://dx.doi.org/10.2168/LMCS-9(4:22)2013
http://dx.doi.org/10.2168/LMCS-9(4:22)2013
http://dx.doi.org/10.2168/LMCS-9(4:22)2013
http://dx.doi.org/10.1109/LICS.2010.36
http://dx.doi.org/10.1109/LICS.2010.36
http://dx.doi.org/10.1109/LICS.2010.36
http://doi.acm.org/10.1145/2603088.2603104
http://dx.doi.org/10.1145/2603088.2603104
http://doi.acm.org/10.1145/2603088.2603104
https://www.cilkplus.org/tutorial-cilk-plus-reducers

	Introduction
	Preliminaries
	Trees
	Context Trees
	Tree Automata
	Parikh images
	Presburger Arithmetic

	Formal Models
	Ground Tree Rewrite Systems with State and Reversal Bounded Counters.
	Weakly Synchronised Ground Tree Rewrite Systems
	A simple example

	Decidability
	Modes of the counters
	Building the sGTRS G'
	Constructing the formula '

	Senescent Ground-Tree Rewrite Systems
	Model Definition
	Undecidability
	Intuition
	Full Construction

	Extensions and Future Work

