
Saturation Methods for Global
Model-Checking Pushdown Systems

�
Matthew Hague

St. John’s College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Hilary Term 2009

Abstract

Pushdown systems equip a finite state system with an unbounded stack memory, and are thus
infinite state. By recording the call history on the stack, these systems provide a natural model
for recursive procedure calls. Model-checking for pushdown systems has been well-studied.
Tools implementing pushdown model-checking (e.g. Moped [124, 66]) are an essential back-
end component of high-profile software model checkers such as SLAM [127], Blast [126] and
Terminator [26].

Higher-order pushdown systems define a more complex memory structure: a higher-order
stack is a stack of lower-order stacks. These systems form a robust hierarchy closely related to
the Caucal hierarchy and higher-order recursion schemes. This latter connection demonstrates
their importance as models for programs with higher-order functions.

We study the global model-checking problem for (higher-order) pushdown systems. In
particular, we present a new algorithm for computing the winning regions of a parity game
played over an order-1 pushdown system. We then show how to compute the winning regions
of two-player reachability games over order-n pushdown systems. These algorithms extend
the saturation methods of Bouajjani, Esparza and Maler for order-1 pushdown systems, and
Bouajjani and Meyer for higher-order pushdown systems with a single control state. These
techniques begin with an automaton recognising (higher-order) stacks, and iteratively add
new transitions until the automaton becomes saturated.

The reachability result, presented at FoSSaCS 2007 [78] and in the LMCS journal [79], is
the main contribution of the thesis. We break the saturation paradigm by adding new states
to the automaton during the iteration. We identify the fixed points required for termination
by tracking the updates that are applied, rather than by observing the transition structure.
We give a number of applications of this result to LTL model-checking1, branching-time
model-checking, non-emptiness of higher-order pushdown automata and Büchi games.

Our second major contribution is the first application of the saturation technique to parity
games. We begin with a µ-calculus characterisation of the winning region. This formula
alternates greatest and least fixed point operators over a kind of reachability formula. Hence,
we can use a version of our reachability algorithm, and modifications of the Büchi techniques,
to compute the required result. The main advantages of this approach compared to existing
techniques due to Cachat [128], Serre [93] and Vardi et al. [91, 87] are that it is direct and that
it is not immediately exponential in the number of control states, although the worst-case
complexity remains the same.

1This proof contains an error. We have published a correct proof in FSTTCS 2010 [77]. See Section 6.1
for more details.

Acknowledgements

I would like to thank my supervisor Luke Ong for providing the guidance required
to produce this work and make the jump from student to researcher.

Completing this thesis has been a difficult affair for which I have relied greatly
on my family, friends and colleagues. In particular, I’d like to thank my parents
and several close friends for their extraordinary level support over the final year.
I would also like to thank Joel Ouaknine whose advice has been essential.

I am grateful to the many researchers who have responded to questions about
their work. Olivier Serre has provided many invaluable comments throughout my
studies. I am also enormously indebted to Arnaud Carayol whose input has been
instrumental in finishing this work.

I would also like to thank my examiners Ben Worrell and Javier Esparza for their
patience throughout a somewhat lengthy submission process.

Finally, this thesis would not have been possible without the financial support
of the Engineering and Physical Sciences Research Council and the Centre for
Metacomputation at The Oxford University Computing Laboratory.

Contents

1 Introduction 1
1.1 Infinite State Verification . 1
1.2 Higher-Order Pushdown Systems . 2
1.3 Global Model-Checking of Pushdown Systems 2
1.4 Contributions and Document Structure . 3
1.5 Summary . 5

2 Verifying Models of Computation 7
2.1 Program Models . 7
2.2 Specification Languages . 10

2.2.1 Linear Time . 10
2.2.2 Branching Time Logics . 12
2.2.3 Monadic Second-Order Logic . 13

2.3 Automata and Games . 14
2.3.1 Büchi Automata . 14
2.3.2 Alternating Automata . 15
2.3.3 Games . 16
2.3.4 Parity Games and the µ-Calculus . 18

2.4 Infinite State Systems . 19
2.4.1 Sequential Systems . 19
2.4.2 Concurrent Systems . 22

2.5 Alternation . 24
2.6 Order-1 Pushdown Systems and Automata 24

2.6.1 Definition . 24
2.6.2 Examples . 26
2.6.3 Local Model-Checking of Order-1 Pushdown Systems 26
2.6.4 Properties of High Borel Complexity 30

2.7 Order-1 Extensions of Pushdown Systems/Automata 33
2.7.1 Regular Stack Properties . 33
2.7.2 Recursive State Machines . 35
2.7.3 Weighted Pushdown Systems . 37
2.7.4 Visibly Pushdown Games . 40

2.8 Higher-Order Pushdown Systems and Automata 42
2.8.1 Improving the CD Player . 43
2.8.2 Higher-Order Model-Checking . 44
2.8.3 Definition . 45

i

2.8.4 The Caucal Hierarchy . 48
2.8.5 Local Model-Checking of Higher-Order Pushdown Systems 52
2.8.6 Recursion Schemes . 54
2.8.7 Collapsible Pushdown Systems . 58

2.9 Global Model-Checking . 60
2.10 Summary . 61

3 Saturation Methods for Global Model-Checking 63
3.1 Order-1 Reachability Analysis . 63

3.1.1 Multi-Automata . 63
3.1.2 Backwards Reachability . 64
3.1.3 Extension to Alternating Pushdown Systems 67

3.2 Winning Regions of Order-1 Büchi Games . 67
3.2.1 The Näıve Algorithm . 68
3.2.2 Termination . 70
3.2.3 The Algorithm . 70

3.3 Context-Free Higher-Order Pushdown Systems 72
3.3.1 Nested Store Automata . 72
3.3.2 Backwards Reachability . 72

3.4 Carayol Regularity . 75
3.4.1 Normal Form . 75
3.4.2 MSO-Definability . 76

3.5 Summary . 76

4 Order-1 Pushdown Parity Games 79
4.1 Preliminary Definitions . 79
4.2 An Example . 81
4.3 The Algorithm . 84

4.3.1 Format of the Automata. 84
4.3.2 Definition of the Algorithm. 86

4.4 Termination and Correctness . 86
4.4.1 Termination . 86
4.4.2 Correctness . 87

4.5 Optimisation . 93
4.6 Existing Approaches . 95

4.6.1 Extending Walukiewicz’s Algorithm 95
4.6.2 Games with ω-Regular Winning Conditions 95
4.6.3 Two-Way Alternating Tree Automata 97
4.6.4 Comparing the Approaches . 98

4.7 Abstract Pushdown Games and Higher-Order Pushdown Systems 99
4.8 Summary . 101

5 Global Reachability Analysis of Higher-Order Pushdown Systems 103
5.1 n-Store Multi-Automata . 104
5.2 Regularity . 105
5.3 The Order-Two Case . 107

5.3.1 Example . 107

ii

5.3.2 Preliminaries . 113
5.3.3 Constructing the Sequence A0, A1, . 114
5.3.4 Constructing the Automaton A∗ . 116

5.4 The General Case . 118
5.4.1 Preliminaries . 118
5.4.2 Further Examples . 120
5.4.3 Constructing A0, A1, . 122
5.4.4 Soundness and Completeness for A0, A1, 123
5.4.5 Constructing A∗ . 132
5.4.6 Proofs for A∗ . 134
5.4.7 Complexity . 144

5.5 An Alternative Order-2 Construction . 145
5.6 Algorithms over n-Store (Multi-)Automata 146

5.6.1 Enumerating Runs . 146
5.6.2 Membership . 148
5.6.3 Boolean Operations . 149

5.7 Summary . 153

6 Applications 155
6.1 Model-Checking Linear-Time Temporal Logics 155
6.2 Reachability Games . 159
6.3 Model-Checking Branching-Time Temporal Logics 161
6.4 Non-emptiness of Higher-Order Pushdown Automata 164
6.5 Regular Goal Sets of Higher-Order Büchi Games 168
6.6 Summary . 174

7 Conclusion 175
7.1 Summary of Contributions . 175
7.2 Further Research . 176
7.3 Summary . 178

iii

iv

Chapter 1

Introduction

Computer systems have transformed and continue to transform modern society. More and
more aspects of our lives are enhanced by the intelligence of software, and are therefore ex-
posed to the mistakes of software developers. When computer programs are used in safety
critical applications, such as car braking mechanisms, errors become much more than a tol-
erable frustration.

Traditionally, systems are tested for errors before they are deployed. The behaviour of the
system is checked against a range of possible scenarios to make sure it is correct. However,
testing every possible scenario is, in most cases, impractical. The designer of the tests,
whether a person or a specially designed program, chooses a selection of important cases.
For example, an old database might store years in a two-digit format. The database will be
unlikely to behave badly when information is dated 1998, but may make mistakes when its
year is 2000. The effectiveness of this approach relies on the perspicacity of the tester and
their knowledge of both the system and its desired behaviour. Inevitably, not all errors are
caught.

1.1 Infinite State Verification

Testing, therefore, cannot guarantee that a program is correct. In formal verification the
requirements of the system are specified precisely, and exhaustively checked against a formal
model of the system. If an error is found, it is reported to the programmer, who can use the
information to correct the program.

Although we know, due to the undecidability of the halting problem, that we cannot verify
all programs, there are some types of program that can be verified. The simplest such class
of programs are finite state programs. All hardware is finite state because it can only store
a finite amount of information. Although research was small-scale in the 1980s, advances in
the early 1990s — such as symbolic methods [68] — greatly increased the manageable size of
verification problems, resulting in an industrial acceptance of the discipline by the end of the
decade [117].

However, finite state verification is not always adequate for analysing software. Funda-
mental constructs, such as recursion, are inherently infinite state. One of the simplest kinds
of infinite state system that we can verify are pushdown systems. In these systems, memory
is arranged as a stack of data. The program can only read the top of the stack and is not
allowed to know how tall it is. It can also add items to the top of the stack, or remove items

1

Section 1.2. Higher-Order Pushdown Systems

from the top of the stack. Although this restriction appears quite severe, it is able to model
recursive procedure calls. In fact, tools that verify these kinds of systems are used in many
state-of-the-art verification suites.

1.2 Higher-Order Pushdown Systems

Identifying larger classes of verifiable programs is difficult. An obvious extension of pushdown
systems allows two stacks instead of one. However, allowing two stacks leads to undecidabil-
ity1. The topic of this thesis is an extension that does permit verification: higher-order
pushdown systems. These are pushdown systems where the items on the stack are stacks
themselves. Higher-order stacks allow us to model higher-order features of computer pro-
grams. In Section 2.8.2 we discuss the applications of higher-order model-checking to NASA
remote agents, system design, natural language processing and security policies.

Higher-order pushdown systems are indexed by the nesting depth of their stacks. That
is, an order-1 pushdown system has a stack of characters. An order-2 system has a stack of
order-1 stacks and so on. They were introduced by Maslov as generators of a strict hierarchy
of word languages [20].

The hierarchy of pushdown systems is robust: as generators of trees, they are equivalent
to safe higher-order recursion schemes [133], and the ε-closure of the graphs generated by
higher-order pushdown systems are equivalent to the Caucal hierarchy of graphs [13, 36].
They are also known to have a decidable MSO theories [40, 13, 133].

The connection with higher-order recursion schemes shows that higher-order pushdown
systems are suitable for modelling higher-order programs written in languages such as OCaml,
F♯ and C♯. Higher-order languages also provide a succinct formalism for system design [57],
and are important in natural language processing [24, 49].

1.3 Global Model-Checking of Pushdown Systems

We distinguish two different kinds of model-checking: local and global. Whilst local model-
checking ensures a specification is met from a designated initial state, global model-checking
discovers the complete set of states satisfying a property. Global model-checking is the subject
of this thesis.

In the order-1 case a number of global model-checking results have been presented in the
literature. The first such result is due Bouajjani, Esparza and Maler [3, 8] and independently
to Finkel, Willems and Wolper [15]. It is an application of an algorithm for string rewriting
systems by Book and Otto [119]. They provide a technique for global model-checking with
reachability specifications. That is, they compute the set of pushdown states from which a
specified set of states can be reached. This is an important verification problem in its own
right: many properties required in industry are safety properties — that is, an undesirable
program state (such as deadlock) is never reached.

This result was extended by Cachat to the problem of computing the winning region in
games with Büchi winning conditions [128]. Büchi winning conditions allow the expression of
liveness properties. Whereas a safety property ensures that nothing bad happens, a liveness
property ensures that something good happens. For example, we may require that, whenever

1Two stacks can be used to model the tape of a Turing machine: the contents of the first stack are the
contents of the tape to the left of the write-head, whilst the second stack contains the balance.

2

Section 1.4. Contributions and Document Structure

a message is sent, at some point in the future a message is received. This property can be
translated to a Büchi condition.

Büchi conditions express linear-time properties. These properties observe runs of a pro-
gram. Hence, each position has a single successor. Alternatively, we can consider branching-
time properties. For example, we may want to assert that a default state can optionally
be reached from all program states, without insisting that it is always returned to. The µ-
calculus is an expressive logic that captures linear- and branching-time properties. This logic
can be model-checked using parity conditions. Independently, Cachat [128] and Serre [93]
provided global model-checking algorithms for parity conditions. Later, Vardi et al. [91, 87]
provided a further solution to the problem that provides a unified solution to a number of
similar model-checking problems.

In the higher-order case, Bouajjani and Meyer have provided an algorithm for global
reachability analysis of higher-order pushdown systems with a single control state [2]. That
is, systems that do not store any information outside of the stack. In the order-1 case, this
restriction implies that procedures do not have return values. Recently, Serre et al. [12]
provided a solution to the global model-checking problem for higher-order pushdown parity
games.

1.4 Contributions and Document Structure

In this thesis we present two global model-checking algorithms for pushdown systems with
parity (order-1) and reachability (order-n) conditions respectively. We then present a number
of applications of the reachability result. The document is structured as follows.

Verifying Models of Computation

In Chapter 2 we give an overview of infinite state model-checking. This chapter gives a
general overview of the area. The technical details relevant to the main results of the thesis
are described separately in Chapter 3 We begin with a discussion of the model-checking
framework, including several specification languages, automata and games (Section 2.1 to
Section 2.3). Then, in Section 2.4 we describe a number of infinite state program models
before focussing on pushdown systems in Section 2.6.

After defining order-1 pushdown systems and giving examples of their use and behaviour,
we describe a seminal local model-checking algorithm for parity conditions introduced by
Walukiewicz [53].

In Section 2.7 we discuss some extensions to pushdown systems and related models. The
first section deals with regular stack properties. These properties allow a specification to
analyse the stack contents and have applications in security and dataflow analysis. We then
give an account of recursive state machines. These are a natural extension of finite state
models allowing recursion. They are known to coincide with pushdown systems. That is,
every pushdown system can be simulated by a recursive state machine, and vice versa. We
also discuss weighted pushdown systems that augment pushdown transitions with weights.
These weights can be used, for example, in security to differentiate certification options by
the nature of the information revealed. Finally we describe visibly pushdown automata. By
tying the stack behaviour to the input received, visibly pushdown automata allow expressive
specification languages to be model-checked.

3

Section 1.4. Contributions and Document Structure

Higher-order pushdown systems are detailed in Section 2.8. After motivating and defining
these systems we discuss their connections with the Caucal hierarchy and higher-order recur-
sion schemes satisfying a constraint called safety. We also describe a local model-checking
algorithm based on techniques due to Serre which can be considered a natural extension of
Walukiewicz’s method for the order-1 case. Finally we discuss collapsible pushdown systems.
These systems allow a collapse operation that returns the stack to a specified previous state.
This extension coincides with recursion schemes without the safety constraint.

Saturation Methods for Global Reachability Analysis

Chapter 3 gives a detailed account of two global reachability checking algorithms and a global
model-checking algorithm for order-1 Büchi games. These algorithms form the basis of our
contributed algorithms.

The first algorithm, discussed in Section 3.1, is Bouajjani, Esparza and Maler’s original
backwards reachability algorithm [3, 8]. This algorithm introduced the saturation method
underpinning this thesis. A variation of automata over finite words are used to represent sets of
pushdown states. Transitions are added to the automaton to reflect the pushdown commands
available. Eventually the automaton becomes saturated. That is, no more transitions can be
added.

The second algorithm is Cachat’s extension of this algorithm to Büchi games. This al-
gorithm uses a characterisation of Élöıse’s winning region as the greatest fixed point of a
number of applications of the reachability algorithm. A “speed-up” technique is required to
ensure that this computation terminates.

In Section 3.3 we describe Bouajjani and Meyer’s extension of the order-1 result to higher-
order pushdown systems with a single control state [2]. Bouajjani and Meyer represent sets of
higher-order pushdown states using a kind of nested automata, reflecting the nested structure
of higher-order stacks. This gives us the notion of regularity used throughout the thesis.

A different notion of regularity, due to Carayol [11], is considered in Section 3.4. Rather
than representing the stack explicitly, Carayol represents a stack by the sequence of commands
required to construct it. This notion of regularity coincides with MSO definability and,
contrary to the previous notion, sets of reachable pushdown states are also regular.

Order-1 Pushdown Parity Games

Chapter 4 contains the first contribution of the thesis: an algorithm for computing Élöıse’s
winning region of an order-1 pushdown parity game. This technique uses a µ-calculus charac-
terisation of Élöıse’s winning region which is the result of a number of alternating fixed point
calculations. We show how Cachat’s Büchi games algorithm can be extended to perform the
computation.

We discuss techniques due independently to Cachat [128], Serre [93] and Vardi et al. [91, 87]
for computing the winning region in the order-1 case. These techniques use Walukiewicz’s
algorithm as an oracle to construct an automaton accepting the winning region or use two-
way alternating tree automata. These techniques do not follow the saturation paradigm. The
main advantage of our approach is that it operates directly on the pushdown game (without
reduction to a further game) and may, in some “fortunate” cases, avoid the full cost of the
exponential blow-up. We then describe recent work by Serre extending his order-1 techniques
to the order-n case [12] and an alternative, unpublished, approach by Seth.

4

Section 1.5. Summary

Global Reachability Analysis of Higher-Order Pushdown Systems

The main contribution of the thesis is the subject of Chapter 5. This is an extension of
the order-1 reachability result due to Bouajjani, Esparza and Maler, and the higher-order
reachability result due to Bouajjani and Meyer to the general case of (alternating) higher-
order pushdown systems with an arbitrary number of control states.

The main innovation of this approach is the use of sets describing how a nested automaton
is to be updated, rather than the direct updates used by the previous algorithms. These sets
allow us to easily identify the fixed points required for termination. Our algorithm runs in
n-EXPTIME in the number of states of the automaton describing the set to be reached. This
automaton is at least as large as the set of control-states of the system.

In Section 5.5 we discuss an alternative approach, due to Seth [23], for the order-2 case.

Applications

Finally we discuss a number of applications of our reachability result. In particular our algo-
rithm can be used to determine the set of positions from which Élöıse can win a reachability
game played over a pushdown system, perform LTL model-checking, and model-checking of
the alternation-free µ-calculus. We also show that our algorithm can be used to test the empti-
ness of a higher-order pushdown automaton. This proves that our reachability algorithm is
optimal.

We then consider Büchi games played over pushdown systems. We show that a reduction
to simple goal sets is also possible in the higher-order case. The reduction we use is quite
different from the order-1 technique described by Cachat.

1.5 Summary

We have introduced the discipline of formal verification and discussed the importance of
infinite state systems for model-checking software. We have described pushdown systems,
which can be used as a model for program recursion, and their extension to higher-order
pushdown systems, which can be used to model higher-order constructs. We have given an
overview of the global model-checking paradigm and previous results for pushdown systems
and a sub-class of higher-order pushdown systems.

We then gave a summary of the structure of the thesis and it’s two main contribu-
tions: global model-checking algorithms for order-1 parity games and higher-order reachability
games.

5

Chapter 2

Verifying Models of Computation

An important property of any program is its correctness. In computing, errors are difficult to
prevent in both large and small systems and are too often viewed as an inevitability. There
are a number of high-profile cases, such as the infamous Pentium floating point error —
which cost a reported $500 million [67] — that illustrate the need for careful checking of both
hardware and software.

One basic method for checking correctness is straightforward testing: a user tries to break
the system by inputting as many test cases as is feasible. However, to test every set of
input conditions is almost impossible — especially in the concurrent case, where a degree of
nondeterminism is present. Testing, therefore, cannot guarantee correctness. Furthermore, it
can sometimes be difficult to determine, via testing, precisely where a program goes wrong.

It would be ideal, then, if we were able to prove that a system is error free, or identify
errors before they identify themselves. This is the goal of the model-checking problem.

In general, this problem is undecidable. That is, for any program and any specification,
we cannot automatically determine whether the specification is met. The halting problem
is a classic example of this undecidability. However, we can restrict the range of expressible
properties via the method we use to represent the system and its specification. Once restricted,
the problem often becomes decidable, although the complexities are high.

Despite the high complexity, efficient algorithms and implementations have been developed
and model-checking enjoys a number of successes in industry [117]. Recently, the 2007 Turing
Award was given to Clark, Emerson and Sifakis for their work in transforming model-checking
“from a theoretical technique to a highly effective verification technology”.

2.1 Program Models

Kripke Structures

To be able to reason about programs we require a formal representation of the system. There
are a number of formalisms in the literature, ranging from the theoretical (lambda calculus,
pi-calculus, CSP, &c.) to the more practically motivated (Promela, SMV). In this section
we introduce the model most commonly associated with model-checking: Kripke Structures.
Although many model-checkers take a more practical language as input, the internal workings
of the system, and the accompanying literature, often use Kripke structures. Therefore, they
are the right formalism for discussing model-checking algorithms.

7

Section 2.1. Program Models

Definition 2.1.1. A Kripke Structure S over a finite set of atomic propositions AP is a
tuple (Q, ∆, l, I), where Q is a (possibly infinite) set of states, ∆ ⊆ Q × Q is a transition
relation, and l : Q → 2AP labels each state of Q with the set of atomic propositions that are
true at that state. Finally I ⊆ Q is a set of initial states (usually a singleton) of S.

Together Q and ∆ form a directed graph. The program starts in an initial state. At each
program step a transition is taken to a next state. This gives us the notion of a path and a
run.

Definition 2.1.2. Given a Kripke Structure S = (Q, ∆, l, I) a sequence q0, q1, q2, . . . of states
qi ∈ Q such that (qi, qi+1) ∈ ∆ is a path through S. If the sequence is maximal, it is a
fullpath. A fullpath is a run when q0 ∈ I.

An equivalent, definition of Kripke Structures uses a finite alphabet Σ rather than a set of
atomic propositions. In this alternative definition it is the transition relation that is labelled
rather than the states. Conceptually the program will perform an action a ∈ Σ to move from
one state to another.

To translate from AP to Σ we set 2AP as our alphabet and move the labelling of a state
to the transition relation. In the opposite direction, we encode Σ using a number of atomic
propositions and move the labelling to the states. If a state is reachable by both an a ∈ Σ
and a b ∈ Σ action (a 6= b), then we divide it into two states — one if it is reached by an a,
the other if it is reached by a b. Consequently a sequence of states (and therefore a path or
a run) can equivalently be represented as a word over the alphabet Σ.

Finite State Systems

Traditional model-checking uses finite state program models. That is, programs are described
using Kripke structure with a finite set of states. Consider the following CD player:

program CDPlayer

CD = null

while input do

case load1: CD = cd1

case load2: CD = cd2

case play: playCD(CD)

end

end program

Figure 2.1 shows an edge-labelled finite state Kripke structure modelling the above program.
Observe that runs of this program, except in the case of an error, are infinite. This is a
reactive system. Other examples of these systems are web-servers and control mechanisms
(such as an auto-pilot). Since a finite program run can be modelled by an infinite run with
an infinitely occurring sink state, we consider the general case of infinite runs.

Trees

The program models discussed above are graphs. Trees are a subclass of the class of graphs
and are often used to represent runs of a system. A tree has a designated root node, and all
other nodes have at most one predecessor. Thus, the nodes form an acyclic structure with

8

Section 2.1. Program Models

CD = cd1

CD = null Error

CD = cd2

playCD

playCD

playCD

load1

load2

load2 load1

Figure 2.1: Modelling a CD player

ε

a b

aa ab ba bb

...
...

...
...

Figure 2.2: The binary tree T = {a, b}∗

independent branches. These branches may represent alternative executions of a program, or
parallel executions that do not communicate with each other.

Definition 2.1.3. Given alphabets Σ and Γ, a tree is a tuple (T, τ) where T ⊆ Σ∗ is such
that ε ∈ T and if wa ∈ T , then w ∈ T . Furthermore, τ : Σ∗ → Γ is a node labelling.

Nodes of a tree are represented by the sequence of characters required to reach them.
Hence, the empty word ε is the root of the tree. A node wa ∈ T has the parent node w and
child nodes of the form wab for some b ∈ Σ. The labelling τ provides information about the
node, for example, Γ may be the set 2AP for a set of atomic propositions AP . This labelling
may associate each node with the set of propositions it satisfies. For example, let Σ = {a, b}
and T = Σ∗. This is the complete binary tree, shown in Figure 2.2.

Finally, trees may be ranked and/or ordered. In a ranked tree, each node is assigned an
arity. The arity of a node specifies exactly how many children the node has. In an ordered
tree, the left-to-right arrangement of a node’s children is a property of the node. For example,
given an ordering on Σ, a tree whose branches are arranged in ascending order is distinct from
a tree which has the same nodes and branches with the exception that the branches appear
in descending order.

9

Section 2.2. Specification Languages

2.2 Specification Languages

We can reason about programs using several different languages. Two important areas of
study are linear time and branching time languages. In the linear time paradigm we
assume that each time step has one possible future. In the branching time philosophy, many
different futures may occur. Vardi argues that the linear time paradigm is more intuitive and
more useful in practice [84]. The reachability and Büchi properties investigated in this thesis
fall into the linear time paradigm. Our discussion of parity games in Chapter 4 subsumes the
previous linear time results and is branching time. We begin by introducing the logics.

2.2.1 Linear Time

ω-Regular Languages

A program run may be considered to be a word over the alphabet Σ, where Σ is a set of
program states. An important tool for discussing the expressivity of linear time logics are
ω-regular languages. We can express almost all important properties of a system using these
languages.

Definition 2.2.1. The syntax of ω-regular expressions is,

α ::= ε | a | α ∪ α | α; α | α∗ | αω

where ε denotes the empty word, a the single character a, ∪ the union of two languages, ; the
composition and ∗ and ω (respectively) finite and infinite repetition of a language.

An important subclass of ω-regular languages is the star-free languages. This is the
subclass without ∗ or ω, but complementation (α) is allowed. The star-free languages are
those that can be defined using first-order logic over strings [116].

Linear Temporal Logic

Linear Temporal Logic (LTL) was introduced by Pnueli in 1977 [22]. It is interpreted over
a linear time structure, where proposition valuations π : N → 2AP are parameterised by a
natural number denoting the time-step. What may be true initially might not be true at a
time-step greater than zero.

The logic is built from a set of atomic propositions AP , the boolean connectives and two
binary temporal operators © (tomorrow) and U (until). The meaning of © is straightforward
given the semantics given below. Until is more subtle. The formula φUψ asserts that φ holds
at all time-steps from now until ψ holds, and, moreover, that ψ will eventually hold. We
interpret U non-strictly, and allow ψ to hold immediately, meaning that φ may never need to
be satisfied.

Definition 2.2.2. For a set of atomic propositions AP and an LTL formula φ, given a
valuation π : N → 2AP and time-step i ∈ N , we interpret φ as follows (p ∈ AP):

π, i |= p ⇐⇒ p ∈ π(i)
π, i |= φ ∧ ψ ⇐⇒ π, i |= φ and π, i |= ψ
π, i |= ¬φ ⇐⇒ not π, i |= φ
π, i |= ©φ ⇐⇒ π, i + 1 |= φ
π, i |= φUψ ⇐⇒ there is j ≥ i such that π, j |= ψ and for all i ≤ k < j

we have π, k |= φ

10

Section 2.2. Specification Languages

The literature uses three important abbreviations when discussing LTL: φV ψ, Fφ and
Gφ. The first of these φV ψ is defined as the dual of φUψ, that is ¬(¬φU¬ψ). The future
operator Fφ asserts that φ holds at some point in the future, and is encoded ⊤Uφ, where ⊤
is truth. Because of the non-strict interpretation of U , Fφ is satisfied if φ holds immediately.
Finally, the globally operator Gφ is the dual of F (¬F¬φ) and asserts that φ is true from this
time-step on.

LTL can express all star-free ω-regular languages, and therefore all first order properties
of strings [139].

Linear Time µ-Calculus

Wolper first observed that LTL cannot express all ω-regular properties [96]. It has been shown
that LTL can express only the star-free properties [139]. It was also shown that LTL is not
adequate for modular verification because it cannot express the required assumptions about
the environment [92]. That is, we cannot break large programs into modules and verify them
independently.

In response to these observations, Banieqbal and Barringer proposed the use of fixed point
operators [25], yielding the Linear Time µ-Calculus (µTL). This logic extends LTL with least
(µ) and greatest (ν) fixed point operators and requires the introduction of a set of fixed point
variables X and an environment V : X → 2N . The environment V identifies the set of time-
steps where a variable — not bound by a fixed point operator (σX.φ(X) where σ ∈ {µ, ν})
— is true. A µTL formula is closed if all fixed point variables appearing in the formula are
bound by a fixed point operator.

To aid in the definition of the semantics of µTL we introduce the notation JφKπ
V to denote

the set of all time-steps at which φ holds, given a run π and environment V.

Definition 2.2.3. For a set of atomic propositions AP , a disjoint set of fixed point variables
X and a µTL formula φ, given a valuation π : N → 2AP and environment V : X → 2N , we
interpret φ as follows (in addition to the semantics of LTL)(X ∈ X):

JXKπ
V := V(X)

JµX.φKπ
V :=

⋂
{M ⊆ N |JφKπ

V[X 7→M] ⊆ M}

JνX.φKπ
V :=

⋃
{M ⊆ N |M ⊆ JφKπ

V[X 7→M]}

where V[X 7→ M] behaves like V in all cases except V(X) is M .

The theory of fixed point operators is not a simple one. Intuitively, the fixed point
operators allow properties to be defined recursively. For example the formulas φ = µZ.φ′ ∨Z
and φ = νZ.φ′ ∨Z assert that either φ′ holds at the current state, or there exists a successor
state that satisfies (recursively) φ. A least fixed point operator asserts that the recursion
terminates after a finite number of steps, whereas the greatest fixed point operator allows
infinite recursion. These operators are allow us to encode the ω-regular language operators ∗
and ω respectively. Consequently µTL can express all ω-regular properties.

For example, suppose we have one atomic proposition p. Let 1 denote a time-step where
p holds and 0 denote a time-step where p does not hold. If we bound the variable X with µ
and require that we have the sequence 110 followed by X, or that p holds globally, we would
be expressing the language (110)∗(1)ω. This is because we can either settle in Gp now ((1)ω),
or take the second route which requires (110) and then recurses (or loops) through X back to

11

Section 2.2. Specification Languages

where X is bound. Since X is bound by µ, we can only take this second route a finite number
of times. Eventually, we must choose Gp. If instead we had bound X with ν and removed
Gp from the disjunction, we would require an infinite repetition of 110, that is, (110)ω.

The fixed point operators can also be characterised using approximants. The denotation
JµX.φ(X)KGV can be defined as the least fixed point of the sequence (where i, α and β are
ordinals):

Jµ0X.φ(X)KGV = ∅

Jµi+1X.φ(X)KGV = Jφ(X)KG
V [X=JµiX.φ(X)KGV]

JµαX.φ(X)KGV =
⋃

β<αJµβX.φ(X)KGV

and the set JνZm′ .χ(Z1, . . . , Zm′)KGV can be defined as the least fixed point of the sequence:

Jµ0X.φ(X)KGV = 2N

Jµi+1X.φ(X)KGV = Jφ(X)KG
V [X=JµiX.φ(X)KG

V
]

JµαX.φ(X)KGV =
⋃

β<αJµβX.φ(X)KGV

That is, the least fixed point can be calculated by repeatedly calculating φ, using the empty
set as the initial value of X. Dually, the greatest fixed point can be calculated by beginning
with the set of all positions as the initial value of X. Note that we may need a transfinite
number of iterations to compute a fixed point.

2.2.2 Branching Time Logics

In the linear paradigm, we assume that each moment of time has a unique successor. An
alternative model of time assumes many different possible futures. To reason in this model
we use branching time logics.

Computational Tree Logic

Computational Tree Logic was introduced in 1981 by Emerson and Clarke [46]. It is inter-
preted over computation trees, rather than linear sequences of time-steps. This represents
the fact that any state of the program may have many possible next states.

Definition 2.2.4. Given a set of atomic propositions AP , the syntax of CTL is as follows
(p ∈ AP),

φ := p | φ ∧ ψ | ¬φ | E(φUψ) | A(φUψ) | E © φ | A © φ

Intuitively, the semantics of a CTL assertion is similar to LTL. The temporal connectives
are augmented with existential and universal quantifiers, E and A. The existential quantifier
requires that the assertion holds on some path from the current node in the tree. Dually, the
universal quantifier requires that it holds on all paths leading from the current node.

Computational Tree Logic*

CTL is a fragment of CTL*. CTL* is an extension of LTL with quantification over program
runs.

12

Section 2.2. Specification Languages

Definition 2.2.5. Given a set of atomic propositions AP , the syntax of CTL* is as follows
(p ∈ AP),

φ := p | φ ∧ ψ | ¬φ | Eφ | φUψ | © φ

Universal quantification Aφ is defined as an abbreviation for ¬E¬φ.

The semantics of CTL* is defined in terms of runs of a computation tree T . A run r of
T is a sequence s0, s1, s2, . . . of nodes of T , such that si+1 is a child of si for all i. We write
r[0, . . . , i] to denote the first i + 1 nodes in the sequence r.

Definition 2.2.6. Given a set of atomic assertions AP a CTL* assertion φ, a computation
tree T , and run r of T , and a position i of r, we interpret φ as follows (in addition to the
semantics of LTL):

T, r, i |= Eφ ⇐⇒ T, r′, i |= φ for some r′ in T such that
r[0, . . . , i] = r′[0, . . . , i]

The µ-Calculus

The linear-time µ-calculus is a variant of the µ-calculus, which is branching time. The µ-
calculus is an important logic since it subsumes all of the logics discussed in this chapter.
(See Arnold and Niwiński for a detailed discussion of the µ-calculus [1].)

Definition 2.2.7. Given a set of propositions AP and a disjoint set of variables X , the syntax
of the µ-calculus is as follows (with p ∈ AP and X ∈ X):

φ := p | ¬p | X | ¬X | φ ∧ ψ | φ ∨ ψ | 2φ | 3φ | µX.φ | νX.φ

The semantics of the µ-calculus are analogous to that of the linear-time µ-calculus, except
in the case of 2φ and 3φ. In these cases we require φ to hold at every possible next state or
at one or more next states respectively.

2.2.3 Monadic Second-Order Logic

Monadic second-order logic (MSO) is a highly expressive logic at the limits of decidability.
In general it subsumes the µ-calculus, although it is equivalent in the case of finite graphs
and (possibly infinite) trees [141]. Furthermore, any bisimulation invariant MSO formula is
equivalent to some formula of the µ-calculus [42]. Two states are bisimilar if they satisfy the
same atomic propositions, and each transition from either of the states can be matched by a
transition from the other, leading to another pair of bisimilar states. That is, only a state’s
behaviour is taken into account, rather than its unique identity. MSO is able to identify
nodes, whereas the µ-calculus can only reference the behaviour, or propositions satisfied.

It is rare to find examples of structures for which the µ-calculus is decidable, but MSO
is not. One such example is the class of graphs definable by collapsible pushdown systems,
discussed in Section 2.8.7.

Second-order logic generalises first-order logic by allowing quantification over sets of ele-
ments as well as single elements. It is because of this restriction to sets, rather than relations
of higher-arity, that the logic is termed monadic. We have the syntax:

φ := x ∈ X | ¬φ | φ1 ∨ φ2 | ∀x.φ | ∀X.φ

13

Section 2.3. Automata and Games

where x is a first-order variable and X is a second-order variable. Several fundamental
constructs may be considered abbreviations. For example:

x = y := ∀X.x ∈ X ⇐⇒ y ∈ X
X ⊆ Y := ∀x.x ∈ X ⇒ x ∈ Y
X = ∅ := ∀Y.X ⊆ Y

Over words we have the monadic second-order theory of a single successor. In this logic, we
equip MSO with a successor relation S(x, y) which holds if y is the successor of x. We can
then express x < y, first(x), and in the case of finite words, last(x):

x < y := ¬(x = y) ∧ ∀X. (x ∈ X ∧ ∀z, z′ (z ∈ X ∧ S(z, z′) ⇒ z′ ∈ Z) ⇒ y ∈ X)
first(x) := ∀y.x < y ∨ x = y
last(x) := ∀y.y < x ∨ x = y

To express x < y, we assert that y is an element of the set of successors of x. Similar
interpretations over trees and graphs are obtained through the addition of edge relations.

2.3 Automata and Games

In this section we describe two important classes of automata and discuss their relationship
with LTL. (For a detailed description of the automata-theoretic approach to LTL, see Vardi’s
survey paper [83].)

2.3.1 Büchi Automata

Automata can be used to define languages over a given alphabet Σ. We are interested in
infinite runs of programs, and hence infinite words. Büchi automata can be used to calcu-
late whether a given word is in our language. That is, whether a program run meets our
specification.

Definition 2.3.1. A Büchi automaton A is a tuple (Σ,Q, I, δ,F), where Σ is a finite, non-
empty, alphabet, Q is a finite set of states, I ⊆ Q is the set of initial states, and δ : S×Σ → 2Q

is a transition relation. The set F ⊆ Q is a set of final states.

To determine whether a Büchi automaton accepts a word w we proceed as follows. The
automaton starts at an initial state. It reads the characters of w one by one (from left to
right). At each character, we take a transition allowed by the transition relation given the
current state and character. We accept the word if we meet a state in F an infinite number
of times.

More formally, given a word w = a0, a1, a2, . . . we define a run of the automaton on w
as a sequence of states q0, q1, q2, . . . where q0 ∈ I and qi+1 ∈ δ(qi, ai) for all i. If δ(q, a) is a
singleton for all q and a then the automaton is deterministic — for any given word there is only
one possible run. If we have a choice of next states then the automaton is nondeterministic,
and for any given word a number of runs may exist.

In order to define acceptance we define the limit of a run r as lim(r) = { q | q = qi for
infinitely many i }. A word is accepted if there is a run r of the automaton over the given
word such that lim(r) ∩ F 6= ∅. That is, a run exists where a final state occurs infinitely
often.

14

Section 2.3. Automata and Games

The language of an automaton A is written L(A) and is defined as the set of all words
accepted by the automaton.

Proposition 2.3.1 ([85]). Given an LTL formula φ, one can build a Büchi automaton
Aφ = (Σ,Q, I, δ,F), where Σ = 2AP and |Q| is 2O(|φ|), such that L(Aφ) is exactly the set of
computations satisfying the formula φ.

2.3.2 Alternating Automata

Alternating automata have been studied by Brzozowski and Leiss [56] and Chandra, Kozen
and Stockmeyer [16]. As we noted earlier, a Büchi automaton may be non-deterministic.
The automaton will accept if any of these transitions results in an accepting path. That
is, there exists a transition leading to an accepting path. Alternating automata go a step
further, allowing universal as well as existential quantification. Two definitions of alternating
automata have been introduced in the literature [56, 16]. The class of languages definable
by both types of automata are equivalent. In the first definition, the alternation appears on
the states of the automata, whereas in the second, the alternation appears in the transition
relation.

Definition 2.3.2 ([16]). An Alternating Büchi Automaton (ABA) A is given as a tuple
(Σ,Q, I, δ, E, U,F), where Σ is a finite, non-empty, alphabet, Q is a finite set of states, I ⊆ Q
is the set of initial states and δ : Q×Σ → 2Q is a transition relation. The set F ⊆ Q is a set
of final states and E, U is a partition of Q into existential and universal states.

Informally, a word is accepted by an alternating automaton if, from the current state,
either all transitions lead to an accepting run (if we are in a universal state), or there is a
transition which leads to an accepting run (if we are in an existential state).

Definition 2.3.3 ([56]). An Alternating Büchi Automaton (ABA) A is given as a tuple
(AP,Q, I, δ,F), where AP is a set of atomic propositions, Q is a finite set of states, I ⊆ Q is
the set of initial states, and δ : Q → B(Q∪ AP) is a transition relation, where B(Q∪ AP) is
the set of all boolean formulae over the atomic propositions in Q ∪ AP and states in Q only
occur positively. The set F ⊆ Q is a set of final states.

In this model of automata we introduce alternation via the transition relation. At each
point in a run of the automaton we evaluate the transition formula for the current state. The
value of the atomic propositions is given by the character of input that is being read. We are
looking for models of δ(q) (where q is the current state). If we can find a model such that
an accepting run can be found for all states in the model, then the automaton accepts. For
example, if δ(q) = (q1 ∧ q2)∨ (q3 ∧ q4) we accept if accepting runs can be found from states q1

and q2, or if accepting runs can be found from states q3 and q4. When alternation is by state
rather than boolean formula, it can be observed that δ(q) = (q1 ∧ q2) ∨ (q3 ∧ q4) can only be
encoded by introducing intermediate states. Hence, boolean formulae may allow automata
with fewer states, although the transition relation is more complex.

It is known that alternating automata are no more expressive than non-deterministic
automata, but exponentially more succinct. In fact, there is a linear translation from LTL to
alternating automaton. However, this does not improve the complexity of LTL satisfiability
because the complexity of testing for language emptiness is exponential for an alternating
automaton, as opposed to linear for a non-deterministic automaton.

15

Section 2.3. Automata and Games

Two important subclasses of alternating Büchi automata are Weak ABA (WABA) [39]
and Linear Weak ABA (LWAA). An ABA is weak if its state-set can be partitioned into
sets Q1, . . . ,Qn such that if some state q′ appears in ∆(q, a) for some q and a, then q ∈ Qi and
q′ ∈ Qj with j ≤ i. That is, once a run has left a partition, it cannot return. Furthermore,
each partition is either accepting, or not-accepting. That is, for all i, Qi ⊆ F or Qi ∩ F = ∅.
A WABA is linear if its transition structure contains no cycles containing two states or more.
That is, only self loops are permitted.

We present the following equivalences between alternating automata and linear time logics.

Proposition 2.3.2 ([80]).

1. For every φ ∈ µTL there is a WABA Aφ with L(Aφ) = L(φ).

2. For every WABA A there is a φA ∈ µTL with L(φA) = L(A).

Similarly, for LTL:

Proposition 2.3.3.

1. For every φ ∈ LTL there is an LWAA Aφ with L(Aφ) = L(φ) [38].

2. For every LWAA A there is a φA ∈ LTL with L(φA) = L(A) [31, 51].

2.3.3 Games

Games are an alternative characterisation of alternating automata. A game is played over
a graph, consisting of a (possibly infinite) set of nodes and directed edges. The state-set is
partitioned into positions belonging to player one, Élöıse, and player two, Abelard1. An
initial state is designated. This state belongs to either Élöıse or Abelard, and the appropriate
player is able to choose which edge to follow. This edge is followed to the next state and a
new round of the game begins. We consider games in which plays produce infinite paths. If a
player is unable to choose a next move, they forfeit the game. In the case of an infinite play,
the winner of the game is selected using an appropriate winning condition.

Definition 2.3.4. A game is a tuple (Q, ∆,W) where Q = QE ⊎ QA is a set of states
belonging to Élöıse and Abelard respectively, ∆ ⊆ Q×Q is a transition function, and W ⊆ Qω

is a winning condition.

A play from an initial state q0 generates a sequence q0, q1, Élöıse wins the game if
q0, q1, . . . ∈ W.

The Borel Hierarchy

The Borel Hierarchy [17] provides a means of classifying the expressivity of logics over words.
It is a hierarchy of word languages. These word languages can be used to classify winning
conditions on games.

At the bottom of the hierarchy is the class of open sets, denoted Σ1. These sets are of the
form W ·Σω for some finite alphabet Σ and set of finite words W ⊆ Σ∗. Logics at level Σ1 of

1In the literature many different names are used. For example, Player 0 and Player 1, Spoiler and Dupli-
cator, or Adam and Eve.

16

Section 2.3. Automata and Games

Σ1 Σ2

B(Σ1) B(Σ2) · · ·

Π1 Π2

Figure 2.3: The Borel Hierarchy [17]

the Borel hierarchy are limited in their expressiveness: they are able to reason about a finite
prefix of a run, but not its infinite behaviour.

Also at the bottom of the hierarchy is the class Π1, which is the class of languages that are
the complement of a language in Σ1. The Borel hierarchy is constructed by forming boolean
combinations, infinite unions and complements of classes lower in the hierarchy.

Definition 2.3.5. Let Σ be a finite alphabet. The Borel hierarchy is defined inductively:

Σ1 = { W · Σω | W ⊆ Σ∗ }
Πn = { A | A ∈ Σn }

Σn+1 =
{ ⋃

i>0 Ai | ∀i > 0Ai ∈ Πn

}

Let B(Σn) denote the class of boolean combinations of Σn sets. The Borel hierarchy is
shown in Figure 2.3, where each arrow indicates a strict inclusion. A set A ∈ Σn with A /∈ Πn

is called a true-Σn-set.

Winning Conditions

We restrict our attention to three important conditions: reachability, Büchi and parity:

• A reachability condition requires Élöıse to force play to a state in a set Qr ⊆ Q. That
is,

W = Q∗ · Qr · Q
ω

Hence, the reachability condition is a Σ1 winning condition.

• A Büchi winning condition is as defined in Section 2.3.1. Alternatively,

W =
⋂

n>0

(Q∗ · F)n · Qω =
⋃

n>0

(Q∗ · F)n · Qω

That is, the complement of a Σ2 condition. Hence the Büchi condition is a Π2 condition.

• A parity condition assigns to each state a priority from a set {1, . . . , m} for some m.
Élöıse wins the game if the lowest priority occurring infinitely often in the play is even.
Let Pi be the set of states of priority i ∈ {1, . . . , m}. Furthermore, let φ(Pi) be the
formula requiring a state in Pi to occur infinitely often in the play. The formula given
above to describe Büchi games can be used to define φ(Pi) by replacing occurrences of
F with Pi. Hence φ(Pi) is a Π2 condition. The parity condition states that, for all odd

17

Section 2.3. Automata and Games

priorities i, i does not occur infinitely often, or, some even priority less than i occurs
infinitely often. That is,

W =
⋂

i ∈ {1, . . . , m}
odd(i)




φ(Pi) ⇒
⋃

0 < j < i
even(j)

φ(Pj)




Hence, the parity condition is the boolean combination of several Π2 conditions. Thus,
it is in B(Σ2).

2.3.4 Parity Games and the µ-Calculus

Checking a Kripke structure against a µ-calculus specification can be straightforwardly re-
duced to determining the winner of a parity game [32]. To prevent play terminating spuriously,
we assume that every state q of the Kripke structure has a next state q′ (that is (q, q′) ∈ ∆).
This can be ensured through the addition of a looping sink state for all terminating compu-
tations.

The states of the game are formed by the product of the Kripke structure S and the
sub-formulae of specification φ. The states and moves available to Élöıse are of the form:

1. From a state (q, ψ1 ∨ ψ2), Élöıse can move to (q, φ1) or (q, φ2).

2. From a state (q, 3ψ), Élöıse can move to (q′, φ) where (q, q′) ∈ ∆.

That is, Élöıse resolves existential aspects of the computation. Conversely, Abelard resolves
universal choices:

1. From a state (q, ψ1 ∧ ψ2), Abelard can move to (q, φ1) or (q, φ2).

2. From a state (q, 2ψ), Élöıse can move to (q′, φ) where (q, q′) ∈ ∆.

Intuitively, existential aspects of the computation permit a choice where only one successful
run is required. In these cases, Élöıse can choose (fortuitously). Universal aspects of the
computation require all possible choices to be successful. Hence, we allow Abelard to attempt
to defeat Élöıse by making the most difficult choice. Finally, several states of the game have
only a single successor and ownership is not important:

1. From a state (q, σX.ψ) play moves to (q, X), where σ ∈ {µ, ν}.

2. From a state (q, X) play moves to (q, ψ) where σX.ψ is the bounding formula of the
variable X (with σ ∈ {µ, ν}).

Finally, there are four kinds state from which no moves are possible:

(q, p) (q,¬p) (q, X) (q,¬X)

where p is an atomic proposition and X is a free variable in φ. In these cases, Élöıse wins the
game if the state q satisfies p, ¬p, X or ¬X respectively.

18

Section 2.4. Infinite State Systems

Any infinite play of the game must cycle through a bound variable X. These variables may
be ordered by a sub-formula relation. That is, the priority of X is greater than the priority
of Y if σXX.ψX appears as a sub-formula of σY Y.ψY for σY , σX ∈ {µ, ν}. Furthermore,
recall that µ corresponds to finite looping, and ν corresponds to infinite looping. That is, a
ν variable may be returned to an infinite number of times — without meeting a variable of
lower priority — whilst a µ variable cannot. This is a parity condition, where ν variables are
assigned an even priority and µ variables are assigned an odd priority.

Once priorities matching the above requirements have been assigned to variables and the
appropriate sub-formulae (to give a complete priority assignment), we have a game with a
slight modification of the parity game algorithm: either the parity condition is satisfied, or
play terminates in a winning state for Élöıse. We may reduce this to a true parity condition
by adding sink states of appropriate priorities.

Theorem 2.3.1. The model-checking problem for a Kripke structure S and a µ-calculus
formula φ can be reduced to determining whether Élöıse wins a parity game GS,µ.

2.4 Infinite State Systems

Finite state systems can be used to model hardware and a limited range of software. To
model programs with (for example) recursion, variables ranging over infinite sets — such as
the integers — or unbounded data structures, infinite state systems are required. Figure 2.4
shows a number of infinite systems that have been studied, and which we discuss briefly in
this section. Edges in the graph show the approximate generalisation relationship between
the various models. Because a number of these systems have been introduced in recent
work, their relationship has not been fully explored. Additionally, these systems may be
interpreted as generators of word languages, trees or labelled/unlabelled graphs. Figure 2.4
does not explicate these differences.

We are primarily concerned with sequential infinite state systems. These models will be
discussed in detail in the remainder of this chapter. Generalising sequential models by adding
concurrency leads to the undecidability of reachability very quickly. In fact, any system that
is both context-sensitive (procedures always return to their caller) and synchronisation-
sensitive (threads can communicate) has an undecidable reachability problem [50]. Conse-
quently, a number of attempts have been made to find restrictions of infinite state systems
with concurrency that have good model-checking properties. Table 2.1 and Table 2.2 give the
complexities of a selection of model-checking problems for these systems.

2.4.1 Sequential Systems

The Basic Process Algebra (BPA) [55] is a simple algebra comprising actions, sequen-
tial composition, non-deterministic choice and recursion. A process is defined by a set of
definitions { Xi → ei | 1 ≤ i ≤ k } where ei is an expression of the form:

e ::= a | X | e1 + e2 | e1 · e2

with a ∈ Σ for some finite alphabet Σ. For convenience, the sequential composition operator
· is often omitted. Figure 2.5 shows the evolution of an example process { X → a+ bY c, Y →
dX }.

19

Section 2.4. Infinite State Systems

ADPN

DCPS Sync. PA

CDPN PRSCPDS

MPDA DPN PAD PAN

Petri-Nets

HOPDA

PDA/RSM PA

BPA BPP

Finite State

PreRec.

Reachability Undecidable

Reachability Decidable

S
eq

u
en

ti
al

C
on

cu
rren

t

Figure 2.4: Connections between various infinite state systems

X Y c Xc Y cc Xcc Y ccc · · ·

ε c cc · · ·

b d b d b d

a a a

ccc

Figure 2.5: Transition graph for the BPA process { X → a + bY c, Y → dX }

20

Section 2.4. Infinite State Systems

Reach. LTL

Finite State Linear [108] PSPACE-c [21]
BPA P EXPTIME-c [113]
PDS P [3] EXPTIME-c [3]
PreRec. EXPTIME EXPTIME-c [91]
HOPDS (n-1)-EXPTIME-c [59] n-EXPTIME
CPDS n-EXPTIME n-EXPTIME

BPP NP-c [62] PSPACE-c [109]
PA NP-c [112] undec. [9]
PAD NP-c [113] undec.
Petri-Nets decidable [48] decidable [60]
PAN/PRS decidable [113] undec.
DPN P [7] —
CDPN decidable [7] undec.

Table 2.1: Model-checking complexities for various infinite state systems

EF CTL µ-Calculus

Finite State Linear Linear [47] NP ∩ co-NP [44]
BPA PSPACE-c [114] EXPTIME EXPTIME-c [114]
PDS PSPACE-c [54] EXPTIME [53] EXPTIME-c [53]
PreRec. EXPTIME-c [121] EXPTIME-c EXPTIME-c [88]
HOPDS n-EXPTIME n-EXPTIME n-EXPTIME-c [128, 130]
CPDS n-EXPTIME n-EXPTIME n-EXPTIME-c

BPP PSPACE-c [113] undec. [63] undec.
PA decidable [111] undec. undec.
PAD decidable [113] undec. undec.
Petri-Nets undec. [113] undec. undec.
PAN/PRS undec. undec. undec.
DPN — — —
CDPN — — undec.

Table 2.2: Branching-time model-checking complexities for various infinite state systems

21

Section 2.4. Infinite State Systems

Pushdown Automata are defined formally in Section 2.6. Informally, they are rewrite
systems with rules of the form pγ

a
→ qw where p, q are control states, γ is a letter of a

stack alphabet, and a is an action. The state of a PDA is a configuration pw′ with control
state p and stack w′. A rule of the above form is applied when the control states match
and γ is the first character of the word w′. The rule generates an a-labelled transition to
the configuration qww′. If w is the empty word, then the top character is pop-ed from the
stack. Otherwise characters are push-ed onto the stack. PDAs generate infinite transition
graphs and every context-free graph can be generated by a PDA [40]. A BPA process may
be described by a Pushdown Automaton with a single control state [89, 37]. Pushdown
Systems (PDSs) are pushdown automata without actions and hence produce unlabelled
graphs. This interpretation is the subject of this thesis.

A generalisation of pushdown systems are Prefix-Recognisable Systems (PreRec.) [35,
36]. Rules of a prefix-recognisable system are of the form (p, α, β, γ, p′). A configuration pw
has a transition to p′w′ iff w = w1w2 and w′ = w′

1w2 with w1 ∈ α, w2 ∈ β and w′
1 ∈ γ. These

systems form part of a hierarchy of graphs discussed in Section 2.8.4.
Higher-Order Pushdown Automata (HOPDA) allow a more complicated stack struc-

ture than PDA. A second-order PDA has a stack of stacks. Similarly, a third-order PDA has
a stack of stacks of stacks, and so on. An order-n PDA has push and pop commands for every
1 ≤ l ≤ n. When l > 1 a pop command removes the topmost order-l stack. Conversely, the
push command duplicates the topmost order-l stack. Maslov introduced HOPDA as genera-
tors of word languages, and he shows that the hierarchy is strict [20]. That is, an order-n PDA
is strictly more expressive than an order-(n − 1) PDA. Higher-order pushdown systems
(PDSs) are higher-order PDA viewed as generators of infinite trees or graphs. We discuss
HOPDSs formally in Section 2.8.

Knapik et al. [133] have shown that the trees generated by deterministic order-n PDSs
are exactly those that are generated by order-n recursion schemes satisfying a constraint
called safety. MSO decidability for trees generated by arbitrary (i.e. not necessarily safe)
Higher-Order Recursion Schemes (HORS) has been shown by Ong [29]. A variant kind of
higher-order PDSs called Collapsible Pushdown Systems (extending panic automata [134] or
pushdown automata with links [69] to all finite orders) have recently been shown to be equi-
expressive with HORSs for generating ranked trees [76]. These automata allow collapse
operations as well as the usual push and pop commands. When a character is pushed onto
the top stack, a link is created to a lower stack of a specified order. This link always points to
the same stack position even if it is copied to another part of the stack (during a higher-order
push command). A collapse command reduces the stack to the position indicated by the link
decorating the top character.

2.4.2 Concurrent Systems

Basic Parallel Processes are the concurrent analogue of the Basic Process Algebra, how-
ever, the two are incomparable [120]. Like, BPA, a process is defined by a set of definitions
{ Xi → ei | 1 ≤ i ≤ k }. However, ei is an expression of the form:

e ::= ε | ae1 | X | e1 + e2 | e1 ‖ e2

with a ∈ Σ for some finite alphabet Σ. Note that although sequential composition is not
allowed, expressions of the form a1 . . . amX are permitted. Parallel composition (e1 ‖ e2)

22

Section 2.4. Infinite State Systems

is also enabled, but there is no communication between processes. BPP are equivalent to
communication-free Petri-Nets [61].

The Process Algebra [55] is BPP with sequential composition, and hence is a superset of
BPA and BPP. PAD Systems were introduced by Mayr as a generalisation of PA and PDA
(PA+PD) [115, 113]. Like PA, PAD do not allow synchronisation, but, like PDA, return
values can be taken into account. Similarly, PAN — also introduced by Mayr — combine
PA processes and Petri-Nets [110, 113].

PAD are a restriction of Process Rewrite Systems. PRSs are defined over terms with
the syntax,

t ::= ε | X | t1 · t2 | t1 ‖ t2

Parallel composition (‖) is commutative and associative and sequential composition (·) is
associative. Each PRS has a finite set of rules of the form t1

a
−→ t2 which can be applied

modulo commutativity and associativity and the obvious inference rules:

t1
a
→ t′1

t1 ‖ t2
a
→ t′1 ‖ t2

t2
a
→ t′2

t1 ‖ t2
a
→ t1 ‖ t′2

t1
a
→ t′1

t1 · t2
a
→ t′1 · t2

Together, finite state systems, BPA, BPP, PDA, PA, Petri-Nets, PAD, PAN and PRS form
the PRS-Hierarchy [115], which is the subject of Mayr’s doctoral thesis [113].

In 2005, Bouajjani, Müller-Olm and Touili introduced Dynamic Pushdown Networks
(DPN) and Constrained Dynamic Pushdown Networks (CDPN) [7]. DPN are an ex-
tension of PDA. In addition to the usual pushdown rules pγ

a
→ qw, DPN allow processes

to spawn child processes via commands of the form pγ
a
→ p1w1 ¤ p2w2. These commands

perform the usual pushdown update, but also create a child process with control state p2 and
initial stack contents w2.

DPN do not permit inter-process communication. A limited form of communication is
introduced by Constrained DPN. CDPN allow processes to monitor the control states of their
immediate children. To do this, the rules of the system are decorated with guards. That is,
rules take the form φ : pγ

a
→ p1w1(¤p2w2) where φ is a regular constraint over sequences

of control states. A guarded rule can only be applied to a process if the control states of
its children, when arranged in order of age, satisfy the constraint φ. To ensure regularity
of reachability sets, constraints must be stable. Intuitively, this means that if the current
states of the child processes satisfy φ, then the constraint will remain satisfied as the system
proceeds.

Multi-set Pushdown Systems (MPDS) were introduced by Sen and Viswanathan in
2006 [73]. MPDSs extend PDSs with a multi-set of asynchronous procedure calls. They are
designed to model concurrent systems with asynchronous procedure calls. That is, when a
procedure is called, control is returned to the caller immediately while the callee is executed
in parallel. Communication does not occur between processes. During normal pushdown
execution, stack symbols may be added to a multi-set which is a component of MPDS con-
figurations. Whenever the stack is empty, a stack symbol can be retrieved from the multi-set
and placed onto the stack. In this way, MPDS model a serialised execution of the concurrent
systems described above.

Since context-sensitive, synchronisation-sensitive infinite state systems have an unde-
cidable reachability problem, a number of undecidable models have been proposed with
abstraction-based model-checking algorithms. Examples of such systems are Synchronised

23

Section 2.5. Alternation

PA [6], Dynamic Concurrent Pushdown Systems (DCPSs) [123] and Asynchronous
Dynamic Pushdown Networks (ADPNs) [4].

There are several kinds of abstraction in the literature. Two abstraction paradigms are
finite-chain abstraction and commutative abstraction (E.g. [5]). Finite-chain abstrac-
tions produce finite sequences from infinite runs. For example first occurrence abstraction
records the first appearance of a character only. The result is a string in which each character
appears at most once, and in the order that they were first seen. A sequence abbaccaabac
would abstract to abc.

Commutative abstractions are insensitive to the order in which characters occur. A simple
example of this kind of abstraction are label bit-vectors which simply record whether a
character has appeared.

An alternative approach, introduced by Qadeer and Rehof, is context-bounded model-
checking [123]. Qadeer and Rehof obtain decidability by bounding the number of context-
switches. If parallel threads are serialised to run on a single processor, a context-switch occurs
when control of the process passes from one thread to another.

2.5 Alternation

In the sequel we will introduce several kinds of alternating automata. For convenience, we
will use a non-standard definition of alternating automata that is equivalent to the standard
definitions of Brzozowski and Leiss [56] and Chandra, Kozen and Stockmeyer [16]. Similar
definitions have been used for the analysis of pushdown systems by Bouajjani et al. [3] and
Cachat [128]. The alternating transition relation ∆ ⊆ Q× Γ × 2Q — where Γ is an alphabet
and Q is a state-set — is given in disjunctive normal form. That is, the image ∆(q, γ) of q ∈ Q
and γ ∈ Γ is a set {Q1, . . . , Qm} with Qi ∈ 2Q for i ∈ {1, . . . , m}. When the automaton is
viewed as a game, Élöıse— the existential player — chooses a set Q ∈ ∆(q, γ); Abelard— the
universal player — then chooses a state q ∈ Q. The existential component of the automaton
is reflected in Élöıse’s selection of an element (q, γ, Q) from ∆ for a given q and γ. Abelard’s
choice of a state q from Q represents the universal aspect of the automaton.

2.6 Order-1 Pushdown Systems and Automata

2.6.1 Definition

(Order-1) Pushdown systems are a simple kind of infinite state system. A state, or config-
uration, of the system consists of a control state p ∈ P — where P is a finite set — and a
store γ. The store behaves like stack: only the uppermost symbol is visible and the store can
be modified using push and pop operations.

Order-1 Stores

We begin by defining pushdown stores and their operations.

Definition 2.6.1 (1-stores). The set CΣ
1 of 1-stores over an alphabet Σ is the set of words

of the form [a1 . . . am] with m ≥ 0 and ai ∈ Σ for all i ∈ {1, . . . , m}, [/∈ Σ and] /∈ Σ.

24

Section 2.6. Order-1 Pushdown Systems and Automata

There are three operations defined over 1-stores: pushw (for all w ∈ Σ∗), pop1 and top1:

pushw[a1 . . . am] = [wa2 . . . am]
pop1[a1 . . . am] = [a2 . . . am]
top1[a1 . . . am] = a1

Since pop1 = pushε, we may consider the pop1 command to be an abbreviation. Let O1 =
{ pushw | w ∈ Σ∗ }.

Order-1 Pushdown Systems

We are now ready to define an order-1 pushdown system.

Definition 2.6.2. An order-1 pushdown system is a tuple (P,D, Σ) where P is a finite
set of control states, D ⊆ P×Σ×O1×P is a finite set of commands and Σ is a finite alphabet.

A configuration is a pair 〈p, γ〉 with p ∈ P and γ ∈ CΣ
1 . We have a transition 〈p, γ〉 →֒

〈p′, γ′〉 iff we have (p, a, pushw, p′) ∈ D, top1(γ) = a and pushw(γ) = γ′.

Alternating Order-1 Pushdown Systems

We may also define alternating pushdown systems:

Definition 2.6.3. An alternating order-1 pushdown system is a tuple (P,D, Σ) where
P is a finite set of control states, D ⊆ P × Σ × 2O1×P is a finite set of commands and Σ is a
finite alphabet.

A configuration is a pair 〈p, γ〉 with p ∈ P and γ ∈ CΣ
1 . We have a transition 〈p, γ〉 →֒ C

iff we have (p, a, {(pushw1 , p1), . . . , (pushwm , pm)}) ∈ D, top1(γ) = a and,

C = { 〈p1, pushw1(γ)〉, . . . , 〈pm, pushwm(γ)〉 }

The transition relation generalises to sets of configurations via the following rule:

〈p, γ〉 →֒ C

C ′ ∪ 〈p, γ〉 →֒ C ′ ∪ C
〈p, γ〉 /∈ C ′

Finally, we define
∗
→֒ to be the transitive closure of →֒.

Order-1 Pushdown Automata

We can augment pushdown systems with an input alphabet Γ to define Pushdown Automata
(PDA). These automata can be used to accept words or generate edge-labelled trees and
graphs.

Definition 2.6.4. An order-1 pushdown automaton is a tuple (P,D, Σ, Γ, c0,W) where
P is a finite set of control states, D ⊆ P × Γ × Σ × O1 × P is a finite set of commands and
Σ, Γ are finite alphabets. The initial configuration is c0 and W ⊆ (CΣ

1)∗ is an acceptance
condition (if the automaton is defined as an acceptor of word languages).

A configuration is a pair 〈p, γ〉 with p ∈ P and γ ∈ CΣ
1 . We have a transition 〈p, γ〉

α
→֒

〈p′, γ′〉 iff we have (p, α, a, pushw, p′) ∈ D, top1(γ) = a and pushw(γ) = γ′. When defined
as an acceptor of word languages, a PDA accepts a word α0, α1, . . . iff there exists a run

c0
α0
→֒ c1

α1
→֒ . . . such that c0c1 . . . ∈ W.

25

Section 2.6. Order-1 Pushdown Systems and Automata

2.6.2 Examples

We give two examples of order-1 pushdown systems. The first revisits the CD player of
Section 2.1 whilst the second illustrates the use of pushdown systems to model procedural
programs.

An Order-1 Pushdown CD Player

We return to the CD player example of Section 2.1 and, with the use of the store, add playlist
functionality. The CD player has two control states. The CD player waits for input in the
idle state i, and plays the programmed CDs in the second control state p. The commands of
the system, together with some informal abbreviations are given below. Let Σ = CDs∪ {⊥}
for a finite set of CDs.

loadCD(c) = (i, a, pushca, i) for all c ∈ CDs and a ∈ Σ
playAll = (i, a, pusha, p) for all a ∈ Σ

playCD(c) = (p, c, pop1, p) for all c ∈ CDs
done = (p,⊥, push⊥, i)

The behaviour of the system is illustrated in Figure 2.6.

Modelling Procedure Calls

A procedural program has a finite number of local and global variables. We restrict these
variables to a finite range of values. Hence, each variable can be encoded by a number of
bits. Therefore, we can assume each variable is an atomic proposition, taking the value
true or false. The values of the variables v1, . . . , vm can be encoded as a tuple in the set
{true, false}m.

Given a program with global variables g1, . . . , gm and local variable l1, . . . , lm′ we construct
the equivalent pushdown system as follows. The values of the global variables are stored in
the control state. That is, P = {true, false}m. The values of the local variables are kept in
the store alongside the current control point of the program. Thus, Σ = N × {true, false}m′

where N is the set of program control points.
A procedure call is modelled by pushing the initial values of the local variables and the

control point representing the start of the procedure onto the stack. Program statements
within the procedure simply update the control state and local variables (pushb where b is
the new assignment of values to variables). Finally, a return statement can be modelled by a
pop command.

2.6.3 Local Model-Checking of Order-1 Pushdown Systems

In 1996, Walukiewicz presented an algorithm for determining the winner of a parity game
played over order-1 pushdown systems [53]. A parity game over an order-1 pushdown system
is defined by partitioning the control states of a pushdown system into two disjoint sets —
those belonging to Élöıse and those belonging to Abelard. Each control state is also assigned
a priority from the set {1, . . . , m}.

Local model-checking asks whether a property holds from a given configuration 〈p, [w]〉.
Play begins from this initial position and proceeds as follows: the player who owns the control
state of the current configuration chooses an available command. This command is applied,

26

Section 2.6. Order-1 Pushdown Systems and Automata

〈i, [11⊥]〉 . . . 〈p, [11⊥]〉

〈i, [1⊥]〉 〈p, [1⊥]〉

〈i, [21⊥]〉 . . . 〈p, [21⊥]〉

〈i, [⊥]〉 〈p, [⊥]〉

〈i, [12⊥]〉 . . . 〈p, [12⊥]〉

〈i, [2⊥]〉 〈p, [2⊥]〉

〈i, [22⊥]〉 . . . 〈p, [22⊥]〉

loadCD(1)

loadCD(1)

loadCD(2)

loadCD(2)

loadCD(1)

loadCD(2)

playAll

playAll

done

playCD(1)

playCD(1)

playCD(2)

playCD(2)

playCD(1)

playCD(2)

Figure 2.6: A CD player with CDs = {1, 2}

27

Section 2.6. Order-1 Pushdown Systems and Automata

moving play to a new configuration 〈p′, [w′]〉. Play continues in this manner until a player
is unable to make a move — in which case they lose the game — or an infinite sequence of
configurations is generated. In the latter case, we can form an infinite sequence of priorities
from the control states of the configurations. Élöıse wins if the lowest priority occurring
infinitely often is even. Otherwise Abelard is the winner.

We can assume without loss of generality that the initial configuration is of the form
〈p, [⊥]〉, where ⊥ is a bottom of the stack symbol (which is neither pushed nor removed).
We can modify any game so that the only available initial moves force play to any desired
configuration 〈p′, [w]〉, from which play proceeds as normal. We also permit a slightly different,
but equivalent, set of pushdown commands: pusha, pop1 and skip. These commands deal
with single characters only: a pusha command adds the character a to the stack, pop1 behaves
as before, and skip leaves the stack unchanged. We can simulate a pushw by adding extra
control states, from which the characters of w are added in turn. In the other direction, we
can perform a skip action by commands (, a, pusha,), which replace the top character with
itself.

Definition 2.6.5. An order-1 pushdown parity game is a tuple (P,D, Σ, Ω) where P =
PA ⊎ PE is a set of control states partitioned into states belonging to Abelard and states
belonging to Élöıse, Σ is a finite alphabet, D ⊆ P × Σ × O1 × P is a set of pushdown
commands and Ω : P → {1, . . . , m} is a function assigning priorities to control states.

Solutions to finite state parity games are well known [45]. Walukiewicz shows that an
(infinite state) parity game played over a pushdown system can be reduced to a finite state
parity game. The intuition behind this reduction is the observation that the moves available
from any given configuration depend on the control state and the symbol on the top of the
stack. The potentially unbounded amount of information stored below the top of the stack
is not visible.

Whenever a symbol is pushed onto the stack, there are two possibilities for the following
play: either the symbol will be popped at a later stage, or it will remain on the stack for the
rest of the (infinite) play. While-ever the symbol remains on the stack, the stack beneath it
can be ignored. It is only when the symbol is removed from the stack that the rest of the
stack is needed. In particular, only the new top symbol (which was pushed onto the stack
earlier in the game) can influence the next move.

Using these observations, we can reduce a pushdown game to a finite state game. Play
proceeds in the same manner as the pushdown game except, whenever a symbol is pushed
onto the stack, Élöıse is required to predict the possible situations the game will be in when
the symbol is finally popped. Abelard can choose to accept this prediction — in which case
play moves to a predicted state — or challenge it. In the latter case the push operation occurs
as normal, and play moves to a sub-game. In this sub-game, either another push operation is
challenged — moving play to another sub-game — or the current top stack symbol is popped.
In this case Élöıse’s prediction is checked. If the situation matches the prediction, Élöıse wins
the game. Otherwise Abelard is the winner. In the case of an infinite play, a modified version
of the parity condition determines the winner.

When making a prediction, Élöıse is required to give a set of control states Ac for each
priority c ∈ {0, . . . , m}. In making this prediction, Élöıse is asserting that she can ensure,
when the pushed symbol has been popped, the control state will belong to some Ac and that
the smallest priority encountered between the push and the pop will be c. Whenever Abelard
accepts a prediction, he chooses which control state to move to. This transition has a priority

28

Section 2.6. Order-1 Pushdown Systems and Automata

corresponding to the minimal priority that would have been seen if the full play had taken
place. This priority is taken into account when deciding whether the parity condition has
been satisfied.

From a pushdown parity game G we define a finite game M. The states of M have four
core components: ~A, z, θ and p:

• ~A — a tuple (A0, . . . , Am) ⊆ Pm storing Élöıse’s current prediction.

• z — the symbol at the top of the current stack.

• θ — the smallest priority seen since z was pushed onto the stack.

• p — the current control state.

Definition 2.6.6. Given a pushdown parity game G, the equivalent finite game M has the
following states Q = QA ⊎ QE , for every ~A, ~A1, z, z1, θ, p, p1, all c ∈ {1, . . . , m} and a special
symbol ?,

Check(~A, z, θ, c, p) Push(~A, z, θ, p) Pop(p)

Move((~A, z, θ, p), (?, z1, p1)) Move((~A, z, θ, p), (~A1, z1, p1)) Err(p)

The moves in M are:

Check(~A, z, θ, c, p) → Check(~A, z, min(Ω(p), θ), c, p′) if (p, z, skip, p′) ∈ D

Check(~A, z, θ, c, p) → Pop(p′) if (p, z, pop1, p
′) ∈ D, p′ ∈ Amin(Ω(p),θ)

Check(~A, z, θ, c, p) → Err(p′) if (p, z, pop1, p
′) ∈ D, p′ /∈ Amin(Ω(p),θ)

Check(~A, z, θ, c, p) → Move((~A, z, θ, p), (?, z1, p1)) if (p, z, pushz1 , p1) ∈ D

Push(~A, z, θ, c, p) → Check(~A, z, min(Ω(p), θ), c, p′) if (p, z, skip, p′) ∈ D

Push(~A, z, θ, c, p) → Pop(p′) if (p, z, pop1, p
′) ∈ D, p′ ∈ Amin(Ω(p),θ)

Push(~A, z, θ, c, p) → Err(p′) if (p, z, pop1, p
′) ∈ D, p′ /∈ Amin(Ω(p),θ)

Push(~A, z, θ, c, p) → Move((~A, z, θ, p), (?, z1, p1)) if (p, z, pushz1 , p1) ∈ D

and finally,

Move((~A, z, θ, p), (?, z1, p1)) → Move((~A, z, θ, p), (~A1, z1, p1))

Move((~A, z, θ, p), (~A1, z1, p1)) → Push(~A1, z1, m, p1)

Move((~A, z, θ, p), (~A1, z1, p1)) → Check(~A, z, min(θ, c), c, p2) if c ≤ Ω(p) and p2 ∈ Ac

Except in the case of Move states, the owner of each control state is determined by the
component p. That is,

QE = { Move(~A, z, θ, p1), (?, z1, p2)), Push(~A, z, θ, p), Check(~A, z, θ, c, p) | p ∈ PE }

QA = { Move(~A, z, θ, p1), (~A1, z1, p2)), Push(~A, z, θ, p), Check(~A, z, θ, c, p) | p ∈ PA }

We assign priorities to states of M as follows: the priority of Check(~A, z, θ, c, p) is c, the
priority of Push(~A, z, θ, p) is Ω(p) and all other states have priority m + 1.

Élöıse wins the game if Abelard cannot make a move, play reaches Pop(p) for some p or
an infinite path is generated such that the lowest priority occurring infinitely often is even.
Conversely, Abelard wins if Élöıse cannot make a move, play reaches Err(p) for some p or an
infinite path with an odd smallest infinitely occuring priority is generated. The initial state
of the game is Check((∅, . . . , ∅),⊥, m, m, p0) where p0 is the initial control state of G.

29

Section 2.6. Order-1 Pushdown Systems and Automata

Check(~A, z, θ, c, p′)

Pop(p′) Err(p′)

Move((~A, z, θ, p), (?, z1, p1))

Move((~A, z, θ, p), (~A1, z1, p1))

Push(~A1, z1, m, p1) Check(~A1, z1, min(θ, c), c, p2)

Figure 2.7: Reducing a pushdown parity game to a finite state game.

In the above definition, Check moves correspond most directly to the states in G. After a
push move, play moves to a Move state belonging to Élöıse. From this state Élöıse replaces
the ? symbol with her prediction for the future play. Abelard can accept this prediction
and choose where the top symbol is popped by moving to a Check state, or challenge the
prediction by moving to a Push state. The moves are illustrated in Figure 2.7.

Theorem 2.6.1 ([53]). Élöıse has a winning strategy in the game G iff she has a winning
strategy in the game M from the node Check((∅, . . . , ∅),⊥, m, m, p0).

The size of M is exponential in the size of G, since each state contains m subsets of
the control states of G. Combined with the complexity of calculating the winner of a finite
state parity game, the algorithm runs in EXPTIME. By simulating alternating linear space
bounded Turing machines, Walukeiwicz shows that this complexity is optimal [53].

2.6.4 Properties of High Borel Complexity

Following the model-checking results discussed above, a natural next step is to consider games
with more expressive winning conditions. We describe a number of these extensions.

A Σ3-Complete Winning Condition

The first result of this kind over pushdown systems was published in 2002 by Cachat, Du-
parc and Thomas [131]. They present an algorithm that computes the winning regions of a
pushdown game with a Σ3-complete winning condition. This winning condition requires a
configuration to be seen infinitely often. That is, for a play ρ,

“there is a vertex v such that for all time instances t there is t′ > t such that v is
visited at t′ in the play ρ under consideration.”

30

Section 2.6. Order-1 Pushdown Systems and Automata

Observe that this winning condition is vacuous for infinite plays over finite state games. To
see that this winning condition is Σ3, we state the winning condition more formally. Let
ρ = c0, c1, . . .,

∃p ∈ P∃w ∈ CΣ
1 ∀n∃m > n : cm = 〈p, [w]〉

The condition cm = 〈p, [w]〉 is prefix-recognisable, and hence Σ1 ∩ Π1. The quantification
alternates exists, for-all, exists. ∃m : cm = 〈p, [w]〉 is Σ1, ∀n∃m. . . is Π2 and finally, the full
condition — being the infinite union of Π2 conditions — is Σ3. Cachat et al. prove that this
winning condition is Σ3-complete, and hence a representation lower in the Borel hierarchy
cannot be found.

The solution is an extension of Cachat’s algorithm for computing the winning regions of a
Büchi game played over pushdown systems [128]. The Σ3 winning condition can be restated:
there exists some h ≥ 0 such that a stack of length less than h is seen infinitely often. For
any given h we can define a Büchi game where F is the set of all stacks with height less than
h. To complete the algorithm Cachat et al. give a limit N on the maximum h for which the
property may be satisfied. This limit is a function of the size of Σ, Q and the longest word
w appearing in some (p, a, pushw, p′) ∈ ∆.

Combinations of Unboundedness and Büchi

Cachat et al. note that, although Σ3-complete, the winning condition above needs to be com-
bined with a Büchi condition to give a true-Σ3 condition. That is, a condition in Σ3 but
not Π3. This observation motivated Bouquet, Serre and Walukiewicz to provide a solution
to games with binary combinations of a stack unboundedness condition and a Büchi con-
dition [10]. Strict stack unboundedness is the complementation of the winning condition of
Cachat et al.. Unboundedness is a relaxation of this condition, but the two are equivalent
when combined with a Büchi condition. The solution is an extension of Walukiewicz’ parity
games algorithm, and is consequently only suitable for local model-checking.

To ease notation, Bouquet et al. present different EXPTIME solutions for each of the
boolean combinations of unboundedness and Büchi. The reduction for the union of unbound-
edness and Büchi is illustrated in Figure 2.8. This game is equipped with a Büchi property
(in this case, a 0 priority is seen infinitely often). For clarity, the priorities are given on the
transitions and A0, A1 take the place of ~A in Walukiewicz’ construction. Additionally, we do
not keep track of the minimum priority encountered. If a 0 priority is seen, we replace A1

with A0 which forces play to return to A0 when a pop occurs.
To win the game in Figure 2.8 Élöıse can either satisfy the unboundedness property or

the Büchi property. The Büchi property is checked by the transitions from Move to Check.
Unboundedness is checked by the transition from Move to Push. If this transition is taken
an infinite number of times, then the stack will grow infinitely large. Furthermore, since the
priority of the transition is 0, such a play will satisfy the Büchi condition.

Exploration Properties

In 2004, Gimbert investigated another condition called exploration [52], which requires an
infinite number of different states to be visited during a play. In the case of pushdown systems,
this condition is equivalent to stack unboundedness, although Gimbert considers infinite state
games in general. In particular, he proves the existence of positional winning strategies for
infinite state games whose winning conditions are the intersection of the exploration condition

31

Section 2.6. Order-1 Pushdown Systems and Automata

Check(A0, A1, z, p′)

Pop(p′) Err(p′)

Move((A0, A1, z, p), (?, z1, p1))

Move((A0, A1, z, p), (A′
0, A

′
1, z1, p1))

Push(A′
0, A

′
1, z1, p1) Check(A0, A0, z1, p2) Check(A0, A1, z1, p2)

0 0 1

Figure 2.8: Reducing a pushdown game with an unboundedness winning condition to a finite
state game.

and a parity condition, and games whose winning conditions are the union of the exploration
condition and a modified parity condition allowing infinite priorities. Furthermore, it is
shown how to compute the winning regions of such games played over pushdown systems in
exponential time, although parity games with only a finite number of priorities are considered.

Gimbert’s approach is inspired by the global model-checking techniques of Piterman and
Vardi [87] discussed in Section 4.6.3. Strategies are represented as trees over the alphabet Σ.
These trees are labelled by sets of pushdown commands. For example, suppose the node w
is labelled with {(p, a, pushab, p

′), (p′, a, pushabc, p
′′)}. From a configuration 〈p, [w]〉 the move

corresponding to the given strategy is (p, a, pushab, p
′). Similarly, (p′, a, pushabc, p

′′) is played
from the configuration 〈p′, [w]〉.

Winning regions are recognised by alternating Büchi tree automata. These automata
recognise winning strategies (and thus, winning regions) and are built from the combination of
a number of simpler automata that check certain properties pertaining to winning strategies.
For example, the following property checks a requirement for a tree to represent a valid
strategy:

If t(aw) contains a pop-transition to a state p′ then t(w) contains a p′-transition.

That is, if, from a configuration 〈p, [aw]〉, the strategy moves play to 〈p′, [w]〉, a move from
〈p′, [w]〉 must also be defined.

An alternating Büchi tree automaton that checks the complement of this property can
be defined. The automaton uses non-determinism to guess a node w, a letter a ∈ Σ and a
move in t(aw) which violates the property. Then we complement the automaton to obtain an
automaton checking the required property.

Properties of Arbitrary Borel Complexity

Finally, in 2004 Serre introduced a family of winning conditions of arbitrary Borel complex-
ity [94]. These winning conditions are of the form ΩA1¤...¤An¤An+1 where A1, . . . , An+1 are

32

Section 2.7. Order-1 Extensions of Pushdown Systems/Automata

deterministic pushdown automata. An internal winning condition requires the stack produced
during a play to be unbounded. The unbounded stack is an infinite word which is passed as
input to the PDA A1. It is required that the run of A1 produces a second unbounded stack
which is passed to A2 and so on. Finally, the PDA An+1 receives an unbounded stack from An

as input. The PDA An+1 is equipped with a parity condition and Élöıse wins the pushdown
game if this parity condition is satisfied. If the transitions of the pushdown game are labelled
with characters from an alphabet Γ, an external winning condition uses the infinite word
generated from Γ as the input to A1. External winning conditions are B(Σn+2)-complete and
internal conditions are B(Σn+3)-complete.

The local model-checking algorithm for pushdown games equipped with these winning
conditions is a further extension of the finite state game reduction of Walukiewicz. Input
to the automaton A1 consists of a sequence of stack symbols which, once pushed, are never
popped. Thus, we can reduce the pushdown game to a finite game and form the product with
A1. The A1 component of the product state-space is advanced when the finite state game
moves from Move to Push. This will only occur infinitely often if the stack in the original
game is unbounded.

The product game will be a pushdown game with a winning condition defined by the
automata A2, . . . , An, An+1. We can reduce the game to a finite state game and form another
product with A2. This procedure repeats until we have a finite state game with a parity
winning condition. This solution is (n + 2)-EXPTIME, which is shown to be optimal.

2.7 Order-1 Extensions of Pushdown Systems/Automata

In this section we describe several extensions of pushdown systems and automata. These
extensions allow a greater range of model-checking applications. We begin with a discussion of
regular stack properties. In the preceding sections, properties of a configuration were generally
dependent on the control state and the top1 stack symbol. By allowing these properties to
depend on the entire contents of the stack, we find applications in security, data-flow analysis
and CTL* model-checking.

We then describe recursive state machines, which are equivalent to pushdown automata.
However, their structure suggests several natural restrictions, including modular program
strategies. That is, when synthesising a program, the behaviour of a procedure should not
depend on its calling context. These restrictions permit more efficient model-checking solu-
tions.

Weighted pushdown systems give a cost to each pushdown command. This allows a
finer analysis of pushdown problems. We discuss a security example, and show, that by
using weights, we can differentiate two certification options, which reveal varying amounts of
information.

Finally, we give an account of visibly pushdown automata. When pushdown automata are
used to model programs with recursion, it is often the case that a specific inputs correspond
to a procedure calls (and returns). Visibly pushdown systems formalise this observation,
allowing the use of new, expressive logics.

2.7.1 Regular Stack Properties

When model-checking pushdown systems, each configuration is associated with the set of
atomic propositions that it satisfies. That is, we have a mapping Λ : CΣ

1 → AP , where AP

33

Section 2.7. Order-1 Extensions of Pushdown Systems/Automata

is a finite set of atomic propositions. In general, arbitrary mappings of configurations to
propositions lead to undecidability.

We can restrict Λ by insisting that configurations with matching control states and top
stack symbols satisfy the same propositions. That is, Λ : P×Σ → AP . This is the restriction
used in early research into pushdown systems (For example, [3]).

Esparza, Kučera and Schwoon generalise this restriction [64]. They introduce regular
valuations that assign atomic propositions based on the current control state and the complete
contents of the stack. To each proposition and control state we attach a finite word automaton.
If the current stack is accepted by this automaton then the atomic proposition is true at the
current configuration.

Esparza et al. describe three applications of these extended valuations.

• Inter-procedural data-flow analysis. This application follows a similar encoding
to that described in Section 2.6.2. The increased expressiveness of regular valuations
allows the specification of properties that rely on the stack contents. For example, let
topn hold when the current control point (stored on the top of the stack) is n, and usedY

and defY hold if the variable Y is used or defined respectively at the current control
point,

G(topn ⇒ ((¬usedY UdefY) ∨ (G¬usedY)))

asserts that, for control point n, the variable Y is not used until it is redefined. That
is, Y is dead at control point n.

In languages such as LISP which use dynamic scoping, the scope of Y , and hence
the values of usedY and defY , can only be determined with reference to the stack of
procedure calls.

• Pushdown Systems with Checkpoints associate regular automata with pairs in P×
Σ. Pushdown commands are labelled positive, negative or independent. A positive rule
may only be applied if the current configuration has a stack accepted by the automata
associated with its control state and top stack symbol. A negative rule requires the
check to fail and an independent rule performs no checks.

These systems are a generalisation of a formalism introduced by Jensen, Le Métayer and
Thorn for analysing security properties [135]. One such security property, implemented
in Java and .Net [74, 34], allows the programmer to decorate code with permission
checks. These checks require that all callers on the stack have sufficient privileges to
proceed. For example, a file access command needs to be able to access the file system.
When called from a trusted context, the command should be able to proceed. However,
if an untrusted caller attempts to run the command, it should be blocked. Recent
research addressing the limitations of this approach to security still maintain stack-based
properties. For example, Pistoia, Banerjee and Naumann propose Information-Based
Access Control, which combines stack inspection with data-flow analysis to ensure
that unauthorised code which may no longer appear on the stack does not influence the
execution of secure code [81].

• Model-checking CTL∗ properties. CTL∗ extends LTL with a path quantifier Eφ which
requires that some path from the current state satisfies φ. We can use the algorithm for
model-checking LTL with regular valuations recursively to model-check CTL∗ [43]. In
the base case there are no path quantifiers. Thus, φ is an LTL formula and we compute

34

Section 2.7. Order-1 Extensions of Pushdown Systems/Automata

the set of configurations satisfying ¬φ — thus, the complement is the set of configura-
tions from which a path satisfying φ exists. Hence, we have an automaton accepting
all configurations at which Eφ holds. This automaton can be used to represent a new
proposition that holds when Eφ does. By repeating this process, we can recursively
eliminate the path quantifiers from the formula and calculate the set of configurations
satisfying the original CTL∗ formula.

Esparza et al. present two methods for reducing pushdown systems with regular valuations
to pushdown systems with simple valuations. Both techniques give an EXPTIME algorithm
(that is optimal), but only one is complete. However, it is not clear which will perform better
in practice.

Both reductions assume a deterministic automaton for each control state/atomic proposi-
tion pair. This means that a product may be formed between the pushdown system and the
valuation automata. Each time a character is pushed onto the stack, the valuation automata
are advanced appropriately. We can check the truth of a proposition by observing whether
an accepting state has been reached in the corresponding valuation automaton.

The two methods of encoding this product differ in where the valuation automaton states
are stored. This affects the handling of pop transitions. The complete technique alters the
alphabet to Σ×Q1× . . .×Qm where Q1, . . . ,Qm are the state-sets of the valuation automata.
Thus, the progress of these automata is stored on the stack. Before the pop occurs the stack
is of the form (a, q1, . . . , qm)(b, q′1, . . . , q

′
m)w. Let π(w) be the projection of w to Σ. The states

q1, . . . , qm are the states reached by the valuation automata after reading the word abπ(w)
in reverse (corresponding to the order the symbols were added to the stack). Similarly, the
states q′1, . . . , q

′
m are the states reached after reading the word bπ(w) in reverse. Hence, when

a pop command occurs, the progress is automatically reversed.
The second technique changes the set of control states to P ×Q1 × . . .×Qm. This means

that the progress information is stored in the control state and reversing the information
when a pop occurs must be done explicitly. To do this, we require the valuation automata
to be backwards deterministic. Informally, this restriction requires the automata to remain
deterministic when the transitions are reversed. Using this encoding, we can handle a pop
command simply by following the automata backwards. Backwards determinism is a genuine
restriction on the expressiveness of the automata, and the method is therefore incomplete.

2.7.2 Recursive State Machines

Recursive State Machines (RSMs) are equivalent to pushdown systems. They were intro-
duced independently by Alur, Etessami and Madhusudan [97] and Benedikt, Godefroid and
Reps [75]. Both of these works generalise a restricted form of RSMs introduced by Alur and
Yannakakis which disallow recursion [100] and are based on highly visual hierarchical program
descriptions that have been popular for some time (e.g. StateCharts [41]). An updated
study of RSMs was published in 2005 [99].

We will forgo a formal description of RSMs in favour of their intuitive diagrammatic
representation. Figure 2.9 shows an example RSM taken from Alur et al. [99]. We have
omitted some of the labelling from the original diagrams since it is relevant only to the formal
definition.

An RSM contains a number of modules (A1, A2 and A3 in Figure 2.9). Each of these
modules contains entry, internal and exit nodes and transitions. In this respect each module is

35

Section 2.7. Order-1 Extensions of Pushdown Systems/Automata

A2

A3

A1

A2

A3

A2

A1

A3

Figure 2.9: A recursive state machine [99] (simplified)

similar to a finite state Kripke structure. However, in addition to transitions between nodes,
we have transitions to the entrances and from the exits of other modules (for example, in
Figure 2.9 the entry node of A3 has a transition to the uppermost entry node of A1). Thus,
a run of the machine can switch between modules in a call/return style

If we disallow mutual recursion (for example, A2 contains a call to itself), RSMs are
no more expressive than finite word automata. As generators of regular languages they are
exponentially more succinct [104].

In general, RSMs are equivalent to pushdown systems. However, we can identify subclasses
of RSMs by the maximum number of module entry or exits nodes. Improved complexity
results can be obtained for these subclasses. For an arbitrary number of entrances and exits,
the complexity results for various model-checking problems match the results for pushdown
systems.

Theorem 2.7.1 ([99]). Every PDS is bisimilar to an RSM, and vice versa. Moreover, every
context-free system is bisimilar to a single-exit RSM, and vice versa.

In fact, there are linear-time, log-space reductions between the LTL, CTL and CTL∗

model-checking problems over PDSs and RSMs.

Theorem 2.7.2 ([99]).

• The LTL model-checking problem for RSMs and for PDSs are inter-reducible in linear-
time and logarithmic-space, and similarly for CTL and CTL∗.

• The LTL model-checking problem for single-exit RSMs and for context-free systems are
inter-reducible in linear-time and logarithmic-space, and similarly for CTL and CTL∗.

Theorem 2.7.2 gives us immediate complexity bounds for a variety of model-checking
problems. Alur et al. show that, in some cases, these complexity bounds can be improved. In
particular, they give a linear-time algorithm for CTL∗ model-checking over single-exit RSMs,
which improves the quadratic bound implied by the connection to context-free processes.
Additionally, when single-entry RSMs are considered, LTL model-checking can be performed
in linear-time, rather than the cubic complexity of PDSs. These complexities are summarised
in Table 2.3. Complexity results improved by Alur et al. are italicised.

Modular Strategies

In 2004, Etessami provided algorithms for determining winning strategies for RSM reacha-
bility and Büchi games [71]. These algorithms generalise the algorithms of Alur et al. [97]

36

Section 2.7. Order-1 Extensions of Pushdown Systems/Automata

Class of RSM Reach. Cycle Detection LTL CTL CTL∗

Single-exit Linear Linear Linear Linear Linear
Single-entry Multiple-exit Linear Linear Linear EXPTIME EXPTIME
Multiple-entry Multiple-exit Cubic Cubic Cubic EXPTIME EXPTIME

Table 2.3: Improved complexity bounds for RSM model-checking [99]

and provide an alternative approach to pushdown/RSM model-checking that may prove ben-
eficial in practice. A different type of game over RSMs is considered by Alur, La Torre and
Madhusudan in their 2003 work into modular strategies [106, 105].

Modular strategies have only a local memory. That is, the strategy is independent of
the play occurring before the current module was entered. These strategies have a natural
interpretation in terms of the synthesis problem where the implementation of a module should
not depend on the context of its use.

Alur et al. present the following results concerning the calculation of winning strategies:

Theorem 2.7.3 ([106]). Determining whether Élöıse has a modular winning strategy in an
RSM reachability or safety game is NP-complete.

Theorem 2.7.4 ([105]). Determining whether Élöıse has a modular winning strategy in
an RSM game with a deterministic/universal Büchi or co-Büchi automaton specification is
EXPTIME-complete.

The NP-completeness of reachability and safety games contrasts with the EXPTIME-
completeness of reachability games with full strategies. In fact, a strategy with full memory
may exist while a modular strategy does not. Also observe that reachability and safety are
not dual winning conditions when restricted to modular strategies.

2.7.3 Weighted Pushdown Systems

Weighted Pushdown Systems (WPDS) extend pushdown automata by adding weights to the
transitions. They were introduced by Schwoon, Jha, Reps and Stubblebine [125]. The weights
have applications in security [125] and dataflow analysis [136]. We will begin with a formal,
abstract definition of WPDA. We will then discuss their application to the analysis of security
certificates.

WPDA form the basis of a recent tool by Lal and Reps [18]. This tool uses a fast graph
algorithm and a connection to abstract grammars to obtain run-times comparable to Moped.
Lal, Reps and Balakrishnan also consider Extended WPDSs [19]. These systems associate
merging functions as well as weights to pushw transitions. For dataflow analysis, where the
stack is used to track procedure calls, these merging functions allow the calling context to be
considered when calculating the effects of a procedure.

Definition

A weighted pushdown system is a pushdown system whose transitions are augmented with
weights from a set W . These weights must be well behaved. More precisely, they should
form part of a bounded idempotent semi-ring. This structure allows weights to be combined
to produce cumulative weights over a path.

37

Section 2.7. Order-1 Extensions of Pushdown Systems/Automata

Definition 2.7.1. A weighted pushdown system is a triple (A,S, f) where A = (P,D, Σ)
is a pushdown system, S = (W,⊕,⊗, 0, 1) is a bounded idempotent semi-ring, and f : D → W
is a function assigning weights to the transitions in D.

Definition 2.7.2. A bounded idempotent semi-ring is a tuple (W,⊕,⊗, 0, 1) where W
is a set with 0, 1 ∈ W and ⊕ and ⊗ are combine and extend operations respectively. These
are binary operators such that,

• (W,⊕) is a commutative monoid with 0 as its neutral element and ⊕ is idempotent
(a ⊕ a = a).

• (W,⊗) is a monoid with neutral element 1.

• ⊗ distributes over ⊕:

a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (a ⊗ b)

• 0 is an annihilator with respect to ⊗:

a ⊗ 0 = 0 = 0 ⊗ a

• In the partial order a ⊑ b iff a ⊕ b = a, there are no infinite descending chains.

We can extend f to paths. For a sequence of pushdown commands d1, . . . , dm;

f(d1, . . . , dm) = f(d1) ⊗ · · · ⊗ f(dm)

Security Example

We illustrate WPDSs using an example from security. This example motivated the introduc-
tion of WPDSs [125] and is based on the application of PDSs to a related problem [122].

The SPKI/SDSI framework enforces security checking using certifications,

• A name certificate is of the form K A −→ S. The symbol K indicates that A is a
name. We consider K to be the issuer of the certificate. The rule specifies that K A
can be rewritten to the value S, which is a sequence of identifiers, providing meaning
to the certificate.

• An authorisation certificate takes the form KT ¤ −→ S ¤ or KT ¤ −→ S ¥ where
T specifies the permission being granted, and ¤ and ¥ indicate that the permission can
or can not be delegated.

Rewrite rules are assigned weights in a similar manner to the transitions of WPDSs.
Suppose an insurance company X offers favourable rates to patients of a particular hospital

H. We represent this privilege KX ¤. The rule,

KX ¤ −→ KH patient ¥ (2.1)

specifies that to be eligible for favourable rates, one must be a patient of hospital H, and no
delegation can take place.

38

Section 2.7. Order-1 Extensions of Pushdown Systems/Automata

If a person, Alice, were to apply for cheaper insurance, she would have to prove she is a
patient at H. She can do this by providing a certificate from one of the clinics treating her.
Let HAIDS denote the hospital’s AIDS clinic, and HIM denote the internal-medicine centre. If
Alice were a patient at both of these clinics she would have the following certification options:

KH patient −→ KHAIDS
patient (2.2)

KH patient −→ KHIM
patient (2.3)

where each clinic will prove that she is a patient there:

KHAIDS
−→ KAlice (2.4)

KHIM
−→ KAlice (2.5)

Hence, Alice has two possible derivations KX ¤ −→ KAlice ¥. However, these two deriva-
tions are not equal: Alice must reveal to the company that she is an AIDS patient or a patient
at the internal medicine clinic. Since an AIDS patient is likely to receive less favourable rates
than an internal medicine patient, she would obviously prefer the second choice. We can re-
flect this preference using the weights I and S, denoting insensitive and sensitive information.
These weights form a bounded idempotent semi-ring as follows. Let 0 = S and 1 = I and,

I ⊕ x = x ⊕ I = I and S ⊕ x = x ⊕ S = S
S ⊗ x = x ⊗ S = S and I ⊗ x = x ⊗ I = x

We allocate the weight I to all rules except rule 2.4, which has the weight S. Thus, the chain
(2.1) ⊗ (2.2) ⊗ (2.4) has weight S, whilst (2.1) ⊗ (2.3) ⊗ (2.5) has weight I.

Encoding Weighted SPKI/SDSI Using Weighted Pushdown Systems

The SPKI/SDSI framework has a rather straightforward interpretation using PDSs [122].
Similarly, when the framework is enhanced with weights, WPDSs provide a natural interpre-
tation. We briefly describe this encoding.

Intuitively, the issuers KC are stored in the control state, whilst the list of identifiers,
such as patient in the above example, are stored in the stack. Let K be the set of keys of the
form KC and I be the set of identifiers appearing in some C. With an SPKI/SDSI system,
we associate the pushdown system (K,D, I ∪ {¤, ¥}), where,

• For every name certificate K A −→ K ′ σ, where σ is a sequence of identifiers, D
contains the rule (K, A, pushσ, K ′). The weight of the command is the weight associated
with the certificate.

• For every authorisation certificate K ¤ −→ K ′ σ b with b = ¤ or b = ¥, D contains the
command (K, ¤, pushσb, K

′). The weight associated with the command is the weight
associated with the certificate.

Hence, in the above example, Alice’s preferred proof of eligibility corresponds to the run,

〈KH , ¤〉 →֒ 〈KHIM
, patient ¥〉 →֒ 〈KAlice, ¥〉

This run can be obtained by computing the weight-minimising reachability problem from
〈KH , ¤〉 to 〈KAlice, ¥〉. Schwoon et al. provide a solution to this problem via a connection
with the meet over all paths problem for abstract grammars [125].

39

Section 2.7. Order-1 Extensions of Pushdown Systems/Automata

2.7.4 Visibly Pushdown Games

Visibly Pushdown Automata (VPA) are a subclass of pushdown automata introduced by
Alur and Madhusudan [101]. VPA provide an automata-theoretic generalisation of CaRet —
a logic of calls and returns discussed below — and other formalisms which analyse the stack.
The input alphabet is divided into calls, returns and internal characters. When reading a
call, a VPA pushes a single character onto the stack. Analogously, a pop action is performed
when reading a return. When the VPA reads an internal character, only the control state is
changed. Hence, the stack actions are visible from the input alphabet.

Definition 2.7.3. A visibly pushdown automaton over an alphabet Γ = Γcalls⊎Γint⊎Γret

is a tuple (P, p0,D, Σ, Ω) where P is a set of control states, p0 is the initial control state,

D ⊆ (P × Γcalls × Σ \ {⊥} × P) ∪ (P × Γint × P) ∪ (P × Γret × Σ × P)

is a set of commands, Σ is a finite stack alphabet, and Ω is an acceptance condition.

A transition 〈p, [w]〉
α
→֒ 〈p′, [w′]〉 exists iff,

• When α ∈ Γcalls, we have (p, α, a, p′) ∈ D and w′ = aw.

• When α ∈ Γint, we have (p, α, p′) ∈ D and w = w′.

• When α ∈ Γret, we have (p, α, a, p′) ∈ D and w = aw′.

Visibly pushdown automata are defined as acceptors of both finite and infinite words
when equipped with reachability and Büchi acceptance conditions respectively. The lan-
guages definable are closed under the boolean operations and the Kleene star. In the case
of finite words, VPAs are determinisable. This does not hold over infinite words, although
it is still possible to complement an automaton. VPAs also permit an MSO characterisation
— through the addition of an MSO matching operator which holds for x and y when x is
a call and y the corresponding return — and a characterisation in terms of regular trees.
Furthermore, Alur and Madhusudan define visibly pushdown grammars, providing another
exogenous characterisation.

Defining B(Σ3) Languages

Pushdown automata can be defined as a game. During a play, the labels on the transitions
form a word. This word can be used as input to another pushdown automaton that defines
the winning condition. However, pushdown games with a pushdown winning condition are
undecidable.

The decidability of visibly pushdown games equipped with visibly pushdown winning con-
ditions was shown by Löding, Madhusudan and Serre [30]. The first step in the solution is
to internalise the winning condition. When the winning condition is given by a deterministic
automaton, we can simply form the product of the game automaton and the winning con-
dition, forming a standard pushdown game. However, over infinite plays, VPAs cannot be
determinised. Hence, Löding et al. introduce stair automata. These automata are equipped
with a parity condition that is checked only when a character is pushed onto the stack and

40

Section 2.7. Order-1 Extensions of Pushdown Systems/Automata

will not be removed for the remainder of the run. More formally, we define the stack height
for any α0 . . . αm ∈ Γ∗, where sh(ε) = 0,

sh(γ0 . . . γm) =
sh(γ1 . . . γm) + 1 if γ0 ∈ Γcalls

sh(γ1 . . . γm) if γ0 ∈ Γint

max{sh(γ1 . . . γm) − 1, 0} if γ0 ∈ Γret

For any word w = α0α1 . . . ∈ Γω, Stepsw = { n ∈ N | ∀m ≥ n.sh(α0 . . . αm) ≥ sh(α0 . . . αn) }.
Let n0 < n1 < . . . be an ascending enumeration of Stepsw. A stair automaton accepts w if
αn0αn1 . . . satisfies the parity condition.

An important property of stair automata is that, for every nondeterministic Büchi VPA,
we can construct an equivalent deterministic stair automaton.

Theorem 2.7.5 ([30]). For each non-deterministic Büchi VPA M over Γ there exists a
deterministic parity stair automaton D such that L(M) = L(D). Moreover, we can construct
D such that it has 2O(|Q|2) states, where Q is the state-space of M.

In fact, it can be shown that stair automata are equivalent to Büchi VPA.
Once we have constructed a deterministic stair automaton, we can form the product of

the game PDA and the stair automaton, resulting in a pushdown game with a parity winning
condition. Determining the winner of a VPA game with a Büchi VPA winning condition is
2-EXPTIME-complete. This matches the complexity of a pushdown game whose winning
condition is given by a non-deterministic Büchi PDA, since a deterministic Muller PDA must
be constructed before the product can be built.

Finally, we note the topological complexity of VPAs.

Theorem 2.7.6. The class of ω-visibly pushdown languages is contained in B(Σ3). Further-
more, there exist VPAs accepting true B(Σ3) sets, Σ3-complete sets and Π3-complete sets.

Connection to Logics

CaRet: Visibly pushdown languages were introduced as a generalisation of existing stack
based verification techniques. One particular logic that motivated this research is CaRet,
introduced by Alur, Etessami and Madhusudan in 2004 [98].

CaRet is defined over Recursive State machines. It extends the LTL syntax as follows,

ϕ = p | ϕ ∨ ϕ | ¬φ | ©g ϕ | ϕUgϕ | ©a ϕ | ϕUaϕ | ©− ϕ | ϕU−ϕ

The © and U operators are augmented with a superscript g, a or (−). Operators superscripted
by a g are global operators which behave as in standard LTL. The abstract operators —
marked with an a — behave in a local fashion. Intuitively, they abstract over the procedure
calls, moving directly from a call to its corresponding return. In a pushdown system this would
move from a configuration 〈p, [w]〉 to the next configuration of the form 〈p′, [w]〉, provided
w is a prefix of all stacks in between. If the stack is popped to a prefix of w, the abstract
successor is ⊥ and the formula is not satisfied. The (−) superscript operates backwards over
the stack of calls.

The a operators can be used to specify local properties and perform Hoare-style reasoning
using pre- and post-conditions:

Gg ((call ∧ ϕpre) ⇒ ©aϕpost)

41

Section 2.8. Higher-Order Pushdown Systems and Automata

The (−) operators may be used to define stack inspection properties. We can also use the
©− operator with the ©a operator to assert a that a property ϕ holds when the current
procedure returns:

©− ©a ϕ

Finally, although unboundedness is not expressible in CaRet, we are able to specify that the
stack repeatedly returns to a bounded stack height:

F gGg(call ⇒ ©areturn)

VP-µ: Work on visibly pushdown systems motivated the logic VP-µ [103]. This is an exten-
sion of µ-calculus to represent procedure calls and is shown to be more expressive than CaRet
and MSO.

VP-µ is interpreted over structured trees. These are trees whose edges are tagged as calls,
returns or local transitions with the proviso that along any path, all return edges have a
matching call. It is easy to see that the unfolding of a pushdown configuration graph has
a natural conversion to structured trees: calls correspond to edges where the stack grows,
the stack height does not change during local transitions, and pop transitions are labelled as
returns. The syntax follows:

ϕ = p | ¬p | X | ϕ ∨ ϕ | ϕ ∧ ϕ | µX.ϕ | νX.ϕ

〈call〉ϕ{ψ1, . . . , ψk} | [call]ϕ{ψ1, . . . , ψk}

〈loc〉ϕ | [loc]ϕ | 〈ret〉Ri | [ret]Ri

The loc operators are local next operators and behave as expected. The call and return
constructs behave as follows: [call]ϕ{ψ1, . . . , ψk} asserts that ϕ holds in the subsequent call
and that after returning one of ψ1, . . . , ψk hold. The formula required to hold is determined
by the return operator. In the case of [ret]Ri for i ∈ {1, . . . , k}, it must be the case that ψi

holds.
Alur et al. provide an EXPTIME model-checking algorithm for VP-µ over recursive state

machines. They claim VP-µ is the most expressive program logic that has a decidable model-
checking problem. It is also shown that the satisfiability problem for VP-µ is undecidable,
and that for closed formulae, the expressiveness of the hierarchy parameterised by k — the
maximum number of ψ formulae in a sub-formula [call]ϕ{ψ1, . . . , ψk} — is strict. In a sep-
arate, apparently unpublished paper, it is shown that VP-µ is as expressive as alternating
visibly pushdown tree automata [102].

2.8 Higher-Order Pushdown Systems and Automata

Higher-order pushdown automata generalise pushdown automata through the use of higher-
order stacks. Whereas a stack in the sense of a pushdown automaton is an order-one stack —
that is, a stack of characters — an order-two stack is a stack of order-one stacks. Similarly,
an order-three stack is a stack of order-two stacks, and so on. An order-n PDA has push and
pop commands for every 1 ≤ l ≤ n. When l > 1 a pop command removes the topmost order-l
stack. Conversely, the push command duplicates the topmost order-l stack.

Several notable advances in recent years have sparked off a resurgence of interest in higher-
order PDA/PDSs in the verification community. For example, Knapik et al. [133] have

42

Section 2.8. Higher-Order Pushdown Systems and Automata

shown that the ranked trees generated by deterministic order-n PDSs are exactly those that
are generated by order-n recursion schemes satisfying the safety constraint; Carayol and
Wöhrle [13] have shown that the ε-closure of the configuration graphs of higher-order PDSs
exactly constitute Caucal’s graph hierarchy [36]. Remarkably these infinite trees and graphs
have decidable monadic second-order theories [40, 13, 133].

Through their connections to higher-order recursions schemes, higher-order pushdown
systems provide a natural infinite state model for higher-order programs with recursive func-
tion calls and are therefore useful in software verification. This connection is discussed in
Section 2.8.6.

MSO decidability for trees generated by arbitrary (i.e. not necessarily safe) HORSs has
been shown by Ong [29]. A variant kind of higher-order PDSs called Collapsible Pushdown
Systems (extending panic automata [134] or pushdown automata with links [69] to all finite
orders) has recently been shown to be equi-expressive with HORSs for generating ranked trees
[76]. These automata allow collapse operations as well as the usual push and pop commands.
When a character is pushed onto the top stack, a link is created to a lower stack of a specified
order. This link always points to the same stack position even if it is copied to another part
of the stack (during a higher-order push command). A collapse command reduces the stack
to the position indicated by the link decorating the top character. In section 2.8.7 we discuss
collapsible pushdown systems in more detail.

The main result of Chapter 5 is presented over alternating higher-order pushdown systems.
This is because, although we apply our results to higher-order PDSs, the power of alternation
is required to provide solutions to reachability games and alternation-free µ-calculus model-
checking over higher-order PDSs.

2.8.1 Improving the CD Player

Using higher-order PDSs, we are able to fix two problems with the order-1 CD player described
in Section 2.6.2. The primary drawback of the order-1 CD player is that a playlist cannot
be replayed. This is because the list can only be read by popping (and therefore losing) the
CD at the head of the list. Using a push2 command we are able to create a copy of the list.
The copy is destroyed when playing the CDs. Once all CDs have been played, we simply
discard the exhausted copy, leaving the store in the state it was in before play was pressed.
The updated player is defined below. Figure 2.10 shows the execution of the order-2 PDS.

loadCD(c) = (i, a, pushca, i) for all c ∈ CDs and a ∈ Σ
delCD = (i, c, pop1, i) for all c ∈ CDs

playAll = (i, a, push2, p) for all a ∈ Σ
playCD(c) = (p, c, pop1, p) for all c ∈ CDs

done = (p,⊥, pop1, i)

Another problem with the order-1 example is that the playlist must be programmed in
reverse. Using order-2 pushdown systems we can read the stack from bottom to top as well
as vice versa. This allows the playlist to be read in order.

43

Section 2.8. Higher-Order Pushdown Systems and Automata

〈i, [⊥]〉 〈i, [321⊥]〉

〈p, [⊥][321⊥]〉 〈p, [321⊥][321⊥]〉

loadCD(1);loadCD(2);loadCD(3)

playAll

playCD(3);playCD(2);playCD(1)

done

delCD; delCD; delCD

Figure 2.10: A CD player with a replayable playlist (excerpt).

〈i, [⊥]〉 〈i, [321⊥]〉

〈p, [321⊥]〉 〈p, [1⊥][21⊥][321⊥]〉

loadCD(1);loadCD(2);loadCD(3)

playAll

playCD(1);playCD(2);playCD(3)

done

delCD; delCD; delCD

Figure 2.11: An improved CD player with a replayable playlist (excerpt).

To read the stack in reverse we create a stair structure by repeatedly applying push2 and
pop1 commands and marking the top of the original stack:

[[abc⊥]]−→

[
[bc⊥]

[abc⊥]

]

−→




[c⊥]
[bc⊥]

[abc⊥]



−→




[⊥]
[c⊥]

[bc⊥]
[abc⊥]




We are able to read the list in reverse by inspecting the top1 character and then performing
a pop2 to access the next item. The procedure stops when the top1 character is marked.
Figure 2.11 shows the updated execution of the CD player.

2.8.2 Higher-Order Model-Checking

We observed above that, through their connection to recursion schemes, higher-order PDSs
provide a model for higher-order programs. Such programs may be written in functional
languages such as OCaml, F♯ or LISP, or in languages, such as C♯, which have higher-order

44

Section 2.8. Higher-Order Pushdown Systems and Automata

features. In this section we briefly discuss several applications of higher-order model-checking.

• An example of model-checking being applied to a safety-critical higher-order system
is the use of SPIN to verify the Remote Agent deep-space flight software developed at
NASA [72]. This software was written in LISP, and, after a lengthy conversion to SPIN’s
input language, a deadlock error was identified. This error manifested itself in-flight on
a sibling system.

• Higher-order languages have applications in system design [57]. In particular, Edward
Lee at Berkeley argues that the right way to approach concurrency is to separate con-
cerns using (actor-oriented) coordination languages, and that higher-order languages
are ideal for this purpose.

• Order-2 pushdown automata generate the indexed languages [24]. These languages
have applications in natural language processing [49].

• Finally, higher-order verification is a current topic of interest at Microsoft (E.g. checking
higher-order features of C♯ [95] or security policies specified in F♯ [70]).

We give an example of the use of higher-order languages in systems design. This example
is adapted from Cataldo et al. [14]. We begin by assuming some input/output component
IOComp,

IOComp in out

Next we define Seq x y which connects components x and y. For example, we may have,

S2 = Seq IOComp IOComp in out

Notice that the above system has an input and an output, and hence, can be composed
using Seq. That is, S4 = Seq S2 S2, which is a composition of four IOComp components.
Generalising this procedure, we can construct a sequence of 2n components with n order-1
definitions2. In fact, Cataldo shows that there exists a countably infinite set of terms that
must be a tower of exponentials in size with only order-0 constructs, but that may be defined
by a higher-order term linear in size [57].

2.8.3 Definition

We now introduce higher-order PDSs formally. We begin by describing higher-order stores
and their operations. We will then define higher-order PDSs in full.

2Seq is order-1 since it takes order-0 arguments. IOComp is order-0 since it takes no arguments

45

Section 2.8. Higher-Order Pushdown Systems and Automata

Higher-order Stores

Definition 2.8.1 (n-Stores). For n > 1, the set of n-stores CΣ
n is the set of all [γ1 . . . γm]

with m ≥ 1 and γi ∈ CΣ
n−1 for all i ∈ {1, . . . , m}.

There are three types of operations applicable to n-stores: push, pop and top. These are
defined inductively. In addition to the operations over a 1-store, we have, when n > 1,

pushw[γ1 . . . γm] = [pushw(γ1)γ2 . . . γm]
pushl[γ1 . . . γm] = [pushl(γ1)γ2 . . . γm] if 2 ≤ l < n
pushn[γ1 . . . γm] = [γ1γ1γ2 . . . γm]

popl[γ1 . . . γm] = [popl(γ1)γ2 . . . γm] if 1 ≤ l < n
popn[γ1 . . . γm] = [γ2 . . . γm] if m > 1
topl[γ1 . . . γm] = topl(γ1) if 1 ≤ l < n
topn[γ1 . . . γm] = γ1

Note that we assume without loss of generality that Σ ∩ N = ∅, where N is the set of
natural numbers. Furthermore, observe that when m = 1, popn is undefined. We define
On = { pushw | w ∈ Σ∗ } ∪ { pushl, popl | 1 < l ≤ n }. Further more, define ℓ(pushw) = 1,
ℓ(popl) = l and ℓ(pushl) = l for all 1 < l ≤ n.

Higher-Order Pushdown Systems

Definition 2.8.2. An order-n PDS is a tuple (P,D, Σ) where P is a finite set of control
states p, D ⊆ P × Σ ×On × P is a finite set of commands d, and Σ is a finite alphabet.

A configuration of a higher-order PDS is a pair 〈p, γ〉 where p ∈ P and γ is an n-store.
We have a transition 〈p, γ〉 →֒ 〈p′, γ′〉 iff we have (p, a, o, p′) ∈ D, top1(γ) = a and γ′ = o(γ).

We define
∗
→֒ to be the transitive closure of →֒. For a set of configurations CInit we define

Pre∗(CInit) as the set of configurations 〈p, γ〉 such that, for some configuration 〈p′, γ′〉 ∈ CInit,

we have 〈p, γ〉
∗
→֒ 〈p′, γ′〉.

Alternating Higher-Order Pushdown Systems

We may generalise the previous definition to the case of Alternating higher-order PDSs.

Definition 2.8.3. An order-n APDS is a tuple (P,D, Σ) where P is a finite set of control
states p, D ⊆ P × Σ × 2On×P is a finite set of commands d, and Σ is a finite alphabet.

A configuration of a higher-order APDS is a pair 〈p, γ〉 where p ∈ P and γ is an n-store.
We have a transition 〈p, γ〉 →֒ C iff we have (p, a, OP) ∈ D, top1(γ) = a, and

C = { 〈p′, γ′〉 | (o, p′) ∈ OP ∧ γ′ = o(γ) }∪{ 〈p, ▽〉 | if (o, p′) ∈ OP and o(γ) is not defined }

The transition relation generalises to sets of configurations via the following rule:

〈p, γ〉 →֒ C

C ′ ∪ 〈p, γ〉 →֒ C ′ ∪ C
〈p, γ〉 /∈ C ′

We define
∗
→֒ to be the transitive closure of →֒. For a set of configurations CInit we define

Pre∗(CInit) as the set of configurations 〈p, γ〉 such that we have 〈p, γ〉
∗
→֒ C and C ⊆ CInit.

46

Section 2.8. Higher-Order Pushdown Systems and Automata

〈
p1, γ

〉
〈
p2, o2(γ)

〉

〈
p3, o3(γ)

〉

〈
p4, o4(o2(γ))

〉

〈
p5, o5(o3(γ))

〉

Figure 2.12: The configuration graph (excerpt) of an example higher-order APDS.

Example 2.8.1. We present an example to illustrate the definition of Pre∗(CInit) for higher-
order APDSs. Figure 2.12 shows an excerpt of the configuration graph of a higher-order APDS
with the commands,

(p1, , {(o2, p
2), (o3, p

3)})
(p2, , {(o4, p

4)})
(p3, , {(o5, p

5)})

We consider a number of different values of CInit.

1. Let CInit = {〈p2, o2(γ)〉}. In this case Pre∗(CInit) = CInit. The configuration 〈p1, γ〉 is
not in Pre∗(CInit) since the configuration 〈p3, o3(γ)〉 cannot be in Pre∗(CInit).

2. Let CInit = {〈p2, o2(γ)〉, 〈p3, o3(γ)〉}. In this case Pre∗(CInit) = CInit ∪ {〈p1, γ〉}. This
is because the transition from 〈p1, γ〉 reaches a set that is a subset of CInit.

3. Let CInit = {〈p4, o4(o2(γ))〉}. Hence Pre∗(CInit) = CInit ∪ {〈p2, o2(γ)}. The configura-
tion 〈p2, o2(γ)〉 is in the set because its transition moves to a set which is a subset of
CInit. The pair 〈p1, γ〉 is not in the set because, although 〈p2, o2(γ)〉 is in Pre∗(CInit),
the configuration 〈p3, o3(γ)〉 is not.

4. Let CInit = {〈p4, o4(o2(γ))〉, 〈p3, o3(γ)〉}. We therefore have Pre∗(CInit) = CInit ∪
{〈p2, o2(γ)〉, 〈p1, γ〉}. We have 〈p2, o2(γ)〉 ∈ Pre∗(CInit) as before. Furthermore, we
have the following run from 〈p1, γ〉,

〈p1, γ〉 →֒ {〈p2, o2(γ)〉, 〈p3, o3(γ)〉} →֒ {〈p4, o4(o2(γ))〉, 〈p3, o3(γ)〉}

Hence, 〈p1, γ〉 ∈ Pre∗(CInit).

Finally, suppose the higher-order APDS also has a command of the form,

(p5, , {(popl, p
4)})

And it is the case that (only) popl(o5(o3(γ))) is undefined. If CInit = {〈p5, ▽〉}, then
Pre∗(CInit) = CInit ∪ {〈p5, o5(o3(γ))〉, 〈p3, o3(γ)〉}.

Observe that since no transitions are possible from an “undefined” configuration 〈p, ▽〉 we
can reduce the reachability problem for higher-order PDSs to the reachability problem over
higher-order APDSs in a straightforward manner.

47

Section 2.8. Higher-Order Pushdown Systems and Automata

Higher-Order Pushdown Automata

The definition of higher-order pushdown automata is analogous to the order-1 case. That is,
a higher-order pushdown automaton is a higher-order pushdown system which reads an input
word.

Definition 2.8.4. An order-n PDA is a tuple (P,D, Σ, Γ, c0,W) where P is a finite set
of control states p, D ⊆ P × Γ × Σ × On × P is a finite set of commands d, Σ is a finite
stack alphabet, Γ is a finite input alphabet, c0 is an initial configuration and W ⊆ CΣ

n is an
acceptance condition.

A configuration of a higher-order PDA is a pair 〈p, γ〉 where p ∈ P and γ is an n-store. We

have a transition 〈p, γ〉
α
→֒ 〈p′, γ′〉 iff we have (p, α, a, o, p′) ∈ D, top1(γ) = a and γ′ = o(γ).

A word α1, α2, . . . is accepted by the automaton iff c0c1c2 . . . ∈ W and,

c0
α1
→֒ c1

α2
→֒ c3

α3
→֒ · · ·

2.8.4 The Caucal Hierarchy

The hierarchy of pushdown automata/systems is closely related to several other theoretical
constructs, and hence, can be considered robust. In particular, as acceptors of word languages,
order-n pushdown automata are equivalent to level-n safe OI word grammars [138] and as
generators of trees, deterministic order-n pushdown automata are equivalent to safe order-
n recursion schemes (discussed in Section 2.8.6) [133]. Furthermore the ε-closure of the
configuration graphs of higher-order PDAs match the Caucal hierarchy [36].

In this section we provide an account of the Caucal hierarchy. After the definition, to
give some intuition behind the hierarchy’s connection with higher-order pushdown automata,
we discuss the simulation, due to Cachat, of order-2 pushdown games by games played over
Caucal graphs [129].

Definition

The Caucal hierarchy contains a hierarchy of trees and a hierarchy of graphs. At level 0 of the
hierarchy are the family of finite graphs and the family of finite trees over a finite alphabet
Σ. Two MSO-preserving operations are alternately applied to trees and graphs to construct
the entire hierarchy. An MSO-preserving operation is one which preserves MSO decidability.
Let Σ be the set { ā | a ∈ Σ } disjoint from Σ. Intuitively, the letter ā denotes an a-labelled
directed edge being traversed backwards. We define the following MSO-preserving operations.

• A rational mapping h ⊆ Σ × (Σ ∪ Σ)∗ maps a character a ∈ Σ to a rational (regular)
language. Given a rational mapping h, an inverse rational mapping h−1(T) of a tree
T is the graph,

{ s
a
→ t | ∃w ∈ h(a).s

w
→ t in T }

where the nodes of the graph are the nodes appearing in an edge of the set. For example,
if h(b) = āaa, and T is the tree,

48

Section 2.8. Higher-Order Pushdown Systems and Automata

◦

• ◦

•

a a

a

then h−1(T) is the graph,

• •
b

The inverse rational mapping operation was shown to be MSO-preserving by Caucal in
1996 [35]. Beginning with the regular trees, the graphs obtainable by an inverse rational
mapping are the prefix recognisable graphs (PreRec.) [35, 36].

• The unfolding Unf(G, r) of a graph G from a node r in G is the tree,

{ ws
a
→ wsat | wsat ∈ Path(G, r) and s

a
→ t in G }

where the nodes of the tree are all nodes appearing in an edge of the set. The root of
the tree is the node r. Furthermore, we have r ∈ Path(G, r) and wsat ∈ Path(G, r) iff
ws ∈ Path(G, r) and s

a
→ t is an edge of G.

Let G be the graph,

• ◦c

a

b

The unfolding Unf(G, •) of G from • is the infinite tree,

•

• ◦

• ◦ •

...
...

...

c a

c a b

c a
b

c a

Courcelle and Walukiewicz have proven the unfolding operation is MSO-preserving [28].

With these operations, we define the Caucal hierarchy:

Graphn := Rat−1(Treen) and Treen+1 := Unf(Graphn)

where Rat−1(Treen) is the class of graphs obtainable by an inverse rational mapping from a
tree in Treen and Unf(Graphn) is the class of trees obtainable by unfolding a graph G in
Graphn from a node in G.

49

Section 2.8. Higher-Order Pushdown Systems and Automata

•

• • •

...
...

a, b a b

a b a b

Figure 2.13: The tree T1 for the stack alphabet {a, b} obtained by unfolding the graph on the
left

Connections to Higher-Order Pushdown Automata/Systems

The Caucal hierarchy is closely related to pushdown automata/systems. In fact, if HOPDG(n)
denotes the graphs obtainable from the ε-closure of a higher-order pushdown automaton, we
have the following result due to Carayol and Wörhle:

Theorem 2.8.1 ([13]). For every n ≥ 0, G ∈ HOPDG(n) ⇐⇒ G ∈ Graphn.

This result was first shown, in the order-1 case, by Courcelle in 1995 [27].
A similar result was obtained by Cachat [129] connecting games played over higher-order

pushdown systems and a kind of graph automata operating over the Caucal hierarchy using
a notion of game simulation. In particular:

Theorem 2.8.2 ([129]). Given a game G played over an order-n pushdown system one can
construct a graph automaton A and a tree T ∈ Treen such that G is game-simulated by (T, A).

Theorem 2.8.3 ([129]). Given a graph G ∈ Graphn and a graph automaton A, one can
construct a game structure G on an order-n pushdown system such that (G, A) is game-
simulated by G.

The Order-2 Case

We give a flavour of the connections above by describing the game-simulation of an order-2
pushdown game by a graph automaton A and a tree T2 ∈ Tree2.

The tree T2 ∈ Tree2 is used to represent the stack contents of the game. The graph
automaton navigates this tree. Thus, information about the current control state of the
pushdown game is stored in the graph automaton, whilst the stack contents are represented by
the position of the graph automaton in the tree T2. The moves that the graph automaton can
make simulate the moves available in the pushdown game, and their effect on the pushdown
store.

The tree T2 is derived from a tree T1 ∈ Tree1, which is used in the order-1 case to simulate
an order-1 stack. The tree T1 is itself the unfolding of a finite graph (in Graph0) and is shown
in Figure 2.13 (for the stack alphabet {a, b}). In the tree T1, the stack identified by a node
is the sequence of transitions required to reach it. For example, the node reachable via the
sequence aab represents the stack baa.

To generate the tree T2, representing order-2 stacks, we first construct a graph G1 by an
inverse rational mapping from T1. This graph is unfolded to form T2. The inverse rational

50

Section 2.8. Higher-Order Pushdown Systems and Automata

•

• •

...
...

a

ȧ b

ḃ

a
ȧ b

ḃ a
ȧ b

ḃ

2

2 2

Figure 2.14: The graph G1 = h−1(T1) for the stack alphabet {a, b}

[[]] [[][]]

[[a][a]] [[a]] [[b]] [[b][b]] [[b][b][b]]

[[]] [[aa]] [[ba]] [[ab]] [[bb]] [[]] [[][b]] [[ab][b]] [[bb][b]]
...

...
...

a b

2

2 2 2

ȧ a b a
b ḃ ḃ a b

Figure 2.15: The tree T2, unfolded from G1

mapping is given below. Let ȧ be a fresh character for every stack character a ∈ Σ, similarly,
let 2 be a fresh character.

h(a) = a for all a ∈ Σ
h(ȧ) = ā for all a ∈ Σ
h(2) = ε

A character ȧ represents the removal, from the top of the stack, of the character a. The
character 2 represents a push2 action. The graph G1 = h−1(T1) is shown in Figure 2.14. This
graph unfolds to the tree, T2, shown in Figure 2.15. The nodes are labelled with the stack
contents they represent.

The graph automaton reading T2 can simulate moves of the pushdown game by updating
its control state and navigating T2 to account for changes in the stack. In particular,

(p, a, pushw, p′) corresponds to the path ȧw
(p, a, pop1, p

′) corresponds to the path ȧ
(p, a, push2, p

′) corresponds to the path ȧa2

(p, a, pop2, p
′) corresponds to the path ȧΣ

∗
2̄

Each path begins with an ȧ-transition to ensure that the current top1 symbol of the stack
matches the pushdown command. In the case of a pushw operation, we then take the path w.
This has the effect of removing the a from the top of the stack (the ȧ-transition) and replacing
it with the word w. A pop1 command is identical to the case w = ε. The push2 command
replaces the a removed by the ȧ-transition before taking a 2-transition, which corresponds to
duplications of the top stack. Finally, the pop2 operation moves up the tree via Σ characters

51

Section 2.8. Higher-Order Pushdown Systems and Automata

until it has reached the node representing the stack after the last push2 operation. Then the
2-transition is taken in reverse, undoing the push2.

2.8.5 Local Model-Checking of Higher-Order Pushdown Systems

Cachat used his game simulation result described in the previous section to provide a solution
to the local model-checking problem for parity games [129]. This result reduces an order-n
pushdown game to an equivalent game played over a Caucal tree in Treen. He then shows
that a game tree at level n of the hierarchy can be simulated by a game graph at level n − 1
and that this graph game can be simulated by a tree game at level n− 1. By repeating these
reductions we are left with a parity game played over a finite graph, for which solutions are
well known.

Theorem 2.8.4 ([129]). Parity games on higher-order pushdown systems are solvable: one
can determine the winner and compute a winning strategy.

A more direct solution was presented by Serre in a more general setting [76]. The algo-
rithm is a generalisation of the order-1 algorithm by Walukiewicz described in Section 2.6.3.
Whereas Walukiewicz reduced an order-1 pushdown game to a game played over a finite
graph, Serre reduces an order-n pushdown game to a game played over an order-(n−1) push-
down system. An order-n pushdown game can be simulated by an order-(n − 1) pushdown
game as follows:

• Moves of the form (p, a, o, p′) where ℓ(o) < n are simulated directly.

• If a move of the form (p, a, pushn, p′) is played, Élöıse is required to make guarantees
about state of play when the new topn stack is removed. Her announcement consists
of a tuple (A1, . . . , Am) ∈ Qm where m is the number of priorities in the game. The
meaning of this statement is that when the new stack is removed, if the smallest priority
encountered since the pushn operation is i and the current control state is p, then p ∈ Pi.

Abelard then decides whether to accept this guarantee, by choosing the next control
state p′ ∈ Pi to move to, or challenge this statement. When the guarantee is accepted,
the move has a priority i. This allows the parity condition to be checked correctly. In the
case of a challenge, play moves to control state p′, but the stack is left unchanged. This
is because we only store the topn stack, which, in this case, is a duplicate of the previous
topn stack. Similarly, in the order-1 case, only the top character was remembered.

• If a move of the form (p, a, popn, p′) is played, the state of the game is checked against
Élöıse’s announcement. If she was correct, play moves to a state Pop(p′) and Élöıse is
declared the winner. Otherwise, play moves to a state Err(p′) and Abelard wins the
game.

Since the reduction eliminates all order-n commands, we are left with an order-(n− 1) push-
down game. We can repeat this reduction until we have an order-1 game, to which the solution
is known.

More formally, from an order-n pushdown parity game Gn we define an order-(n−1) game
Gn−1. The states of Gn−1 have four core components: ~A, γ, θ and q:

• ~A — a tuple (A0, . . . , Am) ⊆ Pm storing Élöıse’s current claim.

52

Section 2.8. Higher-Order Pushdown Systems and Automata

• γ — topn of the current stack.

• θ — the smallest priority seen since the last pushn simulation.

• p — the current control state.

Definition 2.8.5. Given a pushdown parity game Gn = (P = PA ⊎ PE ,D, Σ, Ω), the equiv-
alent order-(n − 1) game Gn−1 has control states P ′ = P ′

A ⊎ P ′
E , for every ~A, ~A1, θ, p, p1, all

c ∈ {1, . . . , m} and a special symbol ?,

Check(~A, θ, c, p) Push(~A, θ, p) Pop(p)

Move((~A, θ, p), (?, p1)) Move((~A, θ, p), (~A1, p1)) Err(p)

To ease notation, we write,

Check(~A, γ, θ, c, p) Push(~A, γ, θ, p) Pop(p, γ)

Move((~A, γ, θ, p), (?, p1)) Move((~A, γ, θ, p), (~A1, γ, p1)) Err(p, γ)

rather than using standard configuration syntax (for example 〈Check(~A, θ, c, p), γ〉). Let
z = top1(γ) and mΩ,θ = min(Ω(p), θ), the moves in Gn−1 are:

Check(~A, γ, θ, c, p) → Check(~A, o(γ), min(Ω(p), θ), c, p′) if (p, z, o, p′) ∈ D, o ∈ On−1

Check(~A, γ, θ, c, p) → Pop(p′, γ) if (p, z, popn, p′) ∈ D, p′ ∈ AmΩ,θ

Check(~A, γ, θ, c, p) → Err(p′, γ) if (p, z, popn, p′) ∈ D, p′ /∈ AmΩ,θ

Check(~A, γ, θ, c, p) → Move((~A, γ, θ, p), (?, γ, p1)) if (p, z, pushn, p1) ∈ D

Push(~A, γ, θ, c, p) → Check(~A, o(γ), min(Ω(p), θ), c, p′) if (p, z, o, p′) ∈ D, o ∈ On−1

Push(~A, γ, θ, c, p) → Pop(p′, γ) if (p, z, popn, p′) ∈ D, p′ ∈ AmΩ,θ

Push(~A, γ, θ, c, p) → Err(p′, γ) if (p, z, popn, p′) ∈ D, p′ /∈ AmΩ,θ

Push(~A, γ, θ, c, p) → Move((~A, γ, θ, p), (?, γ, p1)) if (p, z, pushn, p1) ∈ D

and finally,

Move((~A, γ, θ, p), (?, γ, p1)) → Move((~A, γ, θ, p), (~A1, γ, p1))

Move((~A, γ, θ, p), (~A1, γ, p1)) → Push(~A1, γ, m, p1)

Move((~A, γ, θ, p), (~A1, γ, p1)) → Check(~A, γ, min(θ, c), c, p2) if c ≤ Ω(p) and p2 ∈ Ac

The owner of each control state is determined by the component p except in the case of Move
states. That is,

QE = { Move(~A, θ, p1), (?, p2)), Push(~A, θ, p), Check(~A, θ, c, p) | p ∈ PE }

QA = { Move(~A, θ, p1), (~A1, p2)), Push(~A, θ, p), Check(~A, θ, c, p) | p ∈ PA }

We assign the following priorities to the states of Gn−1: Check(~A, θ, c, p) has priority c,
Push(~A, θ, p) has priority Ω(p) and all other states have priority m + 1.

Élöıse wins the game if Abelard cannot make a move, play reaches Pop(p) for some p or
an infinite path is generated such that the lowest priority occurring infinitely often is even.
The initial state of the game is Check((∅, . . . , ∅), γ0, m, m, p0) where p0 is the initial control
state of Gn and γ0 is the initial stack.

53

Section 2.8. Higher-Order Pushdown Systems and Automata

Theorem 2.8.5 ([53]). Élöıse has a winning strategy in the game Gn iff she has a winning
strategy in the game Gn−1 from the node Check((∅, . . . , ∅), γ0, m, m, p0).

The size of Gn−1 is exponential in the size of Gn, since each state contains m subsets of
the control states of Gn. Combined with the EXPTIME complexity of calculating the winner
of an order-1 parity game, we can determine the winner of an order-n pushdown game in
n-EXPTIME. This is optimal [130] (also see Section 6.4).

2.8.6 Recursion Schemes

In addition to their relationship with the Caucal hierarchy, higher-order pushdown automata
are closely related to higher-order recursion schemes/grammars. In this setting, both higher-
order pushdown automata and higher-order recursion schemes are defined as generators of
trees. It was shown by Courcelle that, in the order-1 case, trees generated by the two for-
malisms coincide [27]. This result was extended by Knapik, Niwiński and Urzyczyn, first to
the order-2 case [132] and then to the general case [133]. A key restriction in these exten-
sions is that the recursion scheme must satisfy a constraint called safety. Hence we have the
following theorems:

Theorem 2.8.6 ([133]). If t is a tree accepted by an order-n pushdown automaton, then it
is generated by a safe, homogeneous order-n recursion scheme.

Theorem 2.8.7 ([133]). A tree generated by a safe, homogeneous order-n recursion scheme
is accepted by an order-n pushdown automaton.

These results imply that MSO is decidable in the case of homogeneous, safe, higher-order
recursion schemes. More recently, it has been shown that MSO is decidable in the more
general case, which permits non-homogeneous, unsafe recursion schemes [29].

Definition

A higher-order recursion scheme is a tuple R = (Σ, V, S, E) where Σ is a finite ranked
alphabet, V is a finite set of non-terminals, S is a start symbol and E is a finite set of
productions. A production is of the form:

Fz1 . . . zm ⇒ w

where F ∈ V is a non-terminal of arity m and z1, . . . , zm are variables of the required type.
Finally w is an applicative term.

The set of possible types of F are constructed from a unique basic type o. Then, if τ1

and τ2 are types, (τ1 → τ2) is also a type. We define O(τ1) as the order of a type. For o
we have O(o) = 0, and a type (τ1 → τ2) has O(τ1 → τ2) = max(1 + O(τ1), O(τ2)). A type
(τ1 → . . . → τm) is homogeneous if O(τ1) ≥ . . . ≥ O(τm). We write t : τ to indicate that a
term t is of type τ .

In the above, we require F to be of homogeneous type τ1 → . . . → τm and each zi for
all 1 ≤ i ≤ m to be of type τi. The order of a recursion scheme is the largest order of its
non-terminals. It is assumed that there is only one production per non-terminal F and τm is
type o. Furthermore, Σ is a typed alphabet of order 1.

The right-hand side of a production is an applicative term from the set T (Σ ∪ V ∪
{z1, . . . , zm}), which is defined inductively:

54

Section 2.8. Higher-Order Pushdown Systems and Automata

f

g

Fg(ga) a

Figure 2.16: The tree f(Fg(ga))(ga)

1. Σ ∪ V ∪ {z1, . . . , zm} ⊆ T (Σ ∪ V ∪ {z1, . . . , zm}).

2. If t ∈ T (Σ∪ V ∪ {z1, . . . , zm}) is of type (τ1 → τ2) and s ∈ T (Σ∪ V ∪ {z1, . . . , zm}) has
type τ1, then ts ∈ T (Σ ∪ V ∪ {z1, . . . , zm}) and has type τ2.

We consider recursion schemes as generators of ranked trees. This process is illustrated
with the following example:

S = Fga
Fφx = f(Fφ(φx))(φx)

where S is of type o, F : (o → o) → o, f : o → o → o, g : o → o and a : o, with f, g, a ∈ Σ.
A node labelled with f has arity 2. Similarly, nodes labelled with g or a have arities 1 and 0
respectively.

Beginning from S, the tree is generated from the step-wise expansion of S:

S ≫ Fga ≫ f(Fg(ga))(ga) ≫ . . .

resulting in the tree shown in Figure 2.16. A term of the form fXY gives a node labelled
f with two children: the trees defined by X and Y . The trees constructed are not ordered.
Instead, the branches are (implicitly in Figure 2.16 and the sequel) labelled with a natural
number corresponding to the order of the arguments to f . Using,

Fg(ga) ≫ f(Fg(g(ga))(g(ga))

the tree is expanded further in Figure 2.17. In this way, an infinite tree is formed.

Higher-order Pushdown Systems as Tree Generators

Order-n pushdown systems have pushdown commands of the form for 2 ≤ l ≤ n and w ∈ Σ∗:

(p, a, pushw, p′) (p, a, pushl, p
′) (p, a, popl, p

′)

To extend higher-order pushdown systems to generators of trees, we allow commands of the
following form, where r is the arity of f ∈ Σ.

(p, a, f, p1, . . . , pr)

A run of a tree-generating higher-order pushdown system proceeds as expected until a
command of the above form is applied. At this point a node f is generated with r children.

55

Section 2.8. Higher-Order Pushdown Systems and Automata

Fg(g(ga))

f

f g

g a

g

a

Figure 2.17: The tree f(f(Fg(g(ga))(g(ga)))(ga)

To generate the children of f , we run r copies of the pushdown system from the control states
p1, . . . , pr respectively. For example, the pushdown system defined by the commands,

(F1, , pusha, F2) (G2,⊥, a, end) (G1, a, g, G2)
(F2, a, f, F1, G1) (G2, a, pop1, G1)

from the initial configuration 〈F1, [⊥]〉 runs as shown in Figure 2.18, generating the tree in
Figure 2.17.

Safety

The class of trees generated by higher-order pushdown systems are equivalent to the class of
trees generated by higher-order recursion schemes satisfying a constraint called safety. Since
higher-order pushdown systems have a decidable MSO-theory, it follows that the MSO-theory
of safe higher-order recursion schemes is also decidable. In fact, a result due to Ong states that
the MSO-theory of non-homogeneous, unsafe higher-order recursion schemes is decidable [29].

Definition 2.8.6 ([133]). A term of order k > 0 is unsafe if it contains an occurrence of a
parameter of order strictly less that k, otherwise the term is safe. An occurrence of an unsafe
term t as a subexpression of a term t′ is safe if it is in the context . . . (ts) . . ., otherwise,
the occurrence is unsafe. A grammar is safe if no unsafe term has an unsafe occurrence at a
right-hand side of any production.

Example 2.8.2 ([133]). Let f, g, h, a, b be signature symbols of arity 2, 1, 1, 0, 0, respectively.
Furthermore, let F and S be non-terminals of type (o → o) → o → o → o and o respectively.
The following grammar is unsafe:

S = Fgab
Fφxy = f(F (Fφx)y(hy))(f(φx)y)

In particular, the sub-term t = Fφx : (o → o) is a term of order 1 containing an occurrence
of an order 0 parameter. Since it does not occur as part of a term . . . (ts) . . ., it is unsafe.
Therefore, the grammar is not safe.

56

Section 2.8. Higher-Order Pushdown Systems and Automata

〈F1, [⊥]〉

〈F2, [a⊥]〉

f

〈F1, [a⊥]〉 〈G1, [a⊥]〉

〈F2, [aa⊥]〉 g

f 〈G2, [a⊥]〉

〈F1, [aa⊥]〉 〈G1, [aa⊥]〉 〈G1, [⊥]〉

〈F2, [aaa⊥]〉 g a

f 〈G2, [aa⊥]〉 〈end, [⊥]〉

〈F1, [aaa⊥]〉 〈G1, [aaa⊥]〉 〈G1, [a⊥]〉

〈F2, [aaaa⊥]〉 g g

f 〈G2, [aaa⊥]〉 〈G2, [a⊥]〉

〈F1, [aaaa⊥]〉 〈G1, [aaaa⊥]〉 〈G1, [aa⊥]〉 〈G1, [⊥]〉

...
...

...
...

Figure 2.18: The run of a PDS generating the tree in Figure 2.17

57

Section 2.8. Higher-Order Pushdown Systems and Automata




[
[. . . a . . .]

...

]

k[]

...




n




[
[. . . a . . .]

...

]

k[
[. . . a . . .]

...

]

[]

...




n


[
[. . . a . . .]

...

]

k[]

...




n




[
[. . . a . . .]

...

]

k[
[. . . a . . .]

...

]

[]

...




n

pushk

pushk

Figure 2.19: The behaviour of a collapse link for a pushk operation

2.8.7 Collapsible Pushdown Systems

Since higher-order recursion schemes have a decidable MSO-theory, even in the case of non-
homogeneous, unsafe schemes, it follows that higher-order pushdown systems do not capture
the full range of structures with decidable MSO theories. Collapsible Pushdown Systems
(CPDS) are an extension of higher-order pushdown systems which fully capture the trees and
graphs definable by higher-order recursion schemes [76]. They are an order-n extension of the
order-2 panic automata introduced by Knapik et al. [134] or pushdown automata with
links introduced by Aehlig et al. [69] to all finite orders.

A collapsible pushdown store is a higher-order store equipped with links. These links
are added when a character is added to the top order-1 stack. An operation pushk′

a adds
the character a to the top1 stack with a link pointing to the order-k′ stack below, where
0 ≤ k′ < n. Figure 2.19 shows the state of the links after a pushk operation when k′ < k and
k′ ≥ k respectively.

Collapsible pushdown systems allow collapse operations in addition to the usual push and
pop operations. When a collapse occurs, the portion of the stack above the destination of the
current top link is removed: the stack is collapsed to a previous state. This is illustrated in
Figure 2.20. A push0

a operation creates a link to the next order-0 stack, that is, the previous
top1 element. In this case, collapse behaves like pop1. We define the set of CPDS operations,

OC
1 = {skip, pop1, collapse} ∪ { push0

a | a ∈ Σ }
OC

n = {pushn, popn} ∪ { pushn−1
a | a ∈ Σ } ∪ OC

n−1

Definition 2.8.7. An order-n CPDS is a tuple (P,D, Σ) where P is a finite set of control
states p, D ⊆ P × Σ ×OC

n × P is a finite set of commands d and Σ is a finite alphabet.

58

Section 2.8. Higher-Order Pushdown Systems and Automata




[
[a . . .]

...

]

k[
[a . . .]

...

]

[
[b . . .]

...

]

...




n




[
[b . . .]

...

]

k
...




n

collapse

Figure 2.20: The behaviour of a collapse operation

A configuration of a CPDS is a pair 〈p, γ〉 where p ∈ P and γ is an n-store with links. We
have a transition 〈p, γ〉 →֒ 〈p′, γ′〉 iff we have (p, a, o, p′) ∈ D, top1(γ) = a and γ′ = o(γ).

Generating Trees

CPDSs may be defined as generators of trees using an extension similar to the higher-order
PDS case. From a CPDS A, we can construct a recursion scheme RA which generates the
same trees. Intuitively, a configuration 〈q, γ〉 where top1(γ) = a has a link to an order-e stack
is represented by a term of the form,

F a,e
q

−→
φc
−→
φn . . .

−→
φ1

The vector of terms
−→
φc contains information about the state of the stack after a collapse is

performed, and the vectors
−→
φn, . . . ,

−→
φ1 correspond to popk operations for n ≤ k ≤ 1.

Theorem 2.8.8 ([76]). Let A be a tree-generating CPDS, and let RA be the recursion scheme
determined by A. Then the CPDS and the recursion scheme generate the same trees.

In the other direction, we can use a collapsible pushdown system AR to evaluate a recursion
scheme R. The CPDS computes traversals over the computation tree of R based on a game
semantics interpretation.

Theorem 2.8.9 ([76]). For every order-n recursion scheme R, AR computes all paths in the
tree generated by R.

MSO Decidability

The above connections with recursion schemes imply CPDSs have a decidable MSO-theory
when viewed as generators of trees. However, the same is not true for graphs. Consider the
following CPDS Agrid:

(q0, , push2, q1) (q1, , push1
a, q0) (q2, \⊥, collapse, q0)

(q1, , push1
b , q2) (q2, \⊥, pop1, q1)

59

Section 2.9. Global Model-Checking

• • • • • • · · ·

• • • · · ·

• • • · · ·

• • · · ·

• · · ·

t a t a t

b

1

b

1

1

b

1

1

1

0 0 0
0 0

0

Figure 2.21: The configuration graph of Agrid

where \⊥ indicates any non-⊥ character. From the configuration 〈q0, [[⊥]]〉 the CPDS gener-
ates the graph in Figure 2.21. We use the abbreviations t, a, b, 0, 1 for the operations push2,
push1

a, push1
b , collapse and pop1 respectively. We take the following inverse rational mapping

of the graph generated by Agrid:

h(A) = 1̄∗b̄atb1∗ ∩ (0ta0̄ ∪ 1̄0ta0̄1)
h(B) = 1

The interpretations obtains the half-grid shown in Figure 2.22. Since this graph is known to
have an undecidable MSO-theory, it follows that the graph generated by the CPDS Agrid also
has an undecidable MSO-theory. Hence, CPDSs provide a rare example of a structure with
a decidable MSO-theory over trees, but an undecidable MSO-theory over graphs.

2.9 Global Model-Checking

Whilst a local model-checking algorithm determines whether a property is met from a des-
ignated initial state, global model-checking constructs the complete set of states satisfying a
property. Global model-checking is useful when results are to be combined, and is the main
focus of our research. In the remaining chapters we discuss saturation-based global model-
checking. Saturation techniques represent a set of pushdown configurations using automata.
Beginning with an initial automaton, transitions are added until a fixed point is reached.

In Chapter 3 we describe previous global model-checking results for reachability and Büchi
specifications. Chapter 4 presents a new algorithm for the global model-checking problem over
pushdown systems with parity conditions. This is the first contribution of the thesis. This
chapter also describes several existing algorithms, and provides a brief comparison of the
techniques.

60

Section 2.10. Summary

• • • • · · ·

• • • • · · ·

• • • · · ·

• • · · ·

• · · ·

A A A

A A A

A A

A

B B B B

B B B

B B

B

Figure 2.22: The infinite half-grid

In chapter 5 we present the main contribution of the thesis. This is a saturation-based
global model-checking algorithm for reachability analysis of higher-order pushdown systems
with an arbitrary number of control states. This result was presented in FoSSaCS 2007 [78].
We present a number of applications of this result in Chapter 6.

2.10 Summary

In this chapter we have given an overview of current research into formal methods for software
verification. We have described the basic finite state framework and extensions to infinite
state systems using the pushdown paradigm. We described order-1 pushdown systems and
their related formalisms, as well as several kinds of model-checking technique. We then
discussed the general case of higher-order pushdown systems and their connections to the
Caucal hierarchy and recursion schemes. Finally we gave an account of collapsible pushdown
systems: a further generalisation of pushdown systems.

61

Chapter 3

Saturation Methods for Global
Model-Checking

That the set of configurations reachable by a pushdown system can be recognised by a finite
automaton was first shown by Büchi [107]. In 1996/7, Bouajjani, Esparza and Maler intro-
duced the saturation method for global model-checking pushdown systems with reachability
constraints [3, 8]. This technique was also discovered independently by Finkel, Willems and
Wolper [15] in 1997 and is based on a string-rewriting algorithm due to Book and Otto [119].
In 2000, Esparza et al. improved the efficiency of their algorithm [65]. These results formed
the basis of Bouajjani and Meyer’s algorithm for higher-order pushdown automata [2]. We
give an account of the saturation results in Section 3.1 and Section 3.3 respectively. In Chap-
ter 5 we extend these techniques to the case of higher-order pushdown systems with a finite
number of control states. In Section 3.2 we describe Cachat’s extension of the order-1 algo-
rithm to Büchi games [128]. This algorithm is extended to the case of order-1 parity games
in Chapter 4.

In Section 3.4 we describe an alternative notion of regularity introduced by Carayol [11].

3.1 Order-1 Reachability Analysis

The saturation approach to pushdown model-checking was introduced by Bouajjani, Esparza
and Maler [3, 8] and independently by Finkel, Willems and Wolper [15]. This is a backwards-
reachability algorithm that computes, given a set of configurations CInit, the set of configu-
rations Pre∗(CInit) that can reach a configuration in CInit in a finite number of steps.

3.1.1 Multi-Automata

Possibly infinite sets of pushdown configurations can be represented using automata. Tran-
sitions are then added to the automaton representing reverse applications of the available
pushdown commands. The automaton eventually becomes saturated and the algorithm ter-
minates. The automata accept finite words, which represent order-1 stacks, over the finite
alphabet Σ. We have an initial state for each control state of the pushdown automaton. A
configuration 〈p, [w]〉 is accepted if, from the appropriate initial state, the word w is accepted.
Since the state-set and alphabet are fixed and finite, there is a bound on the number of tran-
sitions q

a
−→ q′. Hence, there is a limit on the number of transitions that the algorithm can

63

Section 3.1. Order-1 Reachability Analysis

q1

q2

a

b

a

a

b

Figure 3.1: A multi-automaton Aeg accepting 〈p1, [aa∗]〉, 〈p2, [ba∗]〉 and 〈p2, [ba∗ba∗]〉

add.

Definition 3.1.1. Given an order-1 pushdown system (P,D, Σ) with P = {p1, . . . , pz}, a
multi-automaton A is a tuple (Q, Σ, ∆, I,F) where Q is a finite set of states, ∆ ⊆ Q×Σ×Q
is a set of transitions, I = {q1, . . . , qz} ⊆ Q is a set of initial states and F ⊆ Q is a set of final
states.

Let q
a

−→ q′ if (q, a, q′) ∈ ∆. Furthermore, for a0 . . . ah ∈ Σ∗, let q
a0...ah−−−−→ q′ if there is a

path,
q

a0−→ q1
a1−→ · · ·

ah−→ q′

A configuration 〈pj , [w]〉 is accepted by A iff we have a run qj w
−→ qf with qf ∈ F .

Figure 3.1 shows a multi-automaton Aeg accepting configurations of the form 〈p1, [aa∗]〉,
〈p2, [ba∗]〉 and 〈p2, [ba∗ba∗]〉.

3.1.2 Backwards Reachability

Given an order-1 pushdown system (P,D, Σ) and a multi-automaton A, we can construct a
multi-automaton APre such that L(APre) = Pre∗(L(A)). The algorithm proceeds by updat-
ing the automaton A to obtain the set of configurations that can reach A after an application
of a command d ∈ D. We begin by presenting a näıve approach that will not terminate. This
approach illustrates the principles guiding the addition of new transitions, although we do
not fix the state-set.

Suppose d = (p1, a, pop1, p
2). In this case, any configuration of the form 〈p1, [aw]〉 where

w is accepted from q2 in A should be accepted by the updated automaton. This is because,
by taking a d-transition, we will reach a configuration 〈p2, [w]〉 ∈ L(A). The automaton Aeg

updated in this way is presented in Figure 3.2.
If d = (p2, a, pushba, p

2) then any configuration of the form 〈p2, [aw]〉 where baw is accepted
from q2 in A can reach A in one step. The push command replaces the top character a with
the word ba. In reverse, the word ba is replaced by the character a. Therefore, the update
adds a transition from q2 which jumps over any run over ba from q2. This update is illustrated
in Figure 3.3.

If we were to form the union of A and the automata obtained by the two updates, we
would have the set of configurations that can reach L(A) in one step or fewer. We could
iterate this procedure, updating the new automaton, to produce the set of configurations
that can reach L(A) in two steps or fewer, and so on to infinity.

64

Section 3.1. Order-1 Reachability Analysis

q1

q2

a

a

b

a

a

b

Figure 3.2: The automaton Aeg updated by the command (p1, a, pop1, p
2)

q1

q2

a

a

b

a

a

b

Figure 3.3: The automaton Aeg updated by the command (p2, a, pushba, p
2)

65

Section 3.1. Order-1 Reachability Analysis

q1

q2

b a

a

a, b

a

a

b

Figure 3.4: The updated automaton Aeg without new states

Termination

This procedure will not terminate: there is no bound on the number of steps required to meet
L(A). To obtain a terminating algorithm we observe that we could have obtained the set of
configurations that can reach L(A) in one step by refraining from adding new states to A. In
the case of Aeg the result is given by the transitions in Figure 3.4 that are not dashed.

Suppose we also had a command (p2, b, pop1, p
1). This would result in the addition of

the dashed arrow in Figure 3.4. The automaton no longer accepts configurations that reach
L(Aeg) in one step or fewer: a cycle has been introduced. The automaton now accepts
configurations whose stacks begin with an alternating sequence of a and b characters.

These stacks, however, are not spurious. For example, given a configuration of the form
〈p1, [(ab)∗aa∗]〉, the cycle corresponds to repetition of the commands:

〈p1, [(ab)∗aa∗]〉
(p1,a,pop1,p2)
−−−−−−−−→ 〈p2, [b(ab)∗aa∗]〉

(p2,b,pop1,p1)
−−−−−−−−→ 〈p1, [(ab)∗aa∗]〉

Hence, we can apply the following sequence of commands to reach a configuration 〈p1, [aa∗]〉 ∈
L(A):

〈p1, [(ab)∗aa∗]〉
(p1,a,pop1,p2)
−−−−−−−−→ · · ·

(p2,b,pop1,p1)
−−−−−−−−→ 〈p1, [aa∗]〉

Termination of the algorithm follows directly because we do not add new states, which leads
to a finite bound on the number of transitions that can be added. A more illuminating
explanation is that the introduction of cycles captures unbounded sequences of commands.
Previously, an unbounded number of iterations of the algorithm would have been required.

The Algorithm

We define the algorithm more formally. Firstly we define Td(A) for a command d ∈ D and a
multi-automaton A. This operation performs a single update for a given command d. Recall
pop1 = pushε.

Definition 3.1.2. Given a pushdown command d = (qj , a, pushw, qk) and a multi-automaton
A = (Q, Σ, ∆, I,F), we define Td(A) = (Q, Σ, ∆′, I,F) where,

∆′ = ∆ ∪ { (qj , a, q) | qk w
−→ q in A }

66

Section 3.2. Winning Regions of Order-1 Büchi Games

Given a pushdown system (P,D, Σ) and a multi-automaton A, let A0 = A. For D =
{d1, . . . , dh}, we define Ai+1 = Td1(. . . Tdh

(Ai)). There is a fixed point Af = Af+1 when the
automaton becomes saturated. Define APre = Af .

Theorem 3.1.1 ([3]). Given a PDS (P,D, Σ) and a regular set of configurations recognized
by a multi-automaton A, we can construct an automaton APre recognizing Pre∗(L(A)).

3.1.3 Extension to Alternating Pushdown Systems

Bouajjani, Esparza and Maler extend their algorithm to the case of alternating pushdown
systems. This algorithm uses a generalisation of multi-automata: alternating multi-automata.

Definition 3.1.3. Given an order-1 pushdown system (P,D, Σ) with P = {p1, . . . , pz}, an
alternating multi-automaton A is a tuple (Q, Σ, ∆, I,F) where Q is a finite set of states,
∆ ⊆ Q × Σ × 2Q is a set of transitions, I = {q1, . . . , qz} ⊆ Q is a set of initial states and
F ⊆ Q is a set of final states.

We define q
a

−→ Q if (q, a, Q) ∈ ∆. Furthermore, q
ε

−→ {q} and q
aw
−→ Q1 ∪ · · · ∪ Qh if

q
a

−→ {q1, . . . , qh} and qk
w

−→ Qk for all 1 ≤ k ≤ h. A configuration 〈pj , [w]〉 is accepted by
the automaton iff qj w

−→ Qf with Qf ⊆ F .
We are now ready to generalise the algorithm given above. We begin by extending the

definition of Td(A) for a command d ∈ D and an alternating multi-automaton A. In the non-
alternating case, a command (pj , a, pushw, pk) added an a-transition from pj which jumped
over a run on w from pk. This represents the backwards application of the pushw to the stack:
the top word w is replaced by the character a. The same principle applies in the alternating
case, except the alternation of the pushdown automaton is mimicked by the alternation of
the multi-automaton.

Definition 3.1.4. Given a pushdown command d = (qj , a, OP) with,

OP = {(pushw1 , p
k1), . . . , (pushwh

, pkh)}

and a multi-automaton A = (Q, Σ, ∆, I,F), we define Td(A) = (Q, Σ, ∆′, I,F) where,

∆′ = ∆ ∪ { (qj , a, Q) | (1) }

and (1) requires, for all 1 ≤ i ≤ h, qki
wi−→ Qi and Q = Q1 ∪ · · · ∪ Qh.

Let A0 = A. For D = {d1, . . . , dh}, we define Ai+1 = Td1(. . . Tdh
(Ai)). Let APre be the

fixed point of the sequence generated.

Theorem 3.1.2 ([3]). Given an APDS (P,D, Σ) and a regular set of configurations recog-
nized by an alternating multi-automaton A, we can construct an automaton APre recognizing
Pre∗(L(A)).

3.2 Winning Regions of Order-1 Büchi Games

A Büchi game over a PDS is defined as follows:

Definition 3.2.1. Given an order-1 PDS (P,D, Σ), an order-1 Pushdown Büchi Game
(PBG) (P,D, Σ,R) is given by a partition P = PA ⊎ PE and a set R of fair configurations.

67

Section 3.2. Winning Regions of Order-1 Büchi Games

Play proceeds as in the case of pushdown reachability games. A play c0, c1, c2, . . . is a win
for Élöıse iff there exists i ≥ 0 such that ci ∈ CA and Abelard is unable to move, or for all
i ≥ 0, there exists j ≥ i such that cj ∈ R — that is, the set of fair configurations R is visited
infinitely often.

Élöıse’s winning region admits a fixed point characterisation. We first define Attr+
E(R).

This is the set of configurations from which Élöıse can force play to reach R in at least one
move.

X0(T) = ∅
Xi+1(T) = Xi(T) ∪ { c ∈ CE | ∃c′.c →֒ c′ ∧ c′ ∈ T ∪ Xi(T) }

∪ { c ∈ CA | ∀c′.c →֒ c′ ⇒ c′ ∈ T ∪ Xi(T) }
Attr+

E(T) =
⋃

i≥0 Xi(T)

Élöıse’s winning region BüchiE(R) can be defined as follows:

Büchi0(R) = CΣ
n

Büchiα+1
E (R) = Attr+

E(BüchiαE(R) ∩R) for any ordinal α
BüchiλE(R) =

⋂
α<λ BüchiαE(R) for a limit ordinal λ

There exists an ordinal α such that BüchiαE(R) = Büchiα+1
E (R). We write BüchiE(R) to

denote this fixed point. BüchiE(R) is the winning region for Élöıse.
The current definition of pushdown Büchi games permits R to be any regular set of

configurations. In fact, we can restrict our attention to the case of simple sets of the form
F × CΣ

1 where F ⊆ P. The reduction is similar to the reductions used to test regular stack
properties in Section 2.7.1.

Proposition 3.2.1 ([128]). Given a PBG G = (P,D, Σ,R) with a regular set of configura-
tions R, we can reduce to the case of simple goal sets by proceeding to a new PBG G × AR

where AR is a finite automaton recognising R.

This result is obtained by taking AR to be a finite deterministic automaton that accepts
stacks from bottom to top. In the product game, this automaton can keep track of the current
stack contents (using the stack to store backtracking information to aid in the handling of
pop1 operations). The simple set R′ is the set of configurations containing an accepting state
of AR.

In the sequel, we assume that all sets R are simple.

3.2.1 The Näıve Algorithm

To compute Élöıse’s winning region, we need to calculate the greatest fixed point of,

X 7→ Attr+
E(X ∩R)

Hence, we begin with an automaton representing the set of all configurations. This automaton
is shown in Figure 3.5. The greatest fixed point is the result of repeated intersections with the
set R and applications of a reachability algorithm. This process is shown in Figures 3.6 to 3.8.
The transitions added during the reachability step (Figure 3.7) are for illustrative purposes,
and do not correspond to a particular Büchi game.

The algorithm begins by intersecting the current automaton with R. This is done by
adding a new set of initial states which have ε-transitions to the corresponding previous

68

Section 3.2. Winning Regions of Order-1 Büchi Games

q∗f Σ

Figure 3.5: The automaton accepting CΣ
1

q1

q∗f

q2

Σ

ε

Figure 3.6: Intersecting with R using temporary ε-transitions

q1

q∗f

q2

Σε

a, b

a, c

b

Figure 3.7: Computing the attractor using the reachability algorithm

q1

q∗f

q2

Σ

ε a, b

a, c

b

Figure 3.8: Erasing the temporary transitions and repeating the iteration

69

Section 3.2. Winning Regions of Order-1 Büchi Games

q1

q∗f

q2

Σ

a, b

a, c

b

b

a

b

a, c

Figure 3.9: An automaton before pulling back the new transitions

initial state. These transitions are only added if the control state belongs to the set R. This
is shown in Figure 3.6. We then perform reachability analysis on the automaton obtained,
leading to Figure 3.7.

So far, we have constructed Attr∗E(X ∩R). By removing the ε-transitions added initially
we ensure that all paths to q∗f contain at least one transition added during the reachability
analysis. Since these transitions are derived from some command d, the set represented is the
set of configurations that can reach X ∩R in one step or more. That is Attr+

E(X ∩R). The
algorithm is then iterated, as shown in Figure 3.8.

3.2.2 Termination

The algorithm in the previous section computes the greatest fixed point characterising Élöıse’s
winning region in a PBG. However, in general, we require a transfinite number of iterations
to reach this fixed point. (An example is given in Section 3.4.4 of Cachat’s thesis [128]).
Intuitively, this follows from the unbounded state-set, which does not allow the transitions
to become repetitive. By introducing a simple, although unintuitive, speed-up technique,
Cachat is able to provide a terminating algorithm.

After each iteration of the algorithm, let I ′ be the new set of initial states and I be the
previous set. After the first iteration, we pull back any transitions from I ′ to I, replacing
them with transitions from I ′ to I ′. Figure 3.9 and Figure 3.10 illustrate this process for an
imagined continuation of the example in the previous section (in this example, only a pull
back after the second iteration is shown. In the full algorithm, a pull back is also performed
after the first iteration). Pulling back the new transitions has the effect of introducing cycles
and making I unreachable. Therefore, I can be removed, and thus, the state-set is, in some
sense, constant. By proving that the number of transitions between successive generations of
initial states is decreasing, it follows that a fixed point will be reached in a finite number of
steps.

3.2.3 The Algorithm

We present Cachat’s algorithm formally. The algorithm proceeds via a number of iterations.
At the beginning of each iteration, a new generation of initial states is introduced. Hence,
we use a subscript i to indicate the generation a state belongs to. That is, a control-state pj

70

Section 3.2. Winning Regions of Order-1 Büchi Games

q1

q∗f

q2

Σ

b

b

a

a, c

Figure 3.10: An automaton after pulling back the new transitions

initially corresponds to an initial state qj
0. At the ith iteration, the control state corresponds

to the state qj
i . Our initial automaton contains a single state q∗f which is accepting. We define

qj
0 = q∗f for all j. We need two operations on sets of states:

φ(Q) = { qj
i | qj

i+1 ∈ Q } ∪ { q∗f | q∗f ∈ Q }

πi(Q) = { qj
i | qj

k ∈ Q for 0 > k ≤ i } ∪ { q∗f | q∗f ∈ Q }

Given a PBG G = (P,D, Σ,R) with R = F×CΣ
1 for some F ⊆ P, we construct an automaton

AB accepting BüchiE(R). This automaton is a fixed point of a sequence (Ai
B)i≥0 with A0

B

defined as follows. The state-space of A0
B is a subset of { q1

i , . . . , q
m
i | i > 0 } ∪ {q∗f} where

P = {p1, . . . , pm}. The transition relation is { (q∗f , a, q∗f) | a ∈ Σ }. We define Ai+1
B = TB

D (Ai
B)

where TB
D is defined:

Definition 3.2.2. Given a multi-automaton Ai
B we construct Ai+1

B = TB
D (Ai

B) in several
stages:

• Add an ε-transition from qj
i+1 to qj

i for all pj ∈ F .

• Perform reachability analysis as in Section 3.1.3.

• Remove the ε-transitions.

• Replace each transition qj
i+1

a
−→ Q with qj

i+1
a

−→ πi+1(Q).

The algorithm terminates when,

qj
i+1

a
−→ Q ⇐⇒ qj

i
a

−→ φ(Q)

At this point, we set AB = Ai+1
B .

Notice that the above algorithm doesn’t, on first appearances, take into account whether a
control state belongs to Élöıse or Abelard. This is because the manipulations performed in the
above definition are insensitive to the ownership of the control state. However, the algorithm
requires a call to the reachability algorithm of Section 3.1.3 for alternating pushdown systems
and it is this algorithm that is takes into account the owner of the control states.

Theorem 3.2.1 ([128]). The automaton AB recognises BüchiE(R) — Élöıse’s winning region
of the PBG G = (P,D, Σ,R).

71

Section 3.3. Context-Free Higher-Order Pushdown Systems

The automaton B1 The automaton B2

q0 qf q0 qf

q0 qf
B1 B2

a
a

b
b

Figure 3.11: A level 2 nested store automaton Aab accepting 〈q0, [[a
+][b+]]〉

3.3 Context-Free Higher-Order Pushdown Systems

Global reachability analysis of higher-order pushdown systems with a single control state p
was considered by Bouajjani and Meyer in 2004 [2]. Their approach applies similar techniques
to those described above. In the sequel, we assume n > 1.

3.3.1 Nested Store Automata

The key difference between the two methods is the representation of sets of configurations.
Bouajjani and Meyer introduce nested store automata to recognise higher-order stores. Tran-
sitions of a level n automaton are labelled with level (n−1) store automata. Level 1 automata
are finite word automata. The nesting reflects the nested structure of a higher-order store.

Definition 3.3.1 ([2]). A level 1 nested store automaton is a finite automaton whose
transitions have labels in Σ. A nested store automaton of level n ≥ 2 is a finite automaton
whose transitions are labelled by level (n − 1) nested automata over Σ.

A transition labelled by an automaton B is denoted q
B
−→ q′. The language accepted by

a level n nested store automaton A = (Q, Σ, ∆, q0, qf) where qf is the designated final state,
is defined recursively,

L(A) = { [L(A1) . . .L(Al)] | q0
A1−→ . . .

Al−→ qf }

Proposition 3.3.1 ([2]). The store languages accepted by nested store automata are the
regular store languages.

Figure 3.11 shows an order-2 nested store automaton Aab accepting configurations of the
form 〈q0, [[a

+][b+]]〉.

3.3.2 Backwards Reachability

Given an order-n pushdown system with a single control state, and a level n nested store
automaton A, we can compute the set Pre∗(A) using the following algorithm. Since all
commands are of the form (p, a, o, p) we omit the control state and write (a, o) where o is
pushw, pushl or popl for 2 ≤ l ≤ n and w ∈ Σ∗.

The algorithm follows similar principles to the order-1 case: transitions are added to
reflect a reverse application of a command d. When A is a level n nested automaton and o

72

Section 3.3. Context-Free Higher-Order Pushdown Systems

q0 qf

B1

B2

Td(B1)

Figure 3.12: Td(Aab) for d = (a, o) where o is not pushn or popn

q0 qf
B1 B2

Ba
n−1

Figure 3.13: Td(Aab) for d = (a, pop1)

is pushw, pushl or popl for l < n, then, for each initial transition q0
B
−→ q of A, we introduce

a new transition q0
B′

−→ q where B′ is the automaton B updated to reflect the operation
o. Just as o(γw) for an order-n store γw is o(γ)w, the update is passed to the automata
recognising the topn stack of the store. A pushw command is consequently passed to a level
1 store automaton, which is updated in the same way a pushw command was handled in the
order-1 case. This update is illustrated in Figure 3.12.

The processing of a popn command is analogous to the treatment of a pop1 command.
A command (a, popn) removes the topn stack provided its top1 character is a. Hence, when
applied in reverse, the command will add a new order-(n−1) stack whose top1 character is a.
Let Ba

n−1 be an (n−1)-store automaton accepting all order-(n−1) stacks with top1 element a.

A (a, popn) update adds the transition q0

Ba
n−1

−−−→ q0 — corresponding to an arbitrary number
of applications of the command. Figure 3.13 shows the automaton Aab after updating for a
command (a, popn).

Finally, an (a, pushn) command duplicates the topn stack, provided the top1 character is
a. When applied backwards, the two topn stacks must be identical. These two stacks are

replaced by a single stack which is also identical. Hence, for every run q0
B1−→ q′

B2−→ q we

add a transition q0
B
−→ q where B = Ba

n−1 × B1 × B2. Any stack accepted by this transition
must also be able to appear as the two topn stacks, and have an a as its top1 character. This
is shown in Figure 3.14.

q0 qf
B1 B2

Ba
n−1 × B1 × B2

Figure 3.14: Td(Aab) for d = (a, pushn)

73

Section 3.3. Context-Free Higher-Order Pushdown Systems

The Algorithm

As in the previous algorithms, we define Td, which updates an automaton to reflect a reverse
application of a command d. We iterate this update until a fixed point is reached.

Definition 3.3.2. Given an order-n pushdown command d = (a, o) and a level n nested store
automaton A = (Q, Σ, ∆, q0, qf), we define Td(A) = (Q, Σ, ∆′, q0, qf) where,

∆′ = ∆ ∪ { (q0, a, q) | q0
w

−→ q in A }

when n = 1 and o = pushw. Otherwise n > 1 and we have,

∆′ = ∆ ∪ { (q0, B, q) | (1) }

where (1) requires,

• If o = popn, then q = q0 and B = Ba
n−1.

• If o = pushn, then

q0
B1−→ q′

B2−→ q

is a path in A and B = Ba
n−1 × B1 × B2.

• Otherwise, q0
B1−→ q is a path in A and B = Td(B1).

Given a higher-order pushdown system ({p},D, Σ) and a multi-automaton A, let A0 = A.
For D = {d1, . . . , dh}, we define Ai+1 = Td1(. . . Tdh

(Ai)). Let APre be the fixed point of this
sequence.

Theorem 3.3.1 ([2]). Given an order-n higher-order pushdown system with a single control
state, and a regular set of n-stores S, the set Pre∗(S) is regular and effectively computable.

Termination in this case is more subtle. Since the number of level (n− 1) store automata
is unbounded, we need to argue that the nature of the algorithm limits the automata that
may label an edge of Ai for some i ≥ 0.

Each update may entail the addition of a new automaton. This automaton will be the
product of several existing automata. Hence, the state-set of all level k automata can be
considered a sub-set of the product Q1 × . . . ×Ql where A1, . . . ,Al are the level k automata
appearing in A (or of the form Ba

k) and Q1, . . . ,Ql are their respective state-sets. Hence, the
state-set is bounded.

Since Σ is finite, we immediately obtain a bound on the level 1 nested store automata
that may occur. This entails a bound on the level 2 nested store automata. Hence, by an
inductive argument, the number of level (n−1) automata is bounded and the algorithm must
terminate.

Lemma 3.3.1 ([2]). For all level n nested store automata A and higher-order pushdown
systems ({p},D, Σ), the sequence (Ai)i≥1 defined with respect to A eventually stabilizes: ∃k ≥
0.∀k′ ≥ k.Ak = Ak′, which implies L(Ak) =

⋃
i≥0 L(Ai).

74

Section 3.4. Carayol Regularity

3.4 Carayol Regularity

The algorithms in the previous sections demonstrate that the set Pre∗(S) for a regular set of
configurations S is itself regular. It is well know that the set Post∗(S) is also regular in the
order-1 case [65]. However, this property does not hold for higher-order stacks.

Proposition 3.4.1 ([2]). Given an order-n pushdown automaton and a regular set of n-stores
S, the set Post∗(S) is in general not regular. This set is a context-sensitive language.

For example, consider the following context-free order-2 PDS:

(⊥, pusha) (a, pusha) (a, pushb) (b, push2)

From an initial configuration 〈p, [[⊥]]〉, the automaton can push an arbitrary number of a
characters onto the stack. It can then push a b character. At this point, the only operation
available is push2. Hence, the set of reachable configurations is the set containing 〈p, [[a∗⊥]]〉
and 〈p, [[bam⊥]+]〉 where m ≥ 1. An automaton recognising the set would need to be able
to count an arbitrary number of a characters to ensure m characters occur in each order-1
stack. The set is not regular.

Motivated by this problem, Carayol introduced an alternative notion of regularity [11].
Rather than representing the characters and structure of the stack directly, a store is repre-
sented by the sequence of stack operations required to construct it. In the example above,
the set of configurations can be represented in a straightforward manner:

(push⊥; (pusha)
∗) ∪

(
push⊥; (pusha)

+; pushb; (push2)
∗
)

Carayol permits a slightly different set of pushdown operations.

pusha[a1 . . . am]1 = [aa1 . . . am]1
popa[aa1 . . . am]1 = [a1 . . . am]1
copyk[γ1 . . . γm]k+1 = [γ1γ1 . . . γm]k+1

copyk[γ1γ1 . . . γm]k+1 = [γ1 . . . γm]k+1

and the test Ek, which asserts that the topmost k stack is empty. This test replaces the ⊥
character. These operations are more symmetrical than the standard push and pop operations,
but they do not affect expressive power. Let OC

1 = { pusha, popa | a ∈ Σ } and OC
n+1 =

OC
n ∪ {En, copyn, copyn}.

Definition 3.4.1. A set of order-n stacks is C-regular iff it can be represented by a regular
language L ⊆ (OC

n)∗ applied to the empty stack [ε]n. We write Reg(S) to denote the regular
subsets of S∗ for a set S.

3.4.1 Normal Form

C-regular expressions have a normal form. In the order-1 case, the normal form can be consid-
ered loop-free. For example (pusha; pushb; popb; pushc) contains a loop since the popb negates
the pushb operation, resulting in the stack obtained after the pusha . The sequence in normal
form is (pusha; pushc). For order-1, a result due to Büchi states that all minimal sequences
of a C-regular language are also regular [107]. Hence, all order-1 C-regular expressions have
a normal form.

75

Section 3.5. Summary

In the higher-order case, sequences can not be loop-free. This is because we may use a
copyk operation to perform a test on the contents of the top most k stack. If this test is
passed, a copyk is performed and evaluation continues from the stack constructed before the
test began. For example, a test may take the form copyk; L; copyk where L is a regular subset
of OC

k−1. For a C-regular language L, a test may be interpreted as an order-k id operation,
restricted to the set L(L), denoted idk|L.

Definition 3.4.2. The set Normk+1 of C-regular expressions in normal form is the set,

Normk+1 = Normk; Reg((copyk; Rewritek)
∗)

where Rewritek is the set of finite unions of U ; TL; V where TL is a test with L ∈ Normk,
interpreted as idk|L, U ∈ Popk and V ∈ Pushk with,

Last(U) ∩ First(V) = ∅

Last(L) ∩
(
Last(U) ∪ First(V)

)
= ∅

Finally,
Popk+1 = Rewritek; Reg((copyk; Rewritek)

∗)
Pushk+1 = Rewritek; Reg((copyk; Rewritek)

∗)

An order-(k + 1) expression in normal form begins by constructing an order-k stack. The
full stack is then constructed by repeatedly performing a copyk operation to add a new k
stack, and then rewriting the stack to the desired contents. Rewriting a k stack is done
in three stages: elements of the stack are removed, a test may be performed on the stack
contents, and then elements are added to the stack to complete the rewriting. The conditions
on U, V and L ensure that the three stages can be combined.

Carayol introduces k-automata, which are automata labelled by OC
k subject to a number

of constraints. These automata provide an alternative characterisation of normal form.

Theorem 3.4.1 ([11]). Every k-regular set can be accepted by a k-automaton. Hence, we
have that L(Reg(OC

k)) = L(Reg(Normk)) is an effective boolean algebra.

3.4.2 MSO-Definability

Carayol’s notion of regularity captures MSO-definability over higher-order stacks. The tree
∆k

2 is the canonical structure associated with order-k stacks. Figure 3.15 shows the order-2
case.

Proposition 3.4.2 ([11]). The set of order k stacks MSO-definable in ∆k
2 are the C-regular

sets, and the sets of relations MSO-definable in ∆k
2 are the relations in Rewritek.

In contrast, we will see in Chapter 4 that the notion of regularity introduced by Bouajjani
and Meyer (in Section 3.3) capture the µ-calculus-definable sets.

3.5 Summary

In this chapter we described saturation methods for reachability analysis of subclasses of
higher-order pushdown automata. These techniques were introduced by Bouajjani, Esparza

76

Section 3.5. Summary

[[]] [[][ba]]

[[a]] [[b]] [[ba][b]] [[ba][a]]

...
...

[[bb]] [[ba]] [[ba][ba]] [[ba][bb]]

...
...

...
...

a b b a

b a a b

copy1

Figure 3.15: The canonical structure ∆2
2 associated with order-2 stacks

and Maler for pushdown automata [3, 8] and by Finkel, Willems and Wolper [15]. The algo-
rithm begins with an automaton representing a set of configuration and adds new transitions
corresponding the pushdown commands until saturation.

These techniques were adapted to the case of higher-order pushdown systems with a single
control state by Bouajjani and Meyer [2]. The main innovation of this approach is a form
of nested store automata for representing sets of configurations. The transitions of a nested
store automata are automata themselves. This nesting reflects the structure of higher-order
stores. Similar saturation techniques can be applied to the store automata to compute the
set of configurations that can reach the set defined by the initial automaton.

Finally we discussed the limitations of the notion of regularity used by Bouajjani and
Meyer. In particular, the set Post(S) of a regular set of configurations S is not regular.
Carayol’s notion of regularity [11] addresses this problem. Sets of configurations are denoted
by the stack operations required to construct them. Whilst Bouajjani and Meyer’s notion of
regularity captures µ-calculus definability, C-regularity captures MSO-definability.

77

Chapter 4

Order-1 Pushdown Parity Games

In this chapter we propose a new algorithm for computing the winning region (i.e. Élöıse’s) of
a pushdown parity game. Our technique is a generalisation of Cachat’s saturation technique
— described in Section 3.2 — for solving Büchi games [128], which is itself a generalisation
of the original saturation method for reachability analysis due to Bouajjani et al. However,
we believe our proofs to be cleaner and more complete than Cachat’s Büchi games proof.

Using a modal µ-calculus formula (that characterises the winning region) as a guide, we it-
eratively expand or contract an initial alternating multi-automaton until we have constructed
an automaton that recognises precisely the winning region.

As illustrated in Section 4.2, we think our iterative algorithm is relatively simple to de-
scribe; it follows, in outline, the standard pen-and-paper approach to evaluating modal µ-
calculus formulae (though an important difference here is that the evaluation is over an infinite
state-transition graph). The main conceptual contribution of our work lies in the identifica-
tion and use of the valuation soundness and valuation completeness conditions, which play a
pivotal role in the correctness proofs of the algorithm.

In the remainder of the chapter we describe several existing approaches — due, respec-
tively, to Vardi et al. [91, 87, 86], Cachat [128] and Serre [93] — to computing the winning
regions of an order-1 pushdown parity game. In Section 4.6.4 we compare the approaches with
our own. Finally, in Section 4.7 we describe Serre’s generalisation of his order-1 technique
to pushdown systems of arbitrary order [12]. The main advantages of our approach are that
it is simple, direct, and permits some simple optimisations that prevent the algorithm from
being immediately exponential.

The algorithm presented computes the winning regions of a parity game by evaluating a
modal µ-calculus formula. We believe it is possible to extend this approach the calculate the
set of states satisfying an arbitrary modal µ-calculus formula. However, such an extension will
require a much more careful management of the introduction of new states and projections.
Hence, it is left for future work. Bouajjani et al. give an algorithm for computing the
set of configurations satisfying an alternation-free modal µ-calculus formula [3]. An order-n
generalisation of this algorithm is described in Section 6.3.

4.1 Preliminary Definitions

We begin by recalling the definition of order-1 pushdown parity games. A pushdown parity
game is played between two opponents, Abelard and Élöıse. The control states of a push-

79

Section 4.1. Preliminary Definitions

down system are divided between the two players. A play begins from some configuration
〈p, [aw]〉. The player controlling p chooses a command (p, a, pushw′ , p′) ∈ D and play moves
to 〈p′, [w′w]〉. Then, the player controlling p′ is required to make a move, and so on.

As is standard, we assume a bottom-of-stack symbol ⊥∈ Σ that is neither pushed onto,
nor popped from, the stack. Similarly, we can assume that there exists an available move for
all p ∈ P and a ∈ Σ. Consequently, a move is always possible from any given configuration
and plays are infinite sequences of configurations.

To determine the winner of the game, each control state is given a priority from a set
{1, . . . , m}. The priority of a configuration is the priority of its control state. A priority occurs
infinitely often in a play if there are an infinite number of configurations with that priority.
Élöıse wins the game if the smallest priority occurring infinitely often is even. Otherwise,
Abelard is the winner.

Definition 4.1.1. An order-1 pushdown parity game is a tuple (P,D, Σ, Ω) where P =
PA ⊎ PE is a set of control states partitioned into states belonging to Abelard and states
belonging to Élöıse, Σ is a finite alphabet, D is a set of pushdown commands and Ω : P →
{1, . . . , m} is a function assigning priorities to control states.

The winning region of a pushdown parity game for a given player is the set of all configu-
rations from which that player can always win the game, regardless of the strategy employed
by their opponent.

We can encode Élöıse’s winning region of a game G using the modal µ-calculus. The
following formulation is presented by Walukiewicz [53]:

WE = JµZ1.νZ2. . . . µZm−1.νZm.ϕE(Z1, . . . , Zm)KGV

where m is the maximum parity (assumed even), V is a valuation, and

ϕE(Z1, . . . , Zm) =


E ⇒

∧

c∈{1,...,m}

(c ⇒ 3Zc)


 ∧


¬E ⇒

∧

c∈{1,...,m}

(c ⇒ 2Zc)




where E is an atomic proposition asserting that the current configuration belongs to Élöıse
and, for each 1 ≤ c ≤ m, c is an atomic proposition asserting the priority of the current
control state is c.

Each variable Zc corresponds to a priority c. The odd priorities are bounded by µ operators
which can be intuitively understood as “finite looping”. Dually, even priorities are bounded
by ν operators, which can be understood as “infinite looping”. The formula φE intuitively
asserts that a variable Zc is visited whenever a configuration of priority c is encountered.
Thus the full formula asserts that the minimal priority occurring infinitely often must be
even — otherwise a variable bound by the µ operator would be passed through infinitely
often. It can be shown by a standard signature lemma that Élöıse has a winning strategy
from a configuration satisfying the formula [53]. Furthermore, since the formula’s inverse can
be shown to be a similar formula with µ and ν, and 2 and 3 reversed, it is easy to show that
Abelard has a winning strategy from any configuration not in WE .

80

Section 4.2. An Example

〈p′E , [bΣ∗⊥]〉0 〈p′E , [aΣ∗⊥]〉0

〈pE , [aΣ∗⊥]〉1 〈pA, [aΣ∗⊥]〉1 〈pA, [bΣ∗⊥]〉1

〈pE , [bΣ∗⊥]〉1

Figure 4.1: An example pushdown parity game.

4.2 An Example

We begin with an intuitive explanation of the algorithm by means of an example. Consider the
pushdown game shown in Figure 4.1. The subscripts indicate the priority of a configuration1.
Let pE , p′E ∈ PE and pA ∈ PA.

Élöıse can win from configurations of the form 〈p′E , [aΣ∗⊥]〉0, 〈pE , [aΣ∗⊥]〉1 or 〈p′E , [bΣ∗⊥]〉0.

Élöıse can loop between the last two of these configurations, generating a run with lowest
infinitely-occurring priority 0. From any other configuration, Abelard can force play to a
configuration of the form 〈pA, [bΣ∗⊥]〉1 and generate a run with lowest infinitely-occurring

priority 1. Computing Élöıse’s winning region is equivalent to computing the set of configu-
rations satisfying νZ0.µZ1.ϕE(Z0, Z1). We illustrate how this is done in the following.

To compute a greatest fixed point, we begin by setting Z0 to be the set of all configura-
tions. We then calculate the (automaton that recognises the) configuration-set denotation of
µZ1.ϕE(Z0, Z1) with this value of Z0. The result is the value of Z0 for the next iteration.
After each iteration the value of Z0 will be a subset of the previous value of Z0. This com-
putation reaches a limit when the value of Z0 stabilises i.e. it remains the same from one
iteration to the next. This fixed point is the denotation of the formula.

Computing the least fixed point proceeds in a similar manner, except that the initial
value of Z1 is set to ∅. We then compute the (automaton that recognises the) denotation of
ϕE(Z0, Z1), which gives us the next value of Z1. Dual to the case of greatest fixed points, the
value of Z1 increases with each iteration.

Constructing the Automaton

(In the following, we shall often confuse the denotation of a formula with the automaton that
recognises it, leaving it to the context to indicate which is intended.) We begin by setting Z0 to
the set of all configurations. The alternating multi-automaton recognising all configurations
is shown in Figure 4.22 (assuming, for clarity, the bottom-of-stack symbol ⊥ is guaranteed
to appear only at the bottom of the stack). Given this value of Z0, we now compute the

1In this game our priorities begin at 0. This is for convenience and does not change the algorithm signifi-
cantly.

2This is a simplification of the automaton used in the full algorithm. In particular, there is no alternation
present. This example was deliberately designed to avoid the use of alternation due to the difficulties of cleanly
drawing such automata.

81

Section 4.2. An Example

qE
0

qE′

0
q∗f

qA
0

Σ

Σ

Σ

Σ

qE
0

qE′

0

qA
0

q∗f

qE
1

qE′

1

qA
1

Σ

Σ

Σ

Σ

qE
0

qE′

0

qA
0

q∗f

qE
1

qE′

1

qA
1

Σ

Σ

Σ

Σ

a, b

Figure 4.2: From left to right, the automaton accepting the initial value of Z0; the automa-
ton accepting the initial values of Z0 and Z1; and the automaton after the first round of
reachability analysis.

denotation of µZ1.ϕE(Z0, Z1). The first step is to set the initial value of Z1, which is the
empty set. The corresponding automaton is also shown in Figure 4.2. Observe that we have
a separate set of initial states for Z0 and Z1.

We are now ready to compute ϕE(Z0, Z1) which will be the next value of Z1. This is
a reachability property. In particular, a configuration 〈pj , [aw]〉 with priority c should be
accepted if Élöıse can play - or Abelard must play - a move to some 〈pk, [w′w]〉 ∈ V (Zc). The
result is shown in Figure 4.2.

The new Z1 accepts configurations of the form 〈p′E , [aΣ∗⊥]〉0 or 〈p′E , [bΣ∗⊥]〉0. We can see
this intuitively: there are no configurations of priority 1 since the set Z1 is empty, and all con-
figurations have an outgoing transition. The set Z0 contains all configurations, hence all pri-
ority 0 configurations of the form 〈p′E , [aΣ∗⊥]〉0 or 〈p′E , [bΣ∗⊥]〉0 can perform (p′E , a, pushb, p

′
E)

or (p′E , b, pusha, pE) respectively to reach Z0.
Observe that the computation of the new automaton has only added new transitions.

It can be shown that, when computing a least fixed point, each generation of initial states
has more transitions than the previous generation. In this example the number of possible
transitions is finite since all transitions go to q∗f . Therefore, the automaton must eventually
become saturated, and the computation will terminate. In the full algorithm, transitions are
projected3 to ensure that the previous generation of initial states is not reachable. Hence, the
number of reachable states is finite. When computing a greatest fixed point, termination can
be proved by a dual argument: we begin with an automaton containing all transitions. At
each stage, some transitions are removed. The algorithm terminates when no more transitions
can be removed.

We now compute the next iterate of Z1. We add a new set of initial states as before, and
perform another round of reachability analysis. Because the Z1 input to this procedure is no
longer the empty set, configurations of priority 1 that can reach a configuration 〈p′E , [aΣ∗⊥]〉0
or 〈p′E , [bΣ∗⊥]〉0 will be in the new set. This is shown in Figure 4.3.

If we were to perform another round of the reachability analysis, we would see that a fixed
point has been reached4. That is, the transitions from the new initial states corresponding to

3as described in Figure 4.6
4On first appearances, it may seem that 〈pA, [aΣ∗⊥]〉1 should be added since the configuration 〈pE , [aΣ∗⊥]〉1

82

Section 4.2. An Example

qE
0

qE′

0

qA
0

q∗f

qE
1

qE′

1

qA
1

Σ

Σ

Σ

Σ

a

a, b

qE
0

qE′

0

qA
0

q∗f

qE
1

qE′

1

qA
1

Σ

a

a, b

Figure 4.3: The automaton after the second round of reachability analysis; and the automaton
with the new value of Z0 and Z1 set to the empty set.

qE
0

qE′

0

qA
0

q∗f

qE
1

qE′

1

qA
1

Σ

a

a, b

a, b

qE
0

qE′

0

qA
0

q∗f

qE
1

qE′

1

qA
1

Σ

a

a, b

a

a, b

Figure 4.4: The automaton after the first round of reachability analysis with the new Z0; and
the automaton after the second round of reachability analysis with the new Z0.

Z1 have the same outgoing transitions as the old initial states. This fixed point is the next
value of the set Z0. Therefore, we set the current initial states of Z1 to be the new initial
states of Z0. We then begin evaluating µZ1.ϕE(Z0, Z1) with our new value of Z0. The initial
value of Z1 is the empty set, so we introduce new initial states corresponding to Z1 with no
outgoing transitions. Figure 4.3 shows the automaton after these steps.

We now compute the next iterate of Z1 as before. The automaton at each stage is shown
in Figure 4.4. The second automaton in Figure 4.4 is the fixed point of Z1, and hence the new
iterate of Z0. Since the new Z0 is identical to the previous Z0, we have reached a final fixed
point. By setting the initial states corresponding to Z1 to be the initial states corresponding
to Z0, and deleting any unreachable states, we obtain the automaton shown in Figure 4.5,
which accepts the winning region of Élöıse.

can be reached in one step. However, since 〈pA, [aΣ∗⊥]〉1 belongs to Abelard, it must be the case that all

transitions reach a configuration in Z1. This is not the case here.

83

Section 4.3. The Algorithm

qE
0

qE′

0
q∗f

qA
0

Σ

a

a, b

Figure 4.5: The automaton accepting the winning region of Élöıse.

4.3 The Algorithm

Fix a pushdown parity game G = (P,D, Σ, Ω) that has m priorities. The algorithm has two key
components. The first — Phi(A) — computes an automaton recognising JϕE(Z1, . . . , Zm)KGV ,
given an automaton A recognising the configuration-sets V (Z1), . . . , V (Zm). The second —
Sig(l, A) — computes, for each 1 ≤ l ≤ m, an automaton recognising JσZl.χl+1(Z1, . . . , Zl)K

G
V

where σ is either µ or ν, given an automaton A recognising the configuration-sets V (Z1), . . . , V (Zl−1),
where χl+1(Z1, . . . , Zl) := σZl+1 . . . σZm.ϕE(Z1, . . . , Zm).

4.3.1 Format of the Automata.

We describe the format of the automata constructed during the algorithm. Let Qall :=

{q∗, qε
f}, and Qc :=

{
qj
c | 1 ≤ j ≤ |P|

}
for each 1 ≤ c ≤ m + 1. These states are used to

give the valuations of the variables Z1, . . . , Zm, and the semantics of ϕE(Z1, . . . , Zm) when
c = m + 1.

Let 0 ≤ l ≤ m + 1. An automaton A is said to be type-l just if:

1. The state-set QA := Q1 ∪ · · · ∪ Ql ∪ Qall.

2. Every transition of the form qj
c

a
−→ Q has the property that Q 6= ∅, and for all j′ and

c′ > c, qj′

c′ /∈ Q (i.e. there are no transitions to states with a higher priority).

3. The only final state is qε
f which can only be reached by a ⊥-transition. I.e. for each

q
a
−→ Q, we have qε

f ∈ Q iff Q = {qε
f} iff a =⊥.

4. We also have q∗
Σ
−→ {q∗} and q∗

⊥
−→ {qε

f} and no other transitions from q∗. Finally, qε
f

has no outgoing transitions.

It follows that there is a unique automaton of type-0.
In the following, let A be a type-l automaton, where 1 ≤ c ≤ l ≤ m + 1. We define

Lc(A) ⊆ P Σ∗⊥ by: for 1 ≤ j ≤ |P|, 〈pj , [w]〉 ∈ Lc(A) just if w is accepted by A from the
initial state qj

c . Thus Lc(A) is intended to represent the current valuation of the variable Zc;
in case l = m + 1, Lm+1(A) is intended to represent JϕE(Z1, . . . , Zm)KGV where the valuation
V maps Zc to Lc(A). If we omit the subscript and write L(A), we mean Ll(A). By abuse of
notation, we define Lq(A) ⊆ Σ∗⊥∪ { ǫ } to be the set of words accepted by A from the state
q (note that Lq∗(A) = Σ∗⊥ and Lqε

f
(A) = { ε }).

84

Section 4.3. The Algorithm

procedure Phi(A)

Input : A type-m automaton A as valuation of Z = Z1, · · · , Zm.

Output : A type-(m + 1) automaton denoting ϕE(Z), relative to A.

1. (1-Step Reachability) Construct the automaton A′ by adding new states

{q1
m+1, . . . , q

|P|
m+1} and the following transitions to A. For each 1 ≤ j ≤ |P|, set

c := Ω(pj), and

• if pj ∈ PE then qj
m+1

a
−→ Q if qk

c
w
−→ Q and (pk, w) ∈ Next(pj , a)

• if pj ∈ PA then qj
m+1

a
−→ Q1 ∪ · · · ∪ Qn if qk1

c
w1−→ Q1, . . . , qkn

c
wn−−→ Qn, and

Next(pj , a) = {(pk1 , w1), . . . , (p
kn , wn)}

where Next(pj , a) := { (pk, w) | (pj , a, pushw, pk) ∈ D }.

2. return A′.

procedure Proj (l, A)

Input : 1 ≤ l ≤ m; a type-(l + 1) automaton A.
Output : A type-l automaton.

1. For each j, replace each transition qj
l+1

a
−→ Q with qj

l+1
a
−→ πl(Q) where

πl(Q) := {qj′

l+1 | qj′

l ∈ Q} ∪ (Q −Ql).

2. For each j, remove the state qj
l .

3. For each j, rename the state qj
l+1 to qj

l .

procedure Sig(l, A)

Input : 1 ≤ l ≤ m + 1;
a type-(l − 1) automaton A as valuation of Z1, · · · , Zl−1.

Output : A type-l automaton denoting σZl · · ·σZm . ϕE(Z), relative to A.

1. if l = m + 1 then return Phi(A)

2. A0 :=





A with new states Ql, but no new transitions if σZl = µZl

A with new states Ql, and all outgoing if σZl = νZl

transitions obeying the format of the automata.
3. for i = 0 to ∞ do

4. Bi := Sig(l + 1, Ai)

5. Ai+1 := Proj (l, Bi)

6. if Ai = Ai+1 then return Ai

Input : A pushdown parity game G = (P,D, Σ, Ω) with m priorities.
Output : A type-1 automaton recognising Jχ1K

G , the winning region of G.

begin

return Sig(1, A0) % A0 is the unique type-0 automaton.
end

Figure 4.6: Algorithm for computing winning region of a pushdown parity game.

85

Section 4.4. Termination and Correctness

4.3.2 Definition of the Algorithm.

Given a pushdown parity game G, the algorithm presented in Figure 4.6 computes WE , the
winning region of G:

WE = JµZ1.νZ2. . . . σZm−1.σZm.ϕE(Z1, . . . , Zm)KG∅ .

In computing JϕE(Z1, . . . , Zm)KGV we may add an exponential number of transitions. To com-
pute JσZl. · · · .σZm . ϕE(Z1, · · · , Zm)KGV we may require an exponential number of iterations.
Hence, in the worst case, the algorithm is exponential in the number of control states and the
maximum priority m.

Theorem 4.3.1. Given a pushdown parity game G = (P,D, Σ, Ω), we can construct an
automaton AG recognising the winning region of Élöıse in EXPTIME in |P| · m where m is
the number of priorities.

4.4 Termination and Correctness

4.4.1 Termination

First an auxiliary notion of monotonicity for automaton constructions. Let 1 ≤ l, l′ ≤ m+1,
and A and A′ be type-l automata. We write A ¹ A′ to mean: for all q, a and Q, if q

a
−→ Q

is an A-transition then it is an A′-transition. We consider automaton constructions T (such
as Sig ,Phi and Proj) that transform type-l automata to type-l′ automata. We say that T is
monotone just if T (A) ¹ T (A′) whenever A ¹ A′.

To show that our winning-region construction procedure terminates, it suffices to prove
the following.

Theorem 4.4.1 (Termination). For every 1 ≤ l ≤ m + 1 and every type-(l − 1) automaton
A, the procedure Sig(l, A) terminates.

We prove the Theorem by induction on l. It is straightforward to establish the base case of
l = m + 1: Phi(A) (where A is type-m) terminates. For the inductive case of Sig(l,−) where
1 ≤ l ≤ m, since Sig(l + 1,−) terminates by the induction hypothesis, and Proj (l,−) clearly
terminates, it remains to check that in the computation of Sig(l, A) where A is type-(l − 1),
there exists an i ≥ 0 such that Ai = Ai+1. Since all automata of the same type have the same
finite state-set (and A0, A1, . . . are all type-l) , it suffices to show (1) of the following Lemma.

Lemma 4.4.1 (Monotonicity). We have the following properties.

1. Let 1 ≤ l ≤ m and A be a type-(l − 1) automaton. In Sig(l, A):

(a) if σZl = µZl then Ai ¹ Ai+1 for all i ≥ 0

(b) if σZl = νZl then Ai+1 ¹ Ai for all i ≥ 0.

2. For every 1 ≤ l ≤ m + 1, the construction Sig(l,−) is monotone.

3. For every 1 ≤ l ≤ m, the construction Proj (l,−) is monotone.

Proof. We consider each of the cases.

86

Section 4.4. Termination and Correctness

1. We prove the case of σZl = µZl by induction on i For the base case of i = 0, A0 ¹ A1

trivially since there are no transitions from qj
1 in A0. The inductive case follows from the

monotonicity of the constructions Sig(l + 1,−) and Proj (l,−), which are the inductive
hypotheses of (2) and (3) respectively.

In the case of σZl = νZl the base case of i = 0, A1 ¹ A0 trivially since there are all
transitions from qj

1 in A0. The inductive case follows as in the µ case.

2. We first establish the base case of l = m + 1 i.e. Phi(−) is monotone. Let A ¹ A′ be
type-m automata. We aim to show Phi(A) ¹ Phi(A′) i.e. for all 1 ≤ j ≤ |P|, if qj a

−→ Q
in Phi(A) then qj a

−→ Q in Phi(A′). Since the transitions from all other states do not
change, this is enough. Let Ω(pj) = c. Take qj a

−→ Q in Phi(A). If p ∈ PE we have some

rule (pj , a, pushw1 , p
k1) with the run qk1

c
w1−→ Q in A. Otherwise, pj ∈ PA, Next(p, a) is

the set {(pk1 , w1), . . . , (p
kn , wn)} and Q = Q1 ∪ · · · ∪ Qn with the following transitions

qk1
c

w1−→ Q1, . . ., qkn
c

wn−−→ Qn in A. Since the former case can easily be encoded as
an instance of the latter, we argue the second case only. For all 1 ≤ t ∈ n, we have
qkt
c

wt−→ Qt in A and since A ¹ A′ we know that qkt
c

wt−→ Qt in A′. Therefore, we have
Q = Q1 ∪ · · · ∪ Qn and, by the definition of the procedure Phi(−), qj a

−→ Q in A′ as
required.

For the inductive case, we consider the case of σZl = µZl (the case of σZl = νZl is
omitted as the proof is dual). Let A1 ¹ A2 be type-(l−1) automata. For each i ∈ { 1, 2 },
let A0

i , A
1
i , A

2
i , . . . be the intermediate automata that are constructed in the computation

of Sig(l, Ai). By the induction hypothesis of (1), we have A0
i ¹ A1

i ¹ A2
i ¹ Since

Sig(l + 1,−) and Proj (l,−) are monotone by the induction hypothesis of (2) and (3)
respectively, we have Ai

1 ¹ Ai
2 for each i ≥ 0. It follows that Sig(l, A1) ¹ Sig(l, A2) as

required.

3. It can easily be seen that Proj (l,−) is monotone.

We conclude the proof.

4.4.2 Correctness

To prove correctness, we introduce the notions of valuation soundness and completeness.

Valuation Soundness

When computing the least fixed point of a formula of the form µZ.χ(Z), we begin from an
empty automaton — giving an initial valuation of Z — and construct an automaton accepting
χ(Z). After each iteration of the algorithm for χ(Z), we perform some projections. That is,
whenever we have a transition of the form q

a
−→ q′ where q is intended to give a valuation

of χ(Z) and q′ gives a valuation of Z, we replace the transition with q
a
−→ q. The valuation

for χ(Z) after these projections becomes the new (partial) valuation for Z, which we want to
eventually reach the valuation of µZ.χ(Z). By monotonicity, we know that the automaton
will eventually become saturated. However, this does not justify the correctness of performing
these projections.

In the case of a least fixed point, the valuation soundness condition intuitively asserts that
if we have a transition q

a
−→ q′, then, whenever a word w should be accepted from q′ in the least

fixed point, then the word aw should also be accepted from q. Since, when Z = JµZ.χ(Z)K,

87

Section 4.4. Termination and Correctness

it is the case that JµZ.χ(Z)K = Jχ(µZ.χ(Z))K, the projections can be seen to be correct: we
are replacing a valuation of JµZ.χ(Z)K with a valuation of Jχ(µZ.χ(Z))K.

However, the full algorithm contains both greatest and least fixed point computations. In
particular, the greatest fixed point computation begins with all possible transitions. Clearly
this automaton cannot be valuation sound. The solution to this problem is to use approxi-
mants. Initially, a greatest fixed point computation is only sound with respect to ν0Z.χ(Z),
which evaluates to the set of all configurations. It can be shown that the approximant is able
to grow transfinitely until we are sound with respect to νZ.χ(Z).

Fix a pushdown parity game G = (P,D, Σ, Ω). A valuation profile is a vector S =
(S1, . . . , Sl) of configuration-sets (i.e. vertex-sets of the underlying configuration graph). We
define the induced valuation VS : Zc 7→ Sc, which we extend to a map VS : QA −→ 2Σ∗⊥ on
the states of a type-l automaton as follows:

VS :=





qj
c 7→ { w | 〈pj , [w]〉 ∈ Sc } 1 ≤ j ≤ |P|, 1 ≤ c ≤ l

q∗ 7→ Σ∗⊥
qε
f 7→ { ε }

Definition 4.4.1. Given a valuation profile S of length l, a type-l automaton A is S-sound

just if, for all q, a and w, if A has a transition q
a
−→ Q such that w ∈ VS(q′) for all q′ ∈ Q,

then a w ∈ VS(q).

By induction on the length of the word, valuation soundness extends to runs. We then
obtain that all accepting runs are sound.

Lemma 4.4.2. Let A be a S-sound automaton.

1. For all q, w and w′, if A has a run q
w
−→ Q such that w′ ∈ VS(q′) for all q′ ∈ Q, then

w w′ ∈ VS(q).

2. For all q ∈ QA, Lq(A) ⊆ VS(q).

Proof. We prove each of the properties individually.

1. We prove by induction on the length of the word w. When w = a, the property is just
S-soundness. Take w = au and some run q

a
−→ Q

u
−→ Q′ such that for all q′ ∈ Q′, we have

w ∈ VS(q′). By the induction hypothesis, we have the property for the run Q
u
−→ Q′.

Hence, we have for all q′ ∈ Q that, uw′ ∈ VS(q′). Thus, from S-soundness, we have
auw′ ∈ VS(q).

2. Take an accepting run q
w
−→ Qf of A. We have for all q′ ∈ Qf = {qε

f}, ε ∈ VS(q′).
Thanks to (1), we have w ∈ VS(q).

Hence, the properties hold as required.

Valuation Completeness

Dual to valuation soundness, correctness of the algorithm also relies on a property we call
valuation completeness. In the case of the greatest fixed point, this property asserts that
for every word aw that should be accepted from q in the greatest fixed point, we have a
transition q

a
−→ q′ such that w should be accepted from q′ in the greatest fixed point. Whereas

88

Section 4.4. Termination and Correctness

the least fixed point computation begins with no transitions and only adds transitions that
are justified, the greatest fixed point computation begins with all transitions, and removes
those that are not.

Since a least fixed point computation begins with no transitions from the new initial
states, it cannot be valuation complete with respect to the least fixed point being computed:
in general, the least fixed point will contain some configuration and hence some word must
be accepted from some initial state. To satisfy valuation completeness, then, some transitions
may be required to exist from the new initial states. However, the zeroth approximant
Jµ0Z.χ(Z)K is the empty set. Since there are no configurations in this set, no transitions are
required to satisfy valuation completeness. Thus, we are initially valuation complete with
respect to Jµ0Z.χ(Z)K. We show that the construction tightens the approximation until the
least fixed point is reached.

Definition 4.4.2. Given a valuation profile S of length l, a type-l automaton A is S-

complete just if, for all q, a and w, if a w ∈ VS(q) then A has a transition q
a
−→ Q such

that w ∈ VS(q′) for all q′ ∈ Q.

By induction on the length of the word, valuation completeness extends to runs. Further-
more, an accepting run always exists when required.

Lemma 4.4.3. Let A be an S-complete automaton.

1. For all q, w and w′, if w w′ ∈ VS(q) then A has a run q
w
−→ Q such that w′ ∈ VS(q′) for

all q′ ∈ Q.

2. For all q ∈ QA, VS(q) ⊆ Lq(A).

Proof. We prove each property.

1. The proof is by induction on the length of the word w. When w = a, the property
is simply S-completeness. Take w = au and some q with auw′ ∈ VS(q). From S-

completeness, we have a transition q
a
−→ Q such that for all q′ ∈ Q, we have uw ∈ VS(q′).

By induction on the length of the word, we have a run Q
u
−→ Q′ satisfying the property.

Hence, we have q
a
−→ Q

u
−→ Q′ as required.

2. Take w ∈ VS(q). Instantiating (i) with w′ = ε, we know A has a run q
w
−→ Q. Every

state in Q must be accepting because ε is only accepted from accepting states and there
can be no 〈pj , [ε]〉 satisfying any Si because ε is not a valid stack.

Hence, the properties hold as required.

Correctness of the Algorithm

Using valuation soundness and valuation completeness we can show that the algorithm is
correct. We begin by introducing some notation. Let 1 ≤ l ≤ m + 1. We write

χl(Z1, . . . , Zl−1) := σZl · · ·Zm.ϕE(Z1, . . . , Zm).

Thus χ1 = µZ1 . . . σZm.ϕE(Z) and χm+1(Z1, . . . , Zm) = ϕE(Z). Let S = (S1, . . . , Sl−1); we
write (S, T) to mean (S1, . . . , Sl−1, T). Thus we write (say) χl(S) to mean χl(S1, · · · , Sl−1),
and χl+1(S, Zl) to mean χl+1(S1, . . . , Sl−1, Zl).

89

Section 4.4. Termination and Correctness

Proposition 4.4.1 (Main). Let 1 ≤ l ≤ m + 1, A be a type-(l − 1) automaton, and S be a
valuation profile of length l − 1.

1. (Soundness Preservation) If A is S-sound, then Sig(l, A) is a type-l automaton
which is (S, Jχl(S)K)-sound.5

2. (Completeness Preservation) If A is S-complete, then Sig(l, A) is a type-l automa-
ton which is (S, Jχl(S)K)-complete.

Since the type-0 automaton A0 is trivially sound and complete with respect to the empty
valuation profile, we obtain following as an immediate corollary.

Theorem 4.4.2 (Correctness). The procedure call Sig(1, A0) terminates and returns a type-
1 automaton which is (Jχ1K)-sound and (Jχ1K)-complete. Hence, thanks to Lemmas 4.4.2
and 4.4.3, for each 1 ≤ j ≤ |P|, VJχ1K(q

j
1) = L

qj
1
(Sig(1, A0)) i.e. the automaton Sig(1, A0)

recognises the configuration set Jχ1K, which is the winning region of the pushdown parity game
G.

Proof of the Main Proposition

We prove Proposition 4.4.1 by induction on l. First the base case: l = m + 1.

Lemma 4.4.4. Let S be a valuation profile of length m, and A a type-m automaton.

1. Phi(A) is a type-(m + 1) automaton.

2. If A is S-sound then Phi(A) is (S, JϕE(S)K)-sound.

3. If A is S-complete then Phi(A) is (S, JϕE(S)K)-complete.

Proof. We prove each case individually.

1. Let A be a type-m automaton. Phi(A) is a type-(m+1) automaton. I.e. all transitions

q
a
−→ Q satisfy: qε

f ∈ Q iff a =⊥ iff Q = { qε }. Suppose there is some transition qj ⊥
−→ Q

with qε
f /∈ Q or Q 6= {qε

f}. Then the transition was added from some appropriate

Next(pj ,⊥). Then it must be the case that for some (pk, w) ∈ Next(pj ,⊥) the last
character in w is not ⊥ (else qε

f ∈ Q). This means ⊥ is removed from the stack, which
is explicitly disallowed.

Conversely, suppose there is some transition qj a
−→ Q where a 6=⊥ and qε

f ∈ Q. Then

the transition was added from some appropriate Next(pj , a). It must be the case that
for some (pk, w) ∈ Next(pj , a) the last character in w is ⊥ (else qε

f /∈ Q). This means
⊥ is pushed on to the stack, which is explicitly disallowed.

2. Set S′ = (S, JϕE(S)K) and let Ω(pj) = c. Take any transition qj
m+1

a
−→ Q in Phi(A) such

that for all qj′

c′ ∈ Q, 〈pj′ , [w]〉 ∈ VS′(Zc′). Abusing notation, we take an appropriate
assignment to Next(pj , a) — the complete value of Next(pj , a) for an Abelard position,
and a single command for an Élöıse position — that led to the introduction of the
transition. Since A is S-sound and for all (pk, wk) ∈ Next(pj , a) we have qk

c
wk−−→ Qk ⊆

5By Jχl(S1, · · · , Sl−1)K we mean Jχl(Z1, · · · , Zl−1)KV w.r.t. a valuation V that maps Zc to Sc.

90

Section 4.4. Termination and Correctness

Q, we know that 〈pk, [wkw]〉 ∈ VS′(Zc). Hence all 〈pk, [wkw]〉 are in VS′(Zc), and

〈pj , [aw]〉 ∈ VS′(Zm+1) = JϕE(Z)KGV
S′

, since all moves, in the case of Abelard, and a

move in the case of Élöıse, reach configurations in Zc.

3. Take any configuration 〈pj , [aw]〉 ∈ VS′(Zm+1) = JϕE(Z)KGV
S′

. Let Ω(pj) = c. There

exists an appropriate assignment {(pk1 , w1), . . . , (p
kn , wn)} to Next(pj , a) (as before)

such that 〈pkh , [whw]〉 ∈ VS′(Zc) for all h ∈ {1, . . . , n}. Since A is assumed to be S-
complete, it follows that all 〈pkh , [whw]〉 have a complete run. In particular, we have a

complete run qkh
c

wh−−→ Qh for all h. Hence, by the definition of Phi(A), there exists a
transition pj a

−→ Q that is complete.

Hence, Phi(−) is correct.

For the inductive case of 1 ≤ l ≤ m, there are two sub-cases: σZl = µZl, and σZl = νZl.
Recall that χl(Z1, . . . , Zl−1) := σZl.χl+1(Z1, · · · , Zl). We begin with the proof when σZl =
µZl.

Lemma 4.4.5. Suppose σZl = µZl. Let S be a valuation profile of length l − 1, and A be a
type-(l − 1) automaton; set θ = JµZl.χl+1(S, Zl)K.

1. Sig(l, A) is a type-l automaton.

2. If A is S-sound, then Sig(l, A) is (S, θ)-sound.

3. If A is S-complete, then Sig(l, A) is (S, θ)-complete.

Proof. We consider each case separately.

1. The result of the recursive call to Sig(l + 1, A) combined with the call to Proj ensures
the property.

2. Let S′ := (S, θ). It is straightforward to see that A0 is S′-sound, since it did not add
any transitions to A, which is assumed to be S-sound. Hence, we assume by induction
Ai is S′-sound and argue the case for Ai+1.

Take a transition qj
l

a
−→ Q in Ai+1 such that for all qk

l′ ∈ Q we have 〈pk, [w]〉 ∈ VS′(Zl′).

Take the corresponding transition qj
l+1

a
−→ Q′ in Sig(l + 1, Ai) before the projection. In

particular, for every qk
l ∈ Q we have qk

l or qk
l+1 in Q′. By the induction hypothesis, we

know Sig(l+1, Ai) is (S′, Jχl+1(S′)K)-sound. Furthermore, VS′(Zl) = θ = Jχl+1(S, θ)K =
VS′(Zl+1). Since Sig(l+1, Ai) is (S′, Jχl+1(S′)K)-sound, we have 〈pj , [aw]〉 ∈ VS′(Zl+1) =
VS′(Zl) as required.

3. Let A be a type-(l − 1) automaton which is S-complete. We use the shorthand θα =
JµαZl.χl+1(S, Zl)K. We first show that if the type-l Ai is (S, θα)-complete for some
α then Ai+1 is (S, θα+1)-complete. By the induction hypothesis, Bi := Sig(l + 1, Ai)
is (S, θα, θα+1)-complete, since θα+1 = Jχl+1(S, θα)K. We need to show that, after
the projection, Ai+1 := Proj (l, Bi) is S′-complete, where S′ := (S, θα+1). Take some
〈pj , [aw]〉 ∈ VS′(Zl). We know Bi has a transition qj

l+1
a
−→ Q satisfying completeness. If

Q contains no states of the form qk
l , then the transition qj

l
a
−→ Q satisfies completeness

in Ai+1. If Q contains states qk
l , then 〈pk, [w]〉 ∈ θα ⊆ θα+1 = VS′(Zl). Hence, we have

91

Section 4.4. Termination and Correctness

a required complete transition after the projection, and so, Ai+1 is S′-complete. We
require that Sig(l, A) be (S, JµZl.χl+1(S, Zl)K)-complete. Take i such that Ai = Ai+1 =
Sig(l, A). Trivially Sig(l, A) is (S, θ0)-complete. We proceed by transfinite induction.
For a successor ordinal we know by induction that Ai is (S, θα)-complete and from
the above that Ai+1 is (S, θα+1)-complete. Since Sig(l, A) = Ai = Ai+1 we are done.
For a limit ordinal λ, we have that Sig(l, A) is (S, θα)-complete for all α < λ. Since
θλ =

⋃
α<λ θα, the result follows because each configuration in the limit appears in some

smaller approximant, and the transition witnessing completeness for the approximant
witnesses completeness for the limit.

This concludes the proof.

Finally, we consider the greatest fixed point computations.

Lemma 4.4.6. Suppose σZl = νZl. Set θ = JνZl.χl+1(S, Zl)K.

1. Sig(l, A) is a type-l automaton.

2. If A is S-sound, then Sig(l, A) is (S, θ)-sound.

3. If A is S-complete, then Sig(l, A) is (S, θ)-complete.

Proof. We analyse each of the cases.

1. The result of the recursive call to Sig(l + 1, A) combined with the call to Proj ensures
the property.

2. Let A be a type-(l − 1) automaton which is S-sound. We use the shorthand θα =
JναZl.χl+1(S, Zl)K. We first show that if Ai is (S, θα)-sound for some α, then Ai+1

is (S, θα+1)-sound. By the induction hypothesis, Bi := Sig(l + 1, Ai) is (S, θα, θα+1)-
sound, since θα+1 = Jχl+1(S, θα)K. We need to show that, after the projections, Ai+1 :=
Proj (l, Bi) is S′-sound where S′ := (S, θα+1). Take some transition qj

l
a
−→ Q in Ai+1

such that for all qk
l′ ∈ Q we have 〈pk, [w]〉 ∈ V

S
′(Zl′). We know Bi+1 had a sound,

unprojected transition qj
l+1

a
−→ Q′ such that for all qk

l ∈ Q we have either qk
l ∈ Q′ or

qk
l+1 ∈ Q′. In the former case, by assumption we know 〈pk, [w]〉 ∈ θα+1 ⊆ θα. In the

latter 〈pk, [w]〉 ∈ θα+1, also by assumption. Since Bi is (S, θα, θα+1)-sound we know
〈pj , [aw]〉 ∈ θα+1 as required.

We require that Sig(l, A) be (S, JνZl.χl+1(S, Zl)K)-sound. Observe that Sig(l, A) is
(S, θ0)-sound (trivially, since the zeroth approximant contains all configurations). We
proceed by transfinite induction. Take i such that Sig(l, A) = Ai = Ai+1. By induction
we have that Ai is (S, θα)-sound, then from the above we know Ai+1 is (S, θα+1)-sound.
Since Ai = Ai+1 = Sig(l, A) we are done. For a limit ordinal λ, we have that Sig(l, A) is
(S, θα)-sound for all α < λ. Since Since θλ =

⋂
α<λ θα, the result follows because each

configuration in the limit appears in all smaller approximants, and Sig(l, A) is sound
for all smaller approximants (and trivially for the zeroth approximant).

3. Let S′ := (S, θ). It can be easily seen that A0 is S′-complete (always move to q∗ or qε
f

during the first transition). Hence, we assume Ai is S′-complete. We argue the case for
i + 1.

92

Section 4.5. Optimisation

Take some 〈pj , [aw]〉 such that 〈pj , [aw]〉 ∈ VS(Zl). By the induction hypothesis, we
know Sig(l + 1, Ai) is (S′, Jχl+1(S′)K)-complete. Furthermore, we have that VS′(Zl) =
θ = Jχl+1(S, θ)K = VS′(Zl+1). Since we have an (S′, Jχl+1(S′)K)-complete transition

qj a
−→ Q in Ai+1 before the projections, it follows that, for all qj′

c′ ∈ πl(Q) we know,
〈pj , [w]〉 ∈ VS(Zc′) as required.

4.5 Optimisation

Because the initial automaton in the greatest fixed point constructions contain all allowable
transitions, the algorithm is immediately exponential. However, it is easy to see that if we
have two transitions q

a
−→ Q and q

a
−→ Q′ with Q ⊆ Q′, then an accepting run from Q′ implies

an accepting run from Q. Hence, the transition to Q′ is redundant. Furthermore, one can
observe that an accepting run from any state qj

c implies an accepting run from q∗. Using
these observations, we can hope to reduce the number of transitions in our automaton. In
the following definition Q ≪ Q′ can be read to mean that an accepting run from Q′ implies
an accepting run from Q.

Definition 4.5.1. For all non-empty sets of states Q and Q′, we define

Q ≪ Q′ ⇐⇒
(
(q∗ ∈ Q ⇒ ∃q 6= qε

f ∈ Q′) ∧ (q 6= q∗ ∈ Q ⇒ q ∈ Q′)
)

Let
Expand(A) = { q

a
−→ Q′ | q

a
−→ Q in A and Q ≪ Q′ }

We can specify the properties of our construction with respect to Expand(A) rather than
A. For example, after each step of a least fixed point computation we will have Expand(Ai) ¹
Expand(Ai+1) rather than Ai ¹ Ai+1. If we do this, the initial automaton in the greatest
fixed point computation only needs transitions to q∗ and qε

f . From these transitions, the
expansion will have all possible transitions (since q∗ can be replaced any number of states of
the form qq

j l). The number of initial transitions is then reduced from exponential to linear.

Furthermore, if an automaton A has transitions q
a
−→ Q and q

a
−→ Q′ with Q ≪ Q′, then

we can remove the second transition. Since a transition to {q∗} is very powerful with respect
to ≪, applying this optimisation after each stage of the algorithm will hopefully keep the
automaton small. However, this will have to be confirmed experimentally.

To test termination of the fixed point constructions we will need to determine when
Expand(Ai+1) = Expand(Ai). Performing the full expansion would obviously cause an
exponential blow up. Fortunately we can test the condition more directly using the prop-
erty below. This property allows us to check Expand(Ai+1) ¹ Expand(Ai) by comparing
the existing transitions, rather than by performing the expansion and then checking which
transitions occur.

Property 4.5.1. Given A and A′, we have Expand(A) ¹ Expand(A′) iff,

q
a
−→
A

Q ⇒ q
a
−→
A′

Q′

with Q′ ≪ Q.

93

Section 4.5. Optimisation

Proof. First we assume Expand(A) ¹ Expand(A′) and show,

q
a
−→
A

Q ⇒ q
a
−→
A′

Q′

with Q′ ≪ Q. Take q
a
−→ Q in A. Then q

a
−→ Q ∈ Expand(A). We have q

a
−→ Q ∈ Expand(A′),

and therefore q
a
−→ Q′ is a transition of A′ with Q′ ≪ Q.

In the other direction, we assume

q
a
−→
A

Q ⇒ q
a
−→
A′

Q′

Take q
a
−→ Q ∈ Expand(A1). We need q

a
−→ Q ∈ Expand(A′). We have some q

a
−→ Q′ in A

with Q′ ≪ Q. Hence, we have q
a
−→ Q′′ in A′ with Q′′ ≪ Q. Hence, q

a
−→ Q ∈ Expand(A′) as

required.

We can extend the definition to runs as follows. This gives us that Expand(A) ¹
Expand(A′) implies L(A) ⊆ L(A′). Additionally, it is easy to check using this lemma that
the constructions preserve the new notion of monotonicity.

Lemma 4.5.1. Given A and A′, with Expand(A) ¹ Expand(A′) we have,

q
w
−→
A

Q ⇒ q
w
−→
A′

Q′

with Q′ ≪ Q.

Proof. The proof is by induction over the length of w. In the base case w = a and the proof
follows directly from ¹. When w = aw′ with w′ 6= ε we have,

q
a
−→ Q1

w′

−→ Q2

where qε
f /∈ Q1 (since w′ 6= ε). By ¹ we have q

a
−→ Q′

1 with Q′
1 ≪ Q1. By induction and that

q∗
a
−→ {q∗} for all a 6=⊥ and q∗

⊥
−→ {qε

f} we also have Q′
1

w′

−→ Q′
2 with Q′

2 ≪ Q2, and hence

q
w
−→ Q2 as required.

Finally, we check that the optimisations do not contradict the important properties of the
construction.

Property 4.5.2. The optimisation preserves monotonicity and both valuation soundness and
completeness.

Proof. Let A′ be A with a removed transition. That Expand(A′) ¹ Expand(A) is immediate,
since we have only removed a transition from A to obtain A′. To show Expand(A) ¹
Expand(A′) we only need to consider the removed transition (since all other transitions can
be matched with their counterpart). Since q

a
−→ Q′ can be matched with q

a
−→ Q, which has

Q ≪ Q′, we are done.
Preservation of valuation soundness is straightforward since we have only removed a tran-

sition. Finally, suppose a valuation complete transition q
a
−→ Q was removed by the optimisa-

tion. This implies that there exists a transition q
a
−→ Q′ with Q′ ≪ Q. Suppose this transition

is not V -complete. Then there is some incomplete state q ∈ Q′. Since this state is not q∗, it
must also appear in Q. This is a contradiction, since q

a
−→ Q is valuation complete.

94

Section 4.6. Existing Approaches

4.6 Existing Approaches

There are several other algorithms for computing the winning regions of an order-1 pushdown
parity games. These are due to Vardi et al. [91, 87, 86], Cachat [128] and Serre [93]. The
approach of Vardi et al. uses a tree representation of order-1 stores, which is navigated by
a two-way alternating tree automaton. They show that this approach can be applied to
a number of infinite-state model-checking problems. The algorithms of Cachat and Serre
interpret the output of Walukiewicz’s local model-checking algorithm (see Section 2.6.3) to
construct alternating automata recognising the winning regions. An informal account of these
results is given below. In Section 4.6.4 we compare these methods to our own.

4.6.1 Extending Walukiewicz’s Algorithm

Cachat’s algorithm [128] is an extension of Walukiewicz’s local model-checking algorithm de-
scribed in Section 2.6.3. The local model-checking algorithm determines whether an initial
configuration 〈p, [⊥]〉 is winning for Élöıse, by reduction to a finite state game. The principal
components of this game are states of the form Check(~A, z, θ, c, p), where ~A contains condi-
tions on any simulated pop1 actions, z is the top1 character of the stack being simulated, θ is
the smallest priority seen since z was pushed onto the stack, c is the priority of the state and
p is the control state being simulated.

Cachat’s algorithm uses the winning region W fin
E of the finite state game to construct the

winning region of the pushdown game. Let [D]m = (D, . . . , D) ⊆ (2P)m. The following rou-
tine determines whether a configuration 〈p, [a0 . . . ah]〉 is winning for Élöıse in the pushdown
parity game. It reads the stack from bottom to top, using the winning region of the finite
state game to determine the minimal constraints Élöıse must satisfy to win with the current
stack.

Dh+1 := ∅
for i = h downto 0 do

Di := { p′ ∈ P | Check([Di+1]
m, ai, m,Ω(p′), p′) ∈ W fin

E }

return p ∈ D0

The above algorithm returns true if 〈p, [a0 . . . ah]〉 is in Élöıse’s winning region of the pushdown
parity game. The iteration can be transformed into an alternating automaton over the stack
contents. Hence, the winning region is regular.

Theorem 4.6.1 ([128]). Given a pushdown game with a parity winning condition, one can
compute uniformly the winning region of Élöıse, which is regular, and a winning pushdown
strategy.

4.6.2 Games with ω-Regular Winning Conditions

A second, independent, method for computing the winning regions of a pushdown parity game
was provided by Serre [93]. This technique is similar to Cachat’s, although the proof is more
explicit, the complexity is analysed, and the result is generalised to any ω-regular winning
condition. That is, a winning condition specified by a finite, deterministic, parity automaton.
Let WE be the winning region of Élöıse in the pushdown game.

95

Section 4.6. Existing Approaches

Conditional Games

Serre’s construction uses a kind of oracle R(p, a) which defines the smallest sets of control
states R that Élöıse can force play to reach when the top character a of the current con-
figuration 〈p, [aw]〉 for some w is popped. The definition of R(p, a) requires conditional
games.

Given a pushdown parity game G, let G(R) be a conditional game. Plays of G(R) are the
same as G, with the same winning conditions, except when the stack is emptied. In this case,
Élöıse wins if the current control state is in R, and loses otherwise. We can construct G(R)
from G as follows:

• Add sink states pA and pE with transitions (pA,⊥, push⊥, pA) and (pE ,⊥, push⊥, pE)
and priorities 1 and 2 respectively.

• Remove all commands of the form (p,⊥, pushw, p′).

• Add rules (p,⊥, push⊥, pA) for all p /∈ R and (p,⊥, push⊥, pE) for all p ∈ R.

That is, if the stack is emptied, play moves to a sink state from which Élöıse wins if the stack
was emptied at a control state in R, and Abelard wins otherwise. Let WE(R) be Élöıse’s
winning region in G(R).

For each p ∈ P and a ∈ Σ, we define,

R(p, a) = { R ⊂ P | 〈p, [a⊥]〉 ∈ WE(R) and 〈p, [a⊥]〉 /∈ WE(R′) for any R′ ⊆ R }

Intuitively, R(p, a) gives the minimal constraints Élöıse must satisfy in order to win a play of
G. That is,

Proposition 4.6.1 ([93]). Let w ∈ Σ∗, p ∈ P and a ∈ Σ, then we have 〈p, [aw⊥]〉 ∈ WE if
and only if there exists some R ∈ R(p, a) such that 〈p′, [w⊥]〉 ∈ WE for all p′ ∈ R.

We can use Walukiewicz’s algorithm to construct R(p, a) for all p ∈ P and a ∈ Σ.

Constructing the Winning Regions

We can use R(p, a) to define an automaton accepting Élöıse’s winning region.

Definition 4.6.1 ([93]). Given a pushdown parity game G = (P,D, Σ, Ω), we define an
alternating automaton AG = (P, Σ, δ,F) where, for every p ∈ P and a ∈ Σ,

δ(p, a) =
∨

R∈R(p,a)

∧

p′∈R

p′

and δ(p,⊥) = p. Furthermore F = { p ∈ P | 〈p, [⊥]〉 ∈ WE }.

In the above definition the first transition of AG given a configuration 〈p, [aw⊥]〉 uses
R(p, a) to find the range of conditions, according to Proposition 4.6.1, that must hold when
the a character is popped. The disjunction in the transition relation requires that one possible
condition is met. The conjunction ensures that a particular condition R is met, by checking
that all configurations 〈p′, [w⊥]〉 with p′ ∈ R are in the winning region of Élöıse.

96

Section 4.6. Existing Approaches

Theorem 4.6.2 ([93]). For any two-player game on a pushdown graph with a parity winning
condition, one can construct an alternating automaton AG that recognises the set WE of
winning positions for Élöıse. Moreover, AG gives an exponential-time procedure to decide
whether a configuration is winning for Élöıse.

Finally, Serre shows that this theorem can be generalised to any ω-regular winning con-
dition. This is achieved via a reduction to parity conditions.

4.6.3 Two-Way Alternating Tree Automata

An alternative automata-theoretic approach to model-checking infinite state systems was
introduced by Kupferman and Vardi in 2000 [90]. This approach was originally applied
to context-free graphs and prefix-recognisable graphs. This approach was later generalised
by Kupferman, Piterman and Vardi to pushdown systems and prefix-recognisable systems
respectively [91, 87].

Two-Way Automata

A two-way alternating tree automaton operates over labelled trees. In addition to the expected
constructs for tree navigation, a two-way automaton is able to move both up and down
branches. Over a tree (Σ∗, τ) recall τ labels each node of the tree with a member of some
alphabet Γ. In the following a node a0 . . . am corresponds to a stack am . . . a0 and the function
τ simply associates each stack with its top element. A two-way tree automaton can mimic
a pushdown command (, am, pushw,) as follows: the automaton moves one branch up the
tree, to the node a0 . . . am−1, and then down the tree to the node a0 . . . am−1w

−1, where w−1

is the string w reversed. This sequence of actions simulates the application of a pushdown
command. When using these automata to describe pushdown systems, we can store the
current control state of the pushdown system in the state of the tree automaton. In this way,
a run of the tree-automaton corresponds to a run of the pushdown system and tree automata
can be used for both local and global model-checking.

Definition 4.6.2 (Two-Way Alternating Parity Tree Automata). A two-way alternating
parity tree automaton (2APT) is a tuple A = (Σ,Q, q0, ∆, Ω) where Σ is an input alphabet,
Q is a finite state-set, with q0 ∈ Q being the initial state, and Ω : Q → {1, . . . , m} is a
priority function. Finally, ∆ : Q × Γ → B+(ext(Σ) × Q) is the transition function, where
ext(Σ) = Σ ∪ {ε, ↑}.

A run of a 2APT A over a tree (Σ∗, τ) is a labelled tree (Tr, r) where r associates each
node of Tr with a pair (w, q) where w ∈ Σ∗ and q ∈ Q and,

1. ε ∈ Tr and r(ε) = (⊥, q0).

2. For all y ∈ Tr with r(y) = (w, q) and ∆(q, τ(w)) = θ, there exists a set S ⊆ ext(Σ)×Q
satisfying θ such that, for all (a, q′) ∈ S, there exists x ∈ Σ with xy ∈ Tr and,

• If a ∈ Σ, then r(xy) = (aw, q′).

• If a = ε, then r(xy) = (w, q′).

• If a =↑, then w = bw′ for some b ∈ Σ and w′ ∈ Σ∗ and r(xy) = (w′, q′).

97

Section 4.6. Existing Approaches

The run is accepting if all infinite paths, when projected to the state-set Q, satisfy the parity
condition. 2APT form the basis of the model-checking algorithm. In particular, we can
construct the set of all nodes of a tree from which A is satisfied.

Theorem 4.6.3 ([87]). Given a 2APT A and a regular tree T = (Σ∗, τ), we can construct
a non-deterministic finite word automaton N which accepts the word w from a state q iff A
accepts T from (q, w).

The above result is reached as follows: we add an idle self-loop to the beginning of A —
allowing A to skip to any marked node in the tree. We combine the resulting automaton with
one that accepts the regular tree T with a single marked node to form an automaton A′. Thus
A′ accepts any tree whose marked node satisfies A. An analysis of when A′ is non-empty is
used to construct the required automaton N .

An intermediate step in this algorithm is the reduction of a two-way automaton to a
one way automaton. This reduction involves the construction of an automaton B whose
input alphabet is constructed from subsets of the states of A and the priorities of A, and
is thus exponential. This automaton is then complemented and determinised, leading to an
exponential blow up in the number of states.

Model-Checking Pushdown Systems

The global model-checking problem for pushdown automata can be reduced to the global
membership problem for 2APT. We begin by identifying the specification language.

An alternating graph automaton runs over graphs and is similar to a 2APT. The tran-
sition relation is of type ∆ : Q×Γ → B+({ε, 2, 3}×Q). Like a 2APT, runs of the automaton
are labelled trees. A node in the tree is a pair (s, q) where s is a node in the graph and q is
the current state of the automaton. A proposition (2, q′) requires that the run node has a
child (s′, q′) for every successor s′ of s. Dually, (3, q′) requires only a single child (s′, q′) for
some successor of s. Note that these automata are not two-way.

Theorem 4.6.4 ([137]). Given a µ-calculus formula ϕ, of length n and alternation depth k,
we can construct a graph parity automaton Sϕ such that L(Sϕ) is exactly the set of graphs
satisfying ϕ. The automaton Sϕ has n states and index k.

Finally, we can combine a 2APT simulating a pushdown automaton with a graph au-
tomaton specification to reduce the global model-checking problem to global membership of
a 2APT.

Theorem 4.6.5 ([87]). Given a pushdown system R = (P,D, Σ) with a labelling function
L : P × CΣ

1 → Γ and a graph automaton S = (Γ,Q, q0, ∆, Ω), we can construct a 2APT A
on Σ-trees and a function f that associates states of A with states of R such that A accepts
(Σ∗, τ) from (q, w) iff the configuration 〈f(q), [w]〉 satisfies S.

Similar results are also obtained for LTL specifications. In both cases, the algorithm runs
in exponential time and space.

4.6.4 Comparing the Approaches

The main advantage of our approach is that it is direct and simple to describe. Conversely,
the tree-automata approach of Vardi et al. requires several intermediate steps: a reduction

98

Section 4.7. Abstract Pushdown Games and Higher-Order Pushdown Systems

from two-way alternating tree-automata to alternating tree-automata, and then the con-
struction of a strategy automaton which involves the complementation of Büchi automata.
Serre’s algorithm requires the construction of a number of sub-games, each of which requires
Walukiewicz’s reduction to finite state games (and the invocation of a finite state algorithm).
The solutions to these sub-problems then need to be interpreted appropriately. Although it
is more direct than the other existing approaches, Cachat’s technique still requires a use of
Walukiewicz’s reduction to a finite state algorithm.

Cachat gives the shortest algorithm for computing the winning regions of an order-1
pushdown parity game, given the correctness of Walukiewicz’s reduction. However, the proof
is only a sketch. Serre’s approach gives a more thorough treatment, and an extension to
any ω-regular winning condition. This approach also permits an elegant generalisation to
order-n parity games, which is described in Section 4.7. Finally, Vardi et al. give a pleasing
interpretation of pushdown games using tree-automata, although the solution to the tree-
automata problem is difficult. Their approach also unifies the global model-checking problems
for context-free graphs, prefix-recognisable graphs, pushdown systems and prefix-recognisable
systems.

The existing algorithms are all immediately exponential. That is, there are no “fortunate”
cases where the full exponential cost may be avoided. However, by using the notion of
Expand(A), we were able to begin the algorithm with a polynomially sized automaton.
Hence, we do not immediately pay the exponential blow-up. Hence, it is possible that, in
some “fortunate” cases, we may avoid the full cost of the problem.

The main drawback of our approach is that, unlike the alternative approaches, we do
not know how to construct winning strategies for the players of the game. The construc-
tion of strategies is useful in providing counter-examples and performing program synthesis.
Therefore, this remains a pressing area of future work.

4.7 Abstract Pushdown Games and Higher-Order Pushdown
Systems

Recently, Serre has generalised his algorithm to abstract pushdown games [12]. These games
generalise pushdown automata by allowing an infinite stack alphabet. Since the alphabet is
infinite, it can be used to encode the stacks of a higher-order PDS. Consequently, abstract
pushdown games are a generalisation of higher-order pushdown systems.

Definition 4.7.1. An abstract pushdown process is a tuple (P,D, Σ) where P is a finite
set of control states, Σ is a (possibly infinite) abstract pushdown alphabet, and,

D : P × Σ → 2({rew(q,Σ), pop(q), push(q,γ) | q∈Q,γ∈Γ})

Configurations of an abstract pushdown process are of the form 〈p, [w]〉 ∈ P × Σ∗, where
p is a control state and w is a stack. The commands rew(q, γ), pop(q) and push(q, γ) change
the control state to q and rewrite the top of the stack symbol to γ, remove the top stack
symbol, and add γ to the top of the stack respectively. Furthermore, we assume Σ contains
a bottom-of-the-stack symbol ⊥ which is neither pushed onto, nor popped from, the stack.

A parity game over an abstract pushdown process is analogous to a parity game played
over a higher-order PDS: the set P is partitioned PE ⊎ PA. If the current control state is
in PE , Élöıse chooses the next move, otherwise Abelard is to play. To calculate the winning
regions of a parity game over an abstract pushdown process, we use automata with oracles.

99

Section 4.7. Abstract Pushdown Games and Higher-Order Pushdown Systems

Definition 4.7.2. An automaton with oracles A is a tuple (Q,P, Σ, δ, q0,O1, . . . ,On, Acc)
where Q is a finite set of states, P is a set of control states, Σ is a (possibly infinite) input
alphabet, q0 ∈ Q is the initial state, Oi are subsets of Σ (called oracles) and δ : Q×{0, 1}n →
Q is the transition function. Finally Acc is a function from Q to 2P .

A configuration 〈p, [γm . . . γ0]〉 is accepted by an automaton A iff there is a run q0, . . . , qm

with qi+1 ∈ δ(qi,O1(γi), . . . ,On(γi)) for all i ∈ {0, . . . , m − 1} and p ∈ Acc(qm).
In the previous section we defined an alternating parity automaton accepting Élöıse’s

winning region with the transition relation,

δ(p, a) =
∨

R∈R(p,a)

∧

p′∈R

p′

and δ(p,⊥) = p. In a similar manner, we define an automaton with oracles accepting Élöıse’s
winning region of an abstract pushdown game. We define an oracle Op,R for every p ∈ P and
R ⊆ P with Op,R(γ) = 1 iff R ∈ R(p, γ). These oracles take the place of the disjunction in
the transition relation given above. The conjunction is represented via a subset construction.

Theorem 4.7.1. Let G be an abstract pushdown parity game over an abstract pushdown
process (P,D, Σ). The winning region of Élöıse is accepted by an automaton with oracles
A = (2P ,P, Σ, δ, ∅,O1, . . . ,On, Acc) such that,

• For every p ∈ P and R ⊆ P there is an oracle Op,R with Op,R(γ) iff R ∈ R(p, γ) and
γ 6=⊥. Furthermore there is an oracle O⊥ with O⊥(γ) = 1 iff γ =⊥.

• Using the oracles, δ behaves as follows,

– From state ∅ on input ⊥, the next state is { p | 〈p, [⊥]〉 is winning for Élöıse in G },

– From state q ∈ 2P on input γ, the next state is { p | q ∈ R(p, γ) }.

• Acc(p) = p.

If a language is accepted by an automaton whose oracles are regular languages, the lan-
guage is itself regular. Furthermore, if the sets { γ | R ∈ R(p, γ) } are regular, the oracles
Op,R(γ) = 1 iff R ∈ R(p, γ) are regular, and, hence, the winning regions of the parity game
are regular.

The sets R(p, γ) can be calculated, as in the previous section, using conditional games
G(R). Using the construction in Section 2.8.5, an order-n conditional game can be reduced
to an order-(n − 1) game G′(R).

Theorem 4.7.2. For every p ∈ P, γ ∈ Σ and R ⊆ P , we have R ∈ R(p, γ) iff the configura-
tion Check((R, . . . , R), γ, m, m, p) is winning for Élöıse in G′(R), where c is the priority of
p.

Therefore, if the winning regions of the order-(n− 1) game are regular, the sets { γ | R ∈
R(p, γ) } are regular, and hence, the winning regions of the original game are regular. In the
previous sections we saw that the winning regions of an order-1 pushdown parity game are
regular. By an inductive argument, and since higher-order pushdown games are a special case
of abstract pushdown games, we have that the winning regions of a higher-order pushdown
parity game are regular.

Theorem 4.7.3. The winning regions of an order-n pushdown parity game are regular and
can be effectively computed in n-EXPTIME.

100

Section 4.8. Summary

4.8 Summary

We have proposed a new, direct, and easy to describe algorithm for computing the winning
regions of an order-1 pushdown parity game. This algorithm extends the saturation techniques
for reachability, due to Bouajjani et al. [3] and Finkel et al. [15], and for Büchi games, due to
Cachat [128]. This algorithm uses a modal µ-calculus formula (given by Walukiewicz [53]) that
characterises Élöıse’s winning region, and uses it to guide the construction of an alternating
automaton accepting Élöıse’s winning region.

We then described three existing approaches to the same problem, which are based on
applications of Walukiewicz’s original reduction from order-1 pushdown parity games to finite
state parity games (Serre [93] and Cachat [128]) or an interpretation of pushdown systems
using trees and two-way alternating tree-automata (Vardi et al. [91, 87, 86]). In Section 4.6.4
we gave a brief comparison of the available techniques.

Finally in Section 4.7 we described Serre’s extension of his technique to order-n pushdown
games.

101

Chapter 5

Global Reachability Analysis of
Higher-Order Pushdown Systems

In this chapter, we discuss the non-trivial problem1 of extending the backwards reachability
result of Bouajjani and Meyer to the general case of higher-order PDSs (by taking into account
a set of control states). In fact, we consider (and solve) the backwards reachability problem
for the more general case of higher-order alternating pushdown systems (APDSs). Following
the work of Cachat [128], we show that the winning region of a reachability game played over
a higher-order PDS can be computed by a reduction to the backwards reachability problem
of an appropriate APDS. Furthermore, by reducing the non-emptiness problem for an order-
(n + 1) higher-order PDA to a reachability problem over order-n APDS, we show that our
algorithm is optimal. This work was first published in FoSSaCS 2007 [78] and in the FoSSaCS
2007 special issue of LMCS [79]. An alternative construction, presented by Seth [23], for the
order-2 case is discussed in Section 5.5.

The algorithm uses a form of nested automata to represent configurations and uses a
similar routine of adding transitions determined by the transition relation of the higher-order
APDS. However, näıve combinations of the multi-automaton and nested-store automaton
techniques do not lead to satisfactory solutions. During our own efforts with simple com-
bined techniques, it was unclear how to form the product of two automata and maintain a
distinction between the different control states as required. To perform such an operation
safely it seemed that additional states were required on top of those added by the basic prod-
uct operation, invalidating the termination arguments. We overcome this problem by using
alternating automata and by modifying the termination argument. Additionally, we reduce
the complexity of Bouajjani and Meyer from a tower of exponentials twice the size of n, to a
tower of exponentials as large as n. Hence, the problem is n-EXPTIME-complete.

The nesting of the automata reflects the nesting of a higher-order stack: an automaton
accepting order-n stacks has n layers of nesting. We refer to these layers from the outer layer
to the inner layer as order-n to order-one of the automaton. Termination of the reachability
algorithm is reached through a cascading of fixed points. Given a (nested) store-automaton,
we fix the order-n state-set, but allow the state-sets at orders less than n to change. During a
number of iterations, we add a finitely bounded number of new transitions to order-n of the
automaton. If a transition has already been added between a state and a set of states, we

1“This does not seem to be technically trivial, and näıve extensions of our construction lead to procedures
which are not guaranteed to terminate.” [2, p. 145]

103

Section 5.1. n-Store Multi-Automata

update the automata labelling the transition, rather than add a new transition. Eventually
we reach a stage where no new transitions are being added at order-n, although changes
will continue to occur at lower orders. At this point the updates become repetitive and we
are able to freeze the state-set at the second highest order. This is done by adding possibly
cyclical transitions between the existing states, instead of a chain of transitions between an
unbounded number of new states (see Figure 5.6). Because the order-(n − 1) state-set has
been fixed, we reach another fixed point where no new order-(n − 1) transitions are added.
This is similar to first fixed point at order-n. In this way the fixed points cascade to order-one,
where the finite alphabet ensures that the automaton eventually becomes saturated. We are
left with an automaton representing the set Pre∗(CInit).

In the sequel, to ease the presentation, we assume n > 1. The case n = 1 was investigated
by Bouajjani et al. [3].

5.1 n-Store Multi-Automata

To represent sets of configurations symbolically we will use n-store multi-automata. These
are alternating automata whose transitions are labelled by (n− 1)-store automata, which are
also alternating. A set of configurations is regular iff it can be represented using an n-store
multi-automaton. This notion of regularity coincides with the definition of Bouajjani and
Meyer (see Section 5.2). In Section 5.6 we give algorithms for enumerating runs of n-store
automata, testing membership and performing boolean operations on the automata.

Definition 5.1.1.

1. A 1-store automaton is a tuple (Q, Σ, ∆, q0,Qf) where Q is a finite set of states,
Σ is a finite alphabet, q0 is the initial state and Qf ⊆ Q is a set of final states and
∆ ⊆ Q× Σ × 2Q is a finite transition relation.

2. Let B
Σ
n−1 be the (infinite) set of all (n − 1)-store automata over the alphabet Σ. An

n-store automaton over the alphabet Σ is a tuple (Q, Σ, ∆, q0,Qf) where Q is a
finite set of states, q0 /∈ Qf is the initial state, Qf ⊆ Q is a set of final states, and
∆ ⊆ Q× B

Σ
n−1 × 2Q is a finite transition relation. Furthermore, let B

Σ
0 = Σ.

3. An n-store multi-automaton over the alphabet Σ is a tuple

(Q, Σ, ∆, {q1, . . . , qz},Qf)

where Q is a finite set of states, Σ is a finite alphabet, qi for i ∈ {1, . . . , z} are pairwise
distinct initial states with qi /∈ Qf and qi ∈ Q; Qf ⊆ Q is a set of final states, and,

∆ ⊆ (Q× B
Σ
n−1 × 2Q) ∪ ({q1, . . . , qz} × {▽} × {qε

f})

is a finite transition relation where qε
f ∈ Qf has no outgoing transitions.

To indicate a transition (q, B, {q1, . . . , qm}) ∈ ∆ we write,

q
B
−→ {q1, . . . , qm}

104

Section 5.2. Regularity

A transition of the form qj ▽

−→ {qε
f} indicates that the undefined configuration 〈pj , ▽〉 is

accepted. Runs of the automata from a state q take the form,

q
eB0−→ {q1

1, . . . , q
1
m1

}
eB1−→ . . .

eBm−→ {qm+1
1 , . . . , qm+1

ml
}

where transitions between configurations {qx
1 , . . . , qx

mx
}

eBx−→ {qx+1
1 , . . . , qx+1

mx+1
} are such that

we have qx
y

By
−→ Qy for all y ∈ {1, . . . , mx} and

⋃
y∈{1,...,mx}

Qy = {qx+1
1 , . . . , qx+1

mx+1
} and

additionally
⋃

y∈{1,...,mx}
{By} = B̃x. Observe that B̃0 is necessarily a singleton set. A run

over a word γ1 . . . γm, denoted q
γ1...γm
−−−−→ Q, exists whenever,

q
eB0−→ . . .

eBm−→ Q

and for all 0 ≤ i ≤ m, γi ∈ L(B̃i), where γ ∈ L(B̃) iff γ ∈ L(B) (defined below) for all B ∈ B̃.
If a run occurs in an automaton forming part of a sequence of automata A0, A1, . . ., we may
write −→i to indicate which automaton Ai the run belongs to.

We define L(a) = a for all a ∈ Σ = B
Σ
0 . An n-store [γ1 . . . γm] is accepted by an n-store

automaton A (that is [γ1 . . . γm] ∈ L(A)) iff we have a run q0
γ1...γm
−−−−→ Q in A with Q ⊆ Qf .

For a given n-store multi-automaton A = (Q,Σ, ∆, {q1, . . . , qz},Qf) we define,

L(Aqj
) = { [γ1 . . . γm] | qj γ1...γm

−−−−→ Q ∧ Q ⊆ Qf }

∪ { ▽ | qj ▽

−→ {qε
f} }

and
L(A) = { 〈pj , γ〉 | j ∈ {1, . . . , z} ∧ γ ∈ L(Aqj

) }

Finally, we define the automata Ba
l and Xa

l for all 1 ≤ l ≤ n and a ∈ Σ and the notation
qθ. The l-store automaton Ba

l accepts any l-store γ such that top1(γ) = a. The (n− 1)-store
automaton Xa

l accepts all (n−1)-stacks such that top1(γ) = a and topl+1(γ) = [[w′]] for some
w′. That is, popl(γ) is undefined. If θ represents a store automaton, the state qθ refers to the
initial state of the automaton represented by θ.

5.2 Regularity

We show that our notion of a regular set of n-stores coincides with the definition of Bouajjani
and Meyer [2]. Because we are considering n-stores rather than configurations, we assume
that there is only one control state, and hence, an n-store multi-automaton has only a single
initial state. We also disregard the undefined store ▽, since it is not strictly a store. Observe
that we are left with n-store automata.

In the absence of alternation, the set of n-store automata is definitionally equivalent to
the set of level n nested store automata in the sense of Bouajjani and Meyer. Hence, it is the
case that every level n nested store automaton is also an n-store automaton.

We need to prove that every n-store automaton has an equivalent level n nested store
automata. We present the following definition:

Definition 5.2.1. Given an n-store automaton A = (Q, Σ, ∆, q0,Qf) we define a level n

nested store automaton Â = (2Q, Σ, ∆̂, {q0}, 2
Qf), where, if n = 1,

∆̂ =
{

({q1, . . . , qm}, a, Q′) | ∀i ∈ {1, . . . , m}. (∃(qi, a, Qi) ∈ ∆) ∧ Q′ = Q1 ∪ · · · ∪ Qm

}

105

Section 5.2. Regularity

and if n > 1,

∆̂ =

{
({q1, . . . , qm}, B̂, Q′) |

∀i ∈ {1, . . . , m}. (∃(qi, Bi, Qi) ∈ ∆)∧
Q′ = Q1 ∪ · · · ∪ Qm ∧ B = B1 ∩ · · · ∩ Bm

}

where B̂ is defined recursively and the construction of B1 ∩ · · · ∩Bm is given in section 5.6.3.

Property 5.2.1. For any w, the run {q1, . . . , qm}
w

−→ Q′ exists in the n-store automaton A
iff the run {q1, . . . , qm}

w
−→ Q′ exists in Â.

Proof. The proof is by induction over n and then by a further induction over the length of w.
Suppose n = 1. When w = ε the proof is immediate. When w = aw′ we have in one

direction,

{q1, . . . , qm}
a

−→ Q1
w′

−→ Q′

in A, and by induction over the length of the run, Q1
w′

−→ Q′ in Â. By definition of the runs
of A we have qi

a
−→ Qi

1 for each i ∈ {1, . . . , m} with Q1 = Q1
1∪· · ·∪Qm

1 . Hence, by definition

of Â we have the transition {q1, . . . , qm}
a

−→ Q1
1 ∪ · · · ∪ Qm

1 = Q1. Hence we have the run

{q1, . . . , qm}
w

−→ Q′ in Â as required.
In the other direction we have a run of the form

{q1, . . . , qm}
a

−→ Q1
w′

−→ Q′

in Â, and by induction over the length of the run, Q1
w′

−→ Q′ in A. By definition of the
transition relation of Â we have qi

a
−→ Qi

1 in A for each i ∈ {1, . . . , m} with Q1 = Q1
1∪· · ·∪Qm

1 .

Hence, we have the transition {q1, . . . , qm}
a

−→ Q1
1 ∪ · · · ∪ Qm

1 = Q1 in A. Thus, we have the

run {q1, . . . , qm}
w

−→ Q′ in A as required.
When n > 1, when w = ε the proof is immediate. When w = γw′ we have in one direction,

{q1, . . . , qm}
γ

−→ Q1
w′

−→ Q′

in A, and by induction over the length of the run, Q1
w′

−→ Q′ in Â. By definition of the runs

of A we have qi
Bi−→ Qi

1 with γ ∈ L(Bi) for each i ∈ {1, . . . , m} with Q1 = Q1
1 ∪ · · · ∪ Qm

1 .
Consequently, we have γ ∈ L(B) where B = B1 ∩ · · · ∩Bm. By induction over n we have γ ∈

L(B̂). Hence, by definition of Â we have the transition {q1, . . . , qm}
γ

−→ Q1
1 ∪ · · · ∪Qm

1 = Q1.

Hence we have the run {q1, . . . , qm}
w

−→ Q′ in Â as required.
In the other direction we have a run of the form

{q1, . . . , qm}
γ

−→ Q1
w′

−→ Q′

in Â. In particular, we have {q1, . . . , qm}
B̂
−→ Q1 in Â with γ ∈ L(B̂). By induction over

the length of the run, Q1
w′

−→ Q′ in A. By definition of the transition relation of Â we have

qi
Bi−→ Qi

1 for each i ∈ {1, . . . , m} with B = B1∩· · ·∩Bm and Q1 = Q1
1∪· · ·∪Qm

1 . By induction

over n we have γ ∈ L(B) and hence γ ∈ L(Bi) for all i ∈ {1, . . . , m}. Hence we have qi
γ

−→ Qi
1

in A for all i ∈ {1, . . . , m}. Thus, we have the transition {q1, . . . , qm}
γ

−→ Q1
1 ∪ · · ·∪Qm

1 = Q1

in A and the run {q1, . . . , qm}
w

−→ Q′ as required.

Corollary 5.2.1. A set of n-stores is definable by an n-store automaton iff it is definable by
a level n nested store automaton.

106

Section 5.3. The Order-Two Case

q1

qf

q2

B1

B2

B3
B4

Figure 5.1: The initial 2-store multi-automaton

5.3 The Order-Two Case

Before introducing the full algorithm, we give an example and a description of the algorithm
for the order-2 case. This will provide an introduction to the important features of the solution
whilst reducing the notational complexity.

Theorem 5.3.1. Given a 2-store multi-automaton A0 accepting the set of configurations
CInit of an order-2 APDS, we can construct in 2-EXPTIME (in the size of A0) a 2-store
multi-automaton A∗ accepting the set Pre∗(CInit). Thus, Pre∗(CInit) is regular.

Fix an order-2 APDS. We begin by showing how to generate an infinite sequence of
automata A0, A1, . . ., where A0 is such that L(A0) = CInit. This sequence is increasing in the
sense that L(Ai) ⊆ L(Ai+1) for all i, and sound and complete with respect to Pre∗(CInit); that
is

⋃
i≥0 L(Ai) = Pre∗(CInit). To conclude the algorithm, we construct a single automaton A∗

such that L(A∗) =
⋃

i≥0 L(Ai).
We assume without loss of generality that all initial states in A0 have no incoming transi-

tions and there exists in A0 a state q∗f from which all valid 2-stores are accepted and a state
qε
f ∈ Qf which has no outgoing transitions.

5.3.1 Example

We give an intuitive explanation of the algorithm by means of an example. Fix the following
two-state order-two PDS:

d1 = (p1, a, push2, p
1)

d2 = (p1, a, pushε, p
1)

d3 = (p2, a, pushw, p1)
d4 = (p2, a, pop2, p

1)

And a 2-store multi-automaton A0 shown in Figure 5.1 with some B1, B2, B3 and B4. We
proceed via a number of iterations, generating the automata A0, A1, We construct Ai+1

from Ai to reflect an additional inverse application of the commands d1, . . . , d4.
During the construction of A1, rather than manipulating the order-1 store automata

labelling the edges of A0 directly, we introduce new transitions (at most one between each
pair of states q1 and q2) and label these edges with the set G̃1

(q1,q2). This set is a recipe for the

107

Section 5.3. The Order-Two Case

q1

qf

q2

B1

B2

B3
B4

G̃1
(q1,qf)

G̃1
(q1,◦)

G̃1
(q2,◦)

G̃1
(q2,q1)

Figure 5.2: The automaton A1

d1 d2 d3 d4

G̃1
(q1,◦) {(a, pushε, B1)}

G̃1
(q1,qf) {Ba

1 , B1, B3}

G̃1
(q2,◦) {(a, pushw, B1)}

G̃1
(q2,q1) {Ba

1}

Table 5.1: The contents of the sets in G̃1.

construction of an order-1 store automaton that will ultimately label the edge. The set G̃1 is
the set of all sets G̃1

(q1,q2) introduced. After the first stage of the algorithm, the resulting A1

is given in Figure 5.2 where the contents of

G̃1 =
{

G̃1
(q1,◦), G̃

1
(q1,qf), G̃

1
(q2,◦), G̃

1
(q2,q1)

}

are given in Table 5.1. The columns indicate which command introduced each element to the
set.

To process the command d1 we need to add to the set of configurations accepted by
A1 all configurations of the form 〈p1, [γ1 . . . γm]〉 with top1(γ1) = a for each configuration
〈p1, [γ1γ1 . . . γm]〉 accepted by A0. This is because push2[γ1 . . . γm] = [γ1γ1 . . . γm]. Hence we
add the transition from q1 to qf . The contents of G̃1

(q1,qf) indicate that this edge must accept

the product of Ba
1 , B1 and B3.

The commands d2 and d3 update the top2 stack of any configuration accepted from q1 or
q2 respectively. In both cases this updated stack must be accepted from q1 in A0. Hence, the

108

Section 5.3. The Order-Two Case

q1

qf

q2

B1

B2

B3
B4

G̃2
(q1,qf)

G̃2
(q1,◦)

G̃2
(q2,◦)

G̃2
(q2,q1)

G̃2
(q2,qf)

Figure 5.3: The automaton A2.

contents of G̃1
(q1,◦) and G̃1

(q2,◦) specify that the automaton B1 must be manipulated to produce

the automaton that will label these new transitions. Finally, since pop2[γ1 . . . γm] = [γ2 . . . γm],
d4 requires an additional top2 stack with a as its top1 element to be added to any stack accepted
from q1. Thus, we introduce the transition from q2 to q1.

To construct A2 from A1 we repeat the above procedure, taking into account the additional
transitions in A1. Observe that we do not add additional transitions between pairs of states
that already have a transition labelled by a set. Instead, each labelling set may contain several
element sets. The resulting A2 is given in Figure 5.3 where the contents of

G̃2 =
{

G̃2
(q1,◦), G̃

2
(q1,qf), G̃

2
(q2,◦), G̃

2
(q2,q1), G̃

2
(q2,qf)

}

are given in Table 5.2.
If we were to repeat this procedure to construct A3 we would notice that a kind of fixed

point has been reached. In particular, the transition structure of A3 will match that of A2

and each G̃3
(q,q′) will match G̃2

(q,q′) in everything but the indices of the labels G̃1
(,) appearing

in the element sets. We may write G̃3
(q,q′) = G̃2

(q,q′)[2/1] where the notation [2/1] indicates a
substitution of the element indices.

So far we have just constructed sets to label the transitions of A1 and A2. To complete
the construction of A1 we need to construct the automata G1

(q,q′) represented by the labels

G̃1
(q,q′) for the appropriate q, q′. Because each of these new automata will be constructed from

B1, . . . , B4, B
a
1 , we build them simultaneously, constructing a single (1-store multi-)automaton

G1 with an initial state g1
(q,q′) for each G̃1

(q,q′). The automaton G1 is constructed through
the addition of states and transitions to the disjoint union of B1, . . . , B4, B

a
1 . Creating the

automaton A2 is analogous and G2 is built through the addition of states and transitions to
G1.

The automaton G1 is given in Figure 5.4. We do not display this automaton in full since
the number of alternating transitions entails a diagram too complicated to be illuminating.

109

Section 5.3. The Order-Two Case

d1 d2 d3 d4

G̃2
(q1,◦) {(a, pushε, B1)}

{(a, pushε, G̃
1
(q1,◦))}

G̃2
(q1,qf)

{Ba
1 , B1, B3} {(a, pushε, G̃

1
(q1,qf))}

{Ba
1 , G̃1

(q1,qf), B4}

{Ba
1 , G̃1

(q1,◦), B3}

G̃2
(q2,◦) {(a, pushw, B1)}

{(a, pushw, G̃1
(q1,◦))}

G̃2
(q2,q1) {Ba

1}

G̃2
(q2,qf) {(a, pushw, G̃1

(q1,qf))}

Table 5.2: The contents of the sets in G̃2.

Instead we will give the basic structure of the automaton with many transitions omitted. In
particular we show a transition derived from {Ba

1 , B1, B3} (from state g1
(q1,qf)), a transition

derived from {(a, pushε, B1)} (from state g1
(q1,◦)) and a transition derived from {Ba

1} (from

state g1
(q2,q1)).

Notably, we have omitted any transitions derived from the pushw command. This is
simply for convenience since we do not wish to further explicate B1, B2, B3 or B4. From
this automaton we derive G1

(q1,◦), G
1
(q1,qf), G

1
(q2,◦) and G1

(q2,q1) by setting the initial state to

g1
(q1,◦), g

1
(q1,qf), g

1
(q2,◦) and g1

(q2,q1) respectively.

The automaton G2 is shown in Figure 5.5. Again, due to the illegibility of a complete
diagram, we omit many of the transitions. The new transition from g2

(q1,qf) is derived from

the set {Ba
1 , B3, G̃

1
(q1,◦)}. One of the transitions from g2

(q1,◦) and the only transition from

g2
(q2,q1) are inherited from their corresponding states in the previous automaton. This in-

heritance ensures that we do not lose information from the previous iteration. The upper-
most transition from g2

(q1,◦) derives from {(a, pushε, G̃
1
(q1,◦))}. From this automaton we derive

G1
(q1,◦), G

1
(q1,qf), G

1
(q2,◦) and G1

(q2,q1).

We have now constructed the automata A1 and A2. We could then repeat this procedure to
generate A3, A4, . . ., resulting in an infinite sequence of automata that is sound and complete
with respect to Pre∗(L(A0)).

To construct A∗ such that L(A∗) =
⋃

i≥0 L(Ai) we observe that since a fixed point was

reached at A2, the update to each Gi to create Gi+1 will use similar recipes and hence become
repetitive. This will lead to an infinite chain with an unvarying pattern of edges. This chain
can be collapsed as shown in Figure 5.6.

110

Section 5.3. The Order-Two Case

g1
(q1,◦) qB1

g1
(q2,◦) qB2

g1
(q1,qf) qB3

g1
(q2,q1) qB4

qBa
1

a

a

a

a

a

a

Figure 5.4: A selective view of G1.

g2
(q1,◦) g1

(q1,◦) qB1

g2
(q2,◦) g1

(q2,◦) qB2

g2
(q1,qf) g1

(q1,qf) qB3

g2
(q2,q1) g1

(q2,q1) qB4

g2
(q2,qf) qBa

1

a

a

a

a

a

a

a

a

a

a

Figure 5.5: A selective view of G2.

111

Section 5.3. The Order-Two Case

· · · · · · “=”

Figure 5.6: Collapsing a repetitive chain of new states.

g2
(q1,◦) g1

(q1,◦) qB1

g2
(q2,◦) g1

(q2,◦) qB2

g2
(q1,qf) g1

(q1,qf) qB3

g2
(q2,q1) g1

(q2,q1) qB4

g2
(q2,qf) qBa

1

a

a

a

a

a

a

a

a

a

a

a

Figure 5.7: A selective view of Ĝ∗.

In particular, we are no longer required to add new states to G2 to construct Gi for
i > 2. Instead, we fix the update instructions G̃2

(q,q′)[2/1] for all q, q′ and manipulate G2 as

we manipulated the order-2 structure of A0 to create A1 and A2. We write Ĝi to distinguish
these automata from the automata Gi generated without fixing the state-set.

Because Σ and the state-set are finite (and remain unchanged), this procedure will reach
another fixed point Ĝ∗ when the transition relation is saturated and Ĝi = Ĝi+1. The automaton
A∗ has the transition structure that became fixed at A2 labelled with automata derived from
Ĝ∗. This automaton will be sound and complete with respect to Pre∗(L(A0)).

An abbreviated diagram of Ĝ∗ is given in Figure 5.7. We have hidden, for clarity, the
transition derived from {Ba

l , B3, G̃
1
(q1,◦)} in Figure 5.5. Instead, we show the transition intro-

duced for the set {Ba
1 , B3, G̃

1
(q1,◦)}[2/1] = {Ba

1 , B3, G̃
2
(q1,◦)} during the construction of Ĝ∗. We

have also added the self-loop added by {(a, pushε, G
1
(q1,◦))}[2/1] = {(a, pushε, G

2
(q1,◦))} that

enabled the introduction of this transition.

112

Section 5.3. The Order-Two Case

5.3.2 Preliminaries

We now discuss the algorithm more formally. We begin by describing the transitions labelled
by Gi

(q1,Q2) before discussing the construction of the sequence A0, A1, . . . and the automaton
A∗.

To aid in the construction of an automaton representing Pre∗(CInit) we introduce a new
kind of transition to the 2-store automata. These new transitions are introduced during the
processing of the APDS commands. They are labelled with place-holders that will eventually
be converted into 1-store automata.

Between any state q1 and set of states Q2 we add at most one transition. We associate this
transition with an identifier G̃(q1,Q2). To describe our algorithm we will define sequences of
automata, indexed by i. We superscript the identifier to indicate to which automaton in the
sequence it belongs. The identifier G̃i

(q1,Q2) is associated with a set that acts as a recipe for

updating the 1-store automaton described by G̃i−1
(q1,Q2) or creating a new automaton if G̃i−1

(q1,Q2)
does not exist. Ultimately, the constructed 1-store automaton will label the new transition.
In the sequel, we will confuse the notion of an identifier and its associated set. The intended
usage should be clear from the context.

The sets are in a kind of disjunctive normal form. A set {S1, . . . , Sm} represents an
automaton that accepts the union of the languages accepted by the automata described by
S1, . . . , Sm. Each set S ∈ {S1, . . . , Sm} corresponds to a possible effect of a command d
at order-1 of the automaton. The automaton described by S = {α1, . . . , αm} accepts the
intersection of languages described by its elements αt (t ∈ {1, . . . , m}).

An element that is an automaton B refers directly to the automaton B. Similarly, an
identifier G̃i

(q1,Q2) refers to its corresponding automaton. Finally, an element of the form

(a, pushw, θ) refers to an automaton capturing the effect of applying the inverse of the pushw

command to the stacks accepted by the automaton represented by θ; moreover, the top1

character of the stacks accepted by the new automaton will be a. It is a consequence
of the construction that for any S added during the algorithm, if (a, pushw, θ) ∈ S and
(a′, pushw′ , θ′) ∈ S then a = a′.

Formally, to each G̃i
(q1,Q2) we attach a subset of

2B ∪ G̃i−1 ∪ (Σ ×O1 × (B ∪ G̃i−1))

where B is the set of all 1-store automata occurring in A0 and all automata of the form Ba
1 .

Further, we denote the set of all identifiers G̃i
(q,Q) in Ai as G̃i. The sets B and O1 are finite

by definition. The size of the set G̃i for any i is finitely bound by the (fixed) state-set of Ai.
We build the automata for all G̃i

(q1,Q2) ∈ G̃i simultaneously. That is, we create a sin-

gle automaton Gi associated with the set G̃i. This automaton has a state gi
(q1,Q2) for each

G̃i
(q1,Q2) ∈ G̃i. The automaton Gi

(q1,Q2) labelling the transition q1 −→i Q2 is the automaton

Gi with gi
(q1,Q2) as its initial state.

The automaton Gi is built inductively. We set G0 to be the disjoint union of all automata
in B. We define Gi+1 = TeGi+1(G

i) where TeGj (G
i) is given in Definition 5.3.1. Notice that we

use j rather than (i + 1). This is because, in Section 5.3.4 we will eventually fix a value i1
and define for all i > i1, G

i+1 = TeGi1 [i1/i1−1]
(Gi) rather than Gi+1 = TeGi+1(G

i).

113

Section 5.3. The Order-Two Case

Definition 5.3.1. Given an automaton Gi = (Qi, Σ, ∆i, ,Qf) and a set of identifiers (with

associated sets) G̃j
1, we define,

Gi+1 = TeGj (G
i) = (Qi+1, Σ, ∆i+1, ,Qf)

where Qi+1 = Qi ∪ { gj
(q1,Q2) | G̃j

(q1,Q2) ∈ G̃j }, ∆i+1 = ∆inherited ∪ ∆new ∪ ∆i, and,

∆inherited = { gj
(q1,Q2)

a
−→ Q | (gj−1

(q1,Q2)

a
−→ Q) ∈ ∆i }

∆new =
{

gj
(q1,Q2)

b
−→ Q | G̃j

(q1,Q2) ∈ G̃j and b ∈ Σ and (1)
}

where (1) requires {α1, . . . , αr} ∈ G̃j
(q1,Q2), Q = Q1 ∪ · · · ∪ Qr and for each t ∈ {1, . . . , r} we

have,

• If αt = θ, then (qθ b
−→ Qt) ∈ ∆i.

• If αt = (a, pushw, θ), then b = a and qθ w
−→ Qt is a run of Gi.

There are two key parts to Definition 5.3.1. During the first stage we add a new initial
state for each automaton forming a part of Gi+1. By adding new initial states, rather than
using the previous set of initial states, we guarantee that no unwanted cycles are introduced,
which may lead to the erroneous acceptance of certain stores. We ensure that each 1-store
accepted by Gi is accepted by Gi+1 — and the set of accepted stores is increasing — by
inheriting transitions from the previous set of initial states.

During the second stage we add transitions between the set of new initial states and the
state-set of Gi to capture the effect of a backwards application of the APDS commands to
L(Ai).

There are two different forms for the elements αt ∈ {α1, . . . , αr}. If αt refers directly to
an automaton, then we require that the new store is also accepted by the automaton referred
to by αt. We simply inherit the initial transitions of that automaton in a similar manner to
the first stage of TeGj (G

i). If αt is of the form (a, pushw, θ), then it corresponds to the effects
of a command (p, a, {. . . , (pushw, p′), . . .}). The new store must have the character a as its
top1 character, and the store resulting from the application of the operation pushw must be
accepted by the automaton represented by θ. That is, the new state must accept all stores of
the form aw′ when the store ww′ is accepted by θ.

5.3.3 Constructing the Sequence A0, A1, . . .

For a given order-2 APDS with commands D we define Ai+1 = TD(Ai) where the operation
TD follows. We assume A0 has a state qε

f with no outgoing transitions and a state q∗f from
which all stores are accepted.

Definition 5.3.2. Given an automaton Ai = (Q, Σ, ∆i, {q1, . . . , qz},Qf) and a set of com-
mands D, we define,

Ai+1 = TD(Ai) = (Q, Σ, ∆i+1, {q1, . . . , qz},Qf)

where ∆i+1 is given below.

114

Section 5.3. The Order-Two Case

We begin by defining the set of labels G̃i+1. This set contains labels on transitions present
in Ai, and labels on transitions derived from D. That is,

G̃i+1 =

{
G̃i+1

(qj ,Q)
| (qj

eGi

(qj ,Q)
−−−−→ Q) ∈ ∆i and j ∈ {1, . . . , z}

}
∪

{
G̃i+1

(qj ,Q)
| (2)

}

The contents of the associated sets G̃i+1
(q,Q) ∈ G̃i+1 are defined G̃i+1

(qj ,Q)
= { S | (2) } where (2)

requires (pj , a, {(o1, p
k1), . . . , (om, pkm)}) ∈ D, Q = Q1 ∪ · · · ∪ Qm, S = S1 ∪ · · · ∪ Sm and for

each t ∈ {1, . . . , m} we have,

• If ot = push2, then St = {Ba
1} ∪ θ̃1 ∪ θ̃2 and there exists a path qkt

eθ1−→i Q′
eθ2−→i Qt in

Ai.

• If ot = pop2, then St = {Ba
1} and Qt = {qkt}. Or, if qj ▽

−→i {q
ε
f} exists in Ai, we may

have St = {Ba
1} and Qt = {qε

f}.

• If ot = pushw then St = {(a, pushw, θ)} and there exists a transition qkt
θ

−→i Qt in Ai.

Finally, we give the transition relation ∆i+1.

∆i+1 =

{
q

B
−→ Q | (q

B
−→ Q) ∈ ∆i

and B ∈ B

}
∪

{
q

eGi+1
(q,Q)

−−−−→ Q | G̃i+1
(q,Q) ∈ G̃i+1

}

We can construct an automaton whose transitions are 1-store automata by replacing each
set G̃i+1

(q,Q) with the automaton Gi+1
(q,Q) which is Gi+1 with initial state gi+1

(q,Q), where Gi+1 =

TeGi+1(G
i). Note that Gi is assumed by induction. In the base case, G0 is the disjoint union of

all automata in B.

The above construction is similar to Definition 5.3.1. However, because we do not change
the initial states of the automaton, we do not have to perform the inheritance step. Further-
more the set of commands D specify how the automata should be updated, rather than a set
G̃i. A command (pj , a, {(o1, p

k1), . . . , (om, pkm)}) takes the place of a set {α1, . . . , αm}.
The contents of St and Qt depend on the operation ot. If ot is of a lower order than 2

(that is, a pushw command) then ot(γw) = ot(γ)w for any store γw. Hence we inherit the
first transition from the initial state of the automaton represented θ, but pass the required
constraint (using St = {(a, ot, B)}) to the lower orders of the automaton.

Otherwise ot is a pop2 or push2 operation. If is a push2 command, then push2(γw′) =
γγw′, and hence we use St to ensure that the top store γ of γw′ is accepted by the first
two transitions from the initial state of the automaton represented by θ and we use Qt to
ensure that the tails of the stores match. Note that, in contrast to Bouajjani and Meyer
(Section 3.3), we use the power of alternation, rather than a product construction, in this
case. This simplifies the handling of the state-set.

When ot is a pop2 operation and the new store is simply the old store with an additional
2-store on top (that is pop2(γw′) = w′), Qt is the initial state of the automaton represented
by θ and St contains the automaton Ba

1 . This ensures that the top1 character of the new
store is a. We also need to consider the undefined store ▽. This affects the processing of
pop2 operations since their result is not always defined. Hence, when considering which new

115

Section 5.3. The Order-Two Case

stores may be accepted by Ai+1, we check whether the required undefined configuration is
accepted by Ai. This is witnessed by the presence of a ▽ transition from pj . If the result may
be undefined, we accept all stores that do not have an image under the pop2 operation. That
is, all stores of the form [γ].

By repeated applications of TD we construct the sequence A0, A1, . . . which is sound and
complete with respect to Pre∗(CInit).

Property 5.3.1. For any configuration 〈pj , γ〉 it is the case that γ ∈ L(Aqj

i) for some i iff
〈pj , γ〉 ∈ Pre∗(CInit).

5.3.4 Constructing the Automaton A∗

We need to construct a finite representation of the sequence A0, A1, . . . in a finite amount
of time. To do this we will construct an automaton A∗ such that L(A∗) =

⋃
i≥0 L(Ai). We

begin by introducing some notation and a notion of subset modulo i for the sets G̃i
(q1,Q2).

Definition 5.3.3.

1. Given θ ∈ B ∪ G̃i for some i, let

θ[j/i] =

{
θ if θ ∈ B

Gj
(q1,Q2) if θ = Gi

(q1,Q2) ∈ G̃i

2. For a set S we define S[j/i] such that,

(a) We have θ ∈ S iff we have θ[j/i] ∈ S[j/i], and

(b) We have (a, o, θ) ∈ S iff we have (a, o, θ[j/i]) ∈ S[j/i].

3. We extend the notation [j/i] to nested sets of sets structures in a point-wise fashion.

We now define G̃i
(q1,Q2) . G̃j

(q1,Q2). Both sets contain elements of the form θ or (a, o, θ).

In G̃i
(q1,Q2) we have that the θ are of the form G

(i−1)
(q,Q′) for some q and Q, or θ ∈ B. Similarly,

in G̃j
(q1,Q2) we have that the θ are of the form G

(j−1)
(q,Q′), or θ ∈ B. The . relation defines a

subset relation that is insensitive to the indices (i − 1) and (j − 1) appearing on the θ. We
have G̃i ≃ G̃i+1 when G̃i . G̃i+1 and G̃i+1 . G̃i. When this occurs, we have reached a required
fixed point as explained below.

Definition 5.3.4.

1. We write G̃i
(q1,Q2) . G̃j

(q1,Q2) iff for each S ∈ G̃i
(q1,Q2) we have S[j − 1/i − 1] ∈ G̃j

(q1,Q2).

2. If G̃i
(q1,Q2) . G̃j

(q1,Q2) and G̃j
(q1,Q2) . G̃i

(q1,Q2), then we write G̃i
(q1,Q2) ≃ G̃j

(q1,Q2).

3. Furthermore, we extend the notation to sets. That is, G̃i . G̃j iff for all G̃i
(q1,Q2) ∈ G̃i

we have G̃j
(q1,Q2) ∈ G̃j and G̃i

(q1,Q2) . G̃j
(q1,Q2).

116

Section 5.3. The Order-Two Case

We now show that a fixed point is reached at order-2. That we reach a fixed point is
important, since, when G̃i ≃ G̃i+1 there are two key consequences. Firstly, for all q1 and
Q2, we have G̃i

(q1,Q2) ∈ G̃i iff we also have G̃i+1
(q1,Q2) ∈ G̃i+1. This means that, if we ignore

the automata labelling the edges of Ai and Ai+1, the two automata have the same transition
structure. The second consequence follows from the first: we have G̃i

(q1,Q2) ≃ G̃i+1
(q1,Q2) for all

q1 and Q2. That is, the automata labelling the edges of Ai and Ai+1 will be updated in the
same manner. It is this repetition that allows us to fix the state-set at order-1, and thus reach
a final fixed point.

Property 5.3.2. There exists i1 > 0 such that G̃i ≃ G̃i1 for all i ≥ i1.

Proof. (Sketch) Since the order-1 state-set in Ai remains constant and we add at most one
transition between any state q1 and set of states Q2, there is some i1 where no more transitions
are added at order-2. That G̃i ≃ G̃i1 for all i ≥ i1 follows since the contents of G̃i

(q1,Q2) and

G̃i1
(q1,Q2) are derived from the same transition structure.

Once a fixed point has been reached at order-2, we can fix the state-set at order-1.

Lemma 5.3.1. Suppose we have constructed a sequence of automata G0,G1, . . . with the
associated sets G̃0, G̃1, Further, suppose there exists an i1 such that for all i ≥ i1 we have
G̃i ≃ G̃i1. We can define a sequence of automata Ĝi1 , Ĝi1+1, . . . such that the state-set in Ĝi

remains constant and there exists i0 such that Ĝi0 characterises the sequence — that is, the
following are equivalent for all w,

1. The run gi1
(q,Q′)

w
−→i Q1 with Q1 ⊆ Qf exists in Ĝi for some i.

2. The run gi1
(q,Q′)

w
−→i0 Q2 with Q2 ⊆ Qf exists in Ĝi0.

3. The run gi′

(q,Q′)
w

−→i′ Q3 with Q3 ⊆ Qf exists in Gi′ for some i′.

Proof. Follows from the definition of Ĝi+1 = TeGi1 [i1/i1−1]
(Ĝi

1), Lemma 5.4.11, Lemma 5.4.12

and Lemma 5.4.13.

We use Ĝi+1 = TeGi1 [i1/i1−1]
(Ĝi) to construct the sequence Ĝi1 , Ĝi1+1, . . . (with Ĝi1 = Gi1).

Intuitively, since the transitions from the states introduced to define Gi for i ≥ i1 are derived
from similar sets, we can compress the subsequent repetition into a single set of new states.
The substitution G̃i1 [i1/i1 − 1] makes the sets in G̃i1 self-referential. This generates the loops
shown in Figure 5.6. Since the state-set of this new sequence does not change and the alphabet
Σ is finite, the transition structure will become saturated.

We define Ĝ∗ = Ĝi0 letting g∗(q1,Q2) = gi1
(q1,Q2) for each gi1

(q1,Q2). Finally, we show that we
can construct the automaton A∗.

Property 5.3.3. There exists an automaton A∗ which is sound and complete with respect to
A0, A1, . . . and hence computes the set Pre∗(CInit).

Proof. By Property 5.3.2 there is some i1 with G̃i ≃ G̃i1 for all i ≥ i1. By Lemma 5.3.1, we
have Ĝ∗ = Ĝi0 . We then define A∗ from Ai1 with each transition q −→∗ Q′ in A∗ labelled
with the appropriate B ∈ B or automaton G∗

(q,Q′) from Ĝ∗ = Ĝi0 .

Thus, we have the following algorithm for constructing A∗:

117

Section 5.4. The General Case

1. Given A0, iterate Ai+1 = TD(Ai) until the fixed point Ai1 is reached.

2. Iterate Ĝi+1 = TeG
i1
l

[i1/i1−1]
(Ĝi) to generate the fixed point Ĝ∗ from Gi1 .

3. Construct A∗ by labelling the transitions of Ai1 with automata derived from Ĝ∗.

5.4 The General Case

We now generalise the order-2 algorithm to APDSs of all orders.

Theorem 5.4.1. Given an n-store multi-automaton A accepting the set of configurations
CInit of an order-n APDS, we can construct in n-EXPTIME (in the size of A0) an n-store
multi-automaton A∗ accepting the set Pre∗(CInit). Thus, Pre∗(CInit) is regular.

In the order-2 case, we added transitions to the 2-store multi-automaton A0 depending on
the commands D of the given APDS. The (order-1 store-)automata labelling the transitions
were updated through the addition of new initial states until the transition structure at
order-2 reached a fixed point. We were then able to stop adding new states at order-1, adding
only new transitions until a second fixed point was reached. At this point the algorithm
terminated.

In the order-n case, new states are added to the automata labelling the order-n edges
until the order-n transition structure reaches a fixed point. We are then able to stop adding
new states to the order-(n − 1) automata, although we continue to add new states to the
automata labelling the transitions at order-(n− 1). Since the order-(n− 1) state-set is fixed,
the order-(n− 1) transition structure will reach a second fixed point. At this stage we are no
longer required to add new states to order-(n − 2) of the automaton, and so on. In this way
we have a cascade of fixed points from order-n of the automaton down to order-1, at which
point the algorithm terminates.

5.4.1 Preliminaries

We generalise the definition of Gi
(q1,Q2) ∈ G̃i to any order l of the store-automata. That is, to

each G̃i
(q1,Q2) at order-l we attach a subset of

2
Bl−1 ∪ G̃i−1

l−1 ∪ (Σ ×Ol × (Bl−1 ∪ G̃i−1
l−1))

where Bl−1 is the union of the set of all (l−1)-store automata occurring in A0 and in automata
of the form Ba

l′ or Xa
l′ for some l′ (defined in Section 5.1). Further, we denote the set of all

order-(l − 1) identifiers G̃i
(q1,Q2) in Ai as G̃i

l−1. The sets Bl−1 and Ol are finite by definition.

If the state-set at order-l is fixed, there is a finite bound on the size of the set G̃i
l−1 for any i.

Similarly, we generalise the definition of the operation TeGj
l

. When l = 1, the definition is

identical to Definition 5.3.1. When l > 1, the definition is similar to the definition of TD in
the order-2 case, except we do not have to consider the undefined store ▽ which only occurs
at order-n of an n-store multi-automaton.

Definition 5.4.1. Given an automaton Gi
l = (Qi, Σ, ∆i, ,Qf) and a set of identifiers G̃j

l , we
define,

Gi+1
l = TeGj

l

(Gi
l) = (Qi+1, Σ, ∆i+1, ,Qf)

118

Section 5.4. The General Case

where Qi+1 = Qi ∪ { gj
(q1,Q2) | G

j
(q1,Q2) ∈ G̃j

l } and ∆i+1 depends on l:

Case l = 1. ∆i+1 = ∆inherited ∪ ∆derived ∪ ∆i and,

∆inherited = { gj
(q1,Q2)

a
−→ Q | (gj−1

(q1,Q2)

a
−→ Q) ∈ ∆i }

∆derived =

{
gj
(q1,Q2)

b
−→ Q |

{α1, . . . , αr} ∈ Gj
(q1,Q2) ∈ G̃j

l and

b ∈ Σ and Q = Q1 ∪ · · · ∪ Qr and (1)

}

where (1) requires, for each t ∈ {1, . . . , r} we have,

• If αt = θ, then (qθ b
−→ Qt) ∈ ∆i.

• If αt = (a, pushw, θ), then b = a and qθ w
−→ Qt is a run of Gi

1.

Case l > 1. We begin by defining the set of labels G̃i+1
l−1 . This set contains labels on transitions

from Gi
l , labels on transitions from the new states gj

(q1,Q2) inherited from gj−1
(q1,Q2) and labels

on transitions derived from G̃j
l . That is,

G̃i+1
l−1 =

{
G̃i+1

(q,Q) | (q
eGi
(q,Q)

−−−−→ Q) ∈ ∆i

}
∪

{
G̃i+1

(q,Q) | q = gj
(q1,Q2) and (gj−1

(q1,Q2)

B
−→ Q) ∈ ∆i

}
∪{

G̃i+1
(q,Q) | q = gj

(q1,Q2) and G̃j
(q1,Q2) ∈ G̃j

l and (2)
}

The contents of the associated sets G̃i+1
(q,Q) ∈ G̃i+1

l−1 are defined as follows,

G̃i+1
(q,Q) = ∅ if q 6= gj

(q1,Q2)

G̃i+1

(gj

(q1,Q2)
,Q)

= { S | (2) } ∪
{
{B} | (gj−1

(q1,Q2)

B
−→ Q) ∈ ∆i

}

where (2) requires {α1, . . . , αr} ∈ G̃j
(q1,Q2), Q = Q1 ∪ · · · ∪Qr, S = S1 ∪ · · · ∪ Sr and for each

t ∈ {1, . . . , r} we have,

• If αt = θ, then (qθ B
−→ Qt) ∈ ∆i and St = {B}.

• If αt = (a, pushl, θ), then qθ
eB1−→ Q1

eB2−→ Qt is a path in Gi
l and St = {Ba

l−1} ∪ B̃1 ∪ B̃2.

• If αt = (a, popl, θ), then Qt = {qθ} and St = {Ba
l−1}.

• If θ = (a, o, θ) when ℓ(o) < l, then qθ B
−→ Qt ∈ ∆i and St = {(a, o, B)}

Finally, we give the transition relation ∆i+1.

∆i+1 =

{
q

B
−→ Q | (q

B
−→ Q) ∈ ∆i and B ∈ Bl−1

}
∪{

q
eGi+1
(q,Q)

−−−−→ Q | G̃i+1
(q,Q) ∈ G̃i+1

l−1

}

We can construct an automaton whose transitions are (l − 1)-store automata by replacing
each set G̃i+1

(q,Q) with the automaton Gi+1
(q,Q) which is Gi+1

l−1 with initial state gi+1
(q,Q), where

Gi+1
l−1 = TeGi+1

l−1
(Gi

l−1). Note that Gi+1
l−1 = TeGi+1

l−1
(Gi

l−1) is a recursive call and Gi
l−1 is assumed by

induction.

119

Section 5.4. The General Case

q3

gi−1
(q1,Q1)

q4
a

b

c

c

d

b c d

Figure 5.8: An example for pushabcd.

gi
(q,Q) gi−1

(q1,Q1)

G̃i
(gi

(q,Q)
,G)

Figure 5.9: An example for popl.

5.4.2 Further Examples

We have given an outline of a fully worked example at order-two. However, there are many
situations that this example does not illuminate. In this section we give a series of short
examples showing the introduction of transitions to Gi

l from elements in G̃i
(q,Q′) not covered

in the previous case.

Case {(a, pushabcd, G̃
i−1
(q1,Q1))} ∈ G̃i

(q,Q) ∈ G̃i
1

Suppose Figure 5.8 represents a sub-automaton of Gi−1
1 . There is one run from the state

gi−1
(q1,Q1) over the word abcd. In particular we have,

gi−1
(q1,Q1)

abcd
−−→i−1 {q3, q4}

Therefore we add the transition,
gi
(q,Q)

a
−→i {q3, q4}

to Gi
1.

Case {(a, popl, G̃
i−1
(q1,Q1))} ∈ G̃i

(q,Q) ∈ G̃i
l

Figure 5.9 shows the relevant subsection of Gi
l after the popl has been processed. Let G =

gi−1
(q1,Q1). We have {Ba

l−1} in G̃i
(gi

(q,Q)
,G)

.

Case {(a, pushl, G̃
i−1
(q1,Q1))} ∈ G̃i

(q,Q) ∈ G̃i
l

Suppose Figure 5.10 shows a sub-automaton of Gi−1
l , where B1, B2, B3 ∈ Bl−1 ∪ G̃i−1

l−1 . There

120

Section 5.4. The General Case

q2

gi−1
(q1,Q1)

q3

B1

B2

B3

Figure 5.10: An example for pushl.

q2

gi−1
(q1,Q1)

q3

B1

Figure 5.11: An example for ℓ(o) < l.

is one possible value for Q′′ when enumerating over runs of the form,

{gi−1
(q1,Q1)}

eB1−→i−1 Q′ eB2−→i−1 Q′′

In particular Q′′ = {q2, q3}. We have B̃1 = {B1} and B̃2 = {B2, B3}. Consequently, we
ensure that the transition,

gi
(q,Q) {q2, q3}

G̃i
(gi

(q,Q)
,{q2,q3})

exists, and that {Ba
l−1, B1, B2, B3} ∈ G̃i

(gi
(q,Q)

,{q2,q3})
.

Case {(a, o, Gi−1
(q1,Q1))} ∈ G̃i

(q,Q) ∈ G̃i
l and ℓ(o) < l

Suppose Figure 5.11 shows a sub-automaton of Gi−1
l , where B1 ∈ Bl−1 ∪ G̃i−1

l−1 . There is one
possible value for Q′ when enumerating over runs of the form,

{gi−1
(q1,Q1)}

eB1−→i−1 Q′

In particular Q′ = {q2, q3}. Consequently we ensure that the transition,

gi
(q,Q) {q2, q3}

G̃i
(gi

(q,Q)
,{q2,q3})

exists, and that {(a, o, B1)} ∈ G̃i
(gi

(q,Q)
,{q2,q3})

.

121

Section 5.4. The General Case

q3

gi−1
(q1,Q1)

q4

gi−1
(q2,Q2)

q5

q6

B4

B1

B2

B3

Figure 5.12: An example for a two-element S.

Case {(a, pushl, G̃
i−1
(q1,Q1)), G̃

i−1
(q2,Q2)} ∈ G̃i

(q,Q) ∈ G̃i
l

Suppose Figure 5.12 shows a sub-automaton of Gi−1
l , where B1, B2, B3, B4 ∈ Bl−1 ∪ G̃i−1

l−1 .
There is one possible value for S = S1∪S2 and Q′ = Q′

1∪Q′
2. That is S1 = {Ba

l−1, B1, B2, B3}
and Q′

1 = {q3, q4} (as in the previous pushl example); and S2 = {B4} and Q′
2 = {q5, q6}.

Therefore, we ensure that the transition,

gi
(q,Q) Q′

G̃i
(gi

(q,Q)
,Q′)

exists, and that S ∈ G̃i
(gi

(q,Q)
,Q′)

.

5.4.3 Constructing A0, A1, . . .

For a given higher-order APDS with commands D we define Ai+1 = TD(Ai) where the oper-
ation TD is as follows:

Definition 5.4.2. Given an automaton Ai = (Q, Σ, ∆i, {q1, . . . , qz},Qf) and a set of com-
mands D, we define,

Ai+1 = TD(Ai) = (Q, Σ, ∆i+1, {q1, . . . , qz},Qf)

where ∆i+1 is given below.

We begin by defining the set of labels G̃i+1
n−1. This set contains labels on transitions present

in Ai, and labels on transitions derived from D. That is,

G̃i+1
n−1 =

{
G̃i+1

(qj ,Q)
| (qj

eGi

(qj ,Q)
−−−−→ Q) ∈ ∆i and j ∈ {1, . . . , z}

}
∪

{
G̃i+1

(qj ,Q)
| (2)

}

The contents of the sets G̃i+1
(q,Q) ∈ G̃i+1

n−1 are defined G̃i+1
(qj ,Q)

= { S | (2) } where (2) requires

(pj , a, {(o1, p
k1), . . . , (om, pkm)}) ∈ D, Q = Q1 ∪ · · · ∪ Qm, S = S1 ∪ · · · ∪ Sm and for each

t ∈ {1, . . . , m} we have,

122

Section 5.4. The General Case

• If ot = pushn, then St = {Ba
n−1} ∪ θ̃1 ∪ θ̃2 and there exists a path,

qkt
eθ1−→i Q′ eθ2−→i Qt

in Ai.

• If ot = popn, then St = {Ba
n−1} and Qt = {qkt}. Or, if qj ▽

−→i {q
ε
f} exists in Ai, we

may have St = {Ba
n−1} and Qt = {qε

f}.

• If ot = pushw or ot = pushl for l < n, then St = {(a, o, θ)} and there exists a transition

qkt
θ

−→i Qt in Ai.

• If ot = popl for l < n, then St = {(a, o, θ)} and there exists a transition qkt
θ

−→i Qt in

Ai. Or, if qj ▽

−→i {qε
f} exists in Ai, we may have St = {Xa

l } and Qt = {q∗f}.

Finally, we give the transition relation ∆i+1.

∆i+1 =

{
q

B
−→ Q | (q

B
−→ Q) ∈ ∆i

and B ∈ B

}
∪

{
q

eGi+1
(q,Q)

−−−−→ Q | G̃i+1
(q,Q) ∈ G̃i+1

n−1

}

We can construct an automaton whose transitions are (n − 1)-store automata by replacing
each set G̃i+1

(q,Q) with the automaton Gi+1
(q,Q) which is Gi+1

n−1 with initial state gi+1
(q,Q), where

Gi+1
n−1 = TeGi+1

n−1
(Gi

n−1). Note that Gi
n−1 is assumed by induction.

Our construction is sound and complete. The proofs for this result are given in the next
section.

Property 5.4.1. For any configuration 〈pj , γ〉 it is the case that γ ∈ L(Aqj

i) for some i iff
〈pj , γ〉 ∈ Pre∗(CInit).

Proof. The property follows from Property 5.4.2 and Property 5.4.3.

5.4.4 Soundness and Completeness for A0, A1, . . .

In this section we show that the sequence A0, A1, . . . is sound and complete with respect to
Pre∗(CInit), where CInit = L(A0).

Preliminaries

We begin by proving some useful properties of the automaton construction. These properties
assert that the automata constructed from the sets in G̃i

l are well-behaved. Once this has been
established, we need only consider order-n of the automata A0, A1, . . . to show soundness and
completeness. Note that since no gi

(q1,Q2) is accepting, any store accepted by some Gi
(q1,Q2)

has a top1 element.
In order to reason about a particular transition, we need to know its origin. Hence we

introduce the notion of an inherited and a derived transition. The remaining lemmata fall
into four categories:

1. Lemma 5.4.3 shows that inherited runs are sound.

123

Section 5.4. The General Case

2. Lemma 5.4.2 shows the completeness of inherited runs.

3. Lemma 5.4.1, Lemma 5.4.4 and Lemma 5.4.5 show that derived runs are sound.

4. Lemma 5.4.6 shows the completeness of derived runs.

Definition 5.4.3. A non-empty run gi
(q1,Q2)

w
−→i Q of Gi

l or qj w
−→i Q of Ai can be charac-

terised by its initial transition gi
(q1,Q2)

γ
−→i Q′ where w = γw′. There are several cases,

• l = 1.

Then we have gi
(q1,Q2)

a
−→i Q′. If the transition was inherited from gi−1

(q1,Q2) then we say
that the run is an inherited run. Otherwise the transition was introduced by some
S ∈ G̃i

(q1,Q2). We say that the run was derived from S.

• l > 1.

Then we have gi
(q1,Q2)

eG
−→ Q′ with γ ∈ L(G). There are three cases depending on the

accepting run of G and the source of the transition from gi
(q1,Q2),

– If the accepting run of G is an inherited run, then the run gi
(q1,Q2)

w
−→i Q is also

inherited.

– If the accepting run of G is derived from some S′ ∈ G̃ and S′ was added to G̃ when
inheriting transitions from gi−1

(q1,Q2), then the run gi
(q1,Q2)

w
−→i Q is inherited.

– If the accepting run of G is derived from some S′ ∈ G̃ and S′ was added to G̃ by
some S ∈ G̃i

(q1,Q2) or — if l = n − 1 — by TD and the command d, then the run

gi
(q1,Q2)

w
−→i Q is derived from S or d respectively.

The first lemma states that runs derived from a set S which is the conjunction of several
automata behaves correctly:

Lemma 5.4.1. The run gi+1
(q1,Q2)

w
−→i+1 Q derived from S = {θ1, . . . , θm} ⊆ Bl ∪ G̃i

l exists in

Gi+1
l iff the run,

{qθ1 , . . . , qθm}
w

−→i Q

exists in Gi
l .

Proof. We prove the lemma by induction over l. Observe that a derived run cannot be empty.
When l = 1, we have w = aw′ for some character a and word w′ and,

gi+1
(q1,Q2)

a
−→i+1 Q′

1 ∪ · · · ∪ Q′
m

w′

−→i Q

derived from S exists iff the run qθt
a

−→i Q′
t exists in Gi

1 for all t ∈ {1, . . . , m} and the run,

{qθ1 , . . . , qθm}
a

−→i Q′
1 ∪ · · · ∪ Q′

m
w′

−→i Q

exists in Gi
1 as required.

When l > 1, we have w = γw′. The transition gi+1
(q1,Q2)

eG
−→i+1 Q′ derived from S and the

run Q′ w′

−→i Q exist in Gi+1
l where γ ∈ L(G) iff Q′ = Q′

1∪· · ·∪Q′
m and the transition qθt

Bt−→i Qt

124

Section 5.4. The General Case

exists in Gi
l for all t ∈ {1, . . . , m}. We have {B1, . . . , Bm} = S′ ∈ G̃i+1

(gi+1
(q1,Q2)

,Q′)
∈ G̃i

l−1 and

the accepting run of G is derived from S′ iff we have γ ∈ L(Bt) for all t ∈ {1, . . . , m} (by
induction) and the run,

{qθ1 , . . . , qθm}
γ

−→i+1 Q′ w′

−→i Q

in Gi
l as required.

The language accepted by the sequence A0, A1, . . . or any sequence G0
l ,G1

l , . . . is increasing.

In particular, if q
w

−→i Q exists in Ai, then q
w

−→i+1 Q exists in Ai+1.

Lemma 5.4.2.

1. If gi
(q1,Q2)

w
−→i Q is a run of Gi

(q1,Q2) for some i and, then gi+1
(q1,Q2)

w
−→i+1 Q is a run of

Gi+1
(q1,Q2).

2. For all transitions q
γ

−→i Q′ in Ai for some i, we have the transition q
γ

−→i+1 Q′ in
Ai+1.

3. For all runs q
w

−→i Q′ of Ai for some i, we have the run q
w

−→i+1 Q′ in Ai+1.

Proof. To prove (2) we observe that there are two cases. In the first case, the transition
from q to Q′ is labelled by an automaton B ∈ Bl or ▽. Because this transition will remain
unchanged by TD, the lemma follows immediately. In the second case, the transition is labelled

by Gi
(q,Q′) and the property follows directly from (1) and the run gi

(q,Q′)

wγ
−→i Q with Q ⊆ Qf

for [wγ] = γ. Since gi
(q,Q′) is not an accepting state, it is the case that wγ 6= ε.

We note that (3) can be shown by repeated applications of (2).
Finally, we show (1). The automaton Gi

(q1,Q2) has the run,

gi
(q1,Q2)

γ
−→i Q1 w′

−→i Q

where w = γw′.
In case G̃i

(q1,Q2) ∈ G̃i
l and l = 1, by definition the automaton Gi+1

(q1,Q2) has the transition

gi+1
(q1,Q2)

a
−→i Q2 for every transition gi

(q1,Q2)
a

−→i Q2. Hence, as required, we have the run,

gi+1
(q1,Q2)

a
−→i+1 Q1 w′

−→i Q

When G̃i
(q1,Q2) ∈ G̃i

l and l > 1, by definition the automaton Gi+1
(q1,Q2) has the transition

gi+1
(q1,Q2)

eG
−→i Q2 with {B} ∈ G̃ for every transition gi

(q1,Q2)
B
−→i Q2. Since we have γ ∈ L(B)

(for some B) and qB is of the form gi
(q,Q′) (and hence not an accepting state) we have γ 6= [ε]

and γ ∈ L(G) by Lemma 5.4.1 and {B} ∈ G̃. Hence we have the run,

gi+1
(q1,Q2)

γ
−→i+1 Q1 w′

−→i Q

as required.

We now show that inheritance does not introduce spurious runs:

125

Section 5.4. The General Case

Lemma 5.4.3. If a run gi+1
(q1,Q2)

w
−→i+1 Q in Gi+1

l is inherited, then the run gi
(q1,Q2)

w
−→i Q

exists in Gi
l .

Proof. We proceed by induction over l. Observe that an inherited run cannot be empty.
When l = 1 we have w = aw′ and,

gi+1
(q1,Q2)

a
−→i+1 Q′ w′

−→i Q

Since the run is an inherited run, we have gi
(q1,Q2)

a
−→i Q′ in Gi

1 and hence,

gi
(q1,Q2)

a
−→i Q′ w′

−→i Q

in Gi
1 as required.

When l > 1 we have w = γw′ and gi+1
(q1,Q2)

eGi+1
(...)

−−−→i+1 Q′ with Q′ w′

−→i Q in Gi+1
l and

γ ∈ L(Gi+1
(...)). There are two cases depending on the accepting run of Gi+1

(...).

If the accepting run of Gi+1
(...) is inherited, then we have γ ∈ L(Gi

(...)) by induction on l and

hence the transition gi
(q1,Q2)

γ
−→i Q′ in Gi

l . Therefore, as required, we have the run,

gi
(q1,Q2)

γ
−→i Q′ w′

−→i Q

If the accepting run of Gi+1
(...) is derived from some S introduced to G̃i+1

(...) when inheriting

transitions from gi
(q1,Q2), then S = {B} for some B and we have gi

(q1,Q2)
B
−→i Q′ in Gi

l .

Furthermore, by Lemma 5.4.1 we have γ ∈ L(B) and the run,

gi
(q1,Q2)

γ
−→i Q′ w′

−→i Q

as required.

The next two lemmata assert that derived runs are justified.

Lemma 5.4.4. Suppose the run gi+1
(q1,Q2)

w
−→i+1 Q derived from S exists in Gi+1

l and θ1 ∈ S.

We have qθ1
w

−→i Q′ in Gi
l , where Q′ ⊆ Q.

Proof. The proof is by induction over l. Observe that, since the run is derived, we have w 6= ε.
In the base case l = 1. Let w = aw′. We have the following run in Gi+1

l ,

gi+1
(q1,Q2)

a
−→i+1 Q1 w′

−→i Q

and by definition, since the run is derived from S and θ1 ∈ S, we have qθ1
a

−→i Q2 in Gi
l

where Q2 ⊆ Q1, and hence,

qθ1 a
−→i Q2 w′

−→i Q′

with Q′ ⊆ Q as required.
When l > 1, let w = γw′. We have the run,

gi+1
(q1,Q2)

γ
−→i+1 Q1 w′

−→i Q

126

Section 5.4. The General Case

in Gi+1
l . In particular, we have gi+1

(q1,Q2)

eG
−→i+1 Q1 with an accepting run of G over γ that

is derived from S′ ∈ G̃ which was introduced by S. By definition, since θ1 ∈ S, we have

qθ1
θ

−→i Q2 with Q2 ⊆ Q1 and θ ∈ S′. By induction, we have γ ∈ L(θ) and hence the run,

qθ1
γ

−→i Q2 w′

−→i Q′

with Q′ ⊆ Q as required.

Lemma 5.4.5. Suppose a run gi+1
(q1,Q2)

w
−→i+1 Q derived from S exists in Gi+1

l and (a, o, θ1) ∈

S. Let [w′] = o([w]), we have qθ1
w′

−→i Q′ in Gi
l , where Q′ ⊆ Q.

Proof. The proof is by induction over l. Since the run is derived, we have w 6= ε.
In the base case l = 1. We have w = aw′′. There is only one value of o,

• o = pushwp . Then [w′] = o([w]) = [wpw
′′]. We have the following run in Gi+1

l ,

gi+1
(q1,Q2)

a
−→i+1 Q1 w′′

−→i Q

and by definition, since the run is derived from S and (a, o, θ1) ∈ S, we have qθ1
wp
−→i Q2

in Gi
l where Q2 ⊆ Q1, and hence,

qθ1
wp
−→i Q2 w′′

−→i Q′

with Q′
f ⊆ Q as required.

When l > 1, let w = γw′′ and we have the run,

gi+1
(q1,Q2)

γ
−→i+1 Q1 w′′

−→i Q

in Gi+1
l . In particular gi+1

(q1,Q2)

eG
−→i+1 Q1 and there is an accepting run of G over γ derived

from some S′ ∈ G̃. There are now three cases depending on o,

• o = pushl. By definition, since (a, pushl, θ1) ∈ S we have in Gi
l the run

qθ1
eθ1−→i Q2 eθ2−→i Q3

with Q3 ⊆ Q1 and {Ba
l } ∪ θ̃1 ∪ θ̃2 ⊆ S′. Hence, by Lemma 5.4.4, we have γ ∈ L({Ba

l } ∪

θ̃1 ∪ θ̃2), and hence [w′] = o([w]) = [γγw′′] and we have the following run of Gi
l ,

qθ1
γ

−→i Q2 γ
−→i Q3 w′′

−→i Q′

with Q′ ⊆ Q as required.

• o = popl. Since (a, popl, θ1) ∈ S, we have qθ1 ∈ Q1 and Ba
l ∈ S′. Furthermore w′′ is non-

empty since qθ1 /∈ Qf by definition of n-store automata. By Lemma 5.4.4 γ ∈ L(Ba
l).

Hence [w′] = o([w]) = [w′′] and we have qθ1
w′′

−→i Q′ with Q′ ⊆ Q as required.

127

Section 5.4. The General Case

• ℓ(o) < l. By definition, [w′] = o([w]) = [o(γ)w′′]. Since (a, o, θ1) ∈ S we have qθ1
θ

−→i Q2

with Q2 ⊆ Q1 and (a, o, θ) ∈ S′. By induction over l we have o(γ) ∈ L(θ) and hence,

qθ1
o(γ)
−→i Q2 w′′

−→i Q′

with Q′ ⊆ Q as required.

This completes the proof of the lemma.

Finally, we show that the derived runs completely represent their source.

Lemma 5.4.6. Let S = {α1, . . . , αm} ∈ G̃i+1
(q,Q). Given some γ with top1(γ) = a such that for

each e ∈ {1, . . . , m} we have,

• If αe = θe then γe = γ and γe ∈ L(θe)

• If αe = (b, oe, θe) then a = b, oe(γ) = γe and γe ∈ L(θe)

we have γ ∈ L(Gi+1
(q,Q)).

Proof. We have G̃i+1
(q,Q) ∈ G̃i+1

l for some l. The proof is by induction over l.

When l = 1 let γ = [aw]. We have αe = θe or αe = (a, pushwe , θe). We have,

• When αe = θe, the run,
qθe a

−→i Qe
w

−→i Qe
f

with Qe
f ⊆ Qf in Gi

l . Furthermore, γe = γ.

• When αe = (a, pushwe , θe), the run,

qθe we−→i Qe
w

−→i Qe
f

with Qe
f ⊆ Qf in Gi

l . Furthermore, we have γe = [wew].

Hence, since S ∈ G̃i+1
(q,Q), we have from the definition of Gi+1

(q,Q) the run,

gi+1
(q,Q)

a
−→i+1 Q1 ∪ · · · ∪ Qm

w
−→i Q1

f ∪ · · · ∪ Qm
f

with Q1
f ∪ · · · ∪ Qm

f ⊆ Qf . Hence γ ∈ L(Gi+1
(q,Q)) as required.

When l > 1 let γ = [γ′w]. We have S′ = S′
1 ∪ · · · ∪ S′

m and Q′ = Q1 ∪ · · · ∪ Qm where,

• When αe = θe, γ = γe and we have the transition qθe
θ′e−→i Qe in Gi

l with γ′ ∈ L(θ′e) and

the run Qe
w

−→i Qe
f with Qf ⊆ Qf . Furthermore S′

e = {θ′e}.

• When αe = (a, pushl, θe), γe = [γ′γ′w]. Additionally, we have the transitions,

qθe
θ1
e−→i Q′

eθ2
e−→i Qe

in Gi
l where γ′ ∈ L({Ba

l−1, θ
1
e} ∪ θ̃2

e). Furthermore, we have the run Qe
w

−→i Qe
f with

Qe
f ⊆ Qf and S′

e = {Ba
l−1, θ

1
e} ∪ θ̃2

e .

128

Section 5.4. The General Case

• When αe = (a, popl, θe), γe = [w] and we have the run,

qθe w
−→i Qe

f

with Qe
f ⊆ Qf , S′

e = {Ba
l−1}, γ′ ∈ L(Ba

l−1) and Qe = {qθe}.

• αe = (a, oe, θe) with ℓ(oe) < l, we have γe = [oe(γ
′)w], and the transition qθe

θ′e−→i Qe and
run Qe

w
−→i Qe

f with Qe
f ⊆ Qf in Gi

l . Additionally, oe(γ
′) ∈ L(θ′e) and S′

e = {(a, oe, θ
′
e)}.

Hence, by definition of Gi+1
(q,Q), we have the transition,

gi+1
(q,Q)

eG
−→i+1 Q1 ∪ · · · ∪ Qm

with S′ ∈ G̃ and by induction over l, γ′ ∈ L(G). Hence we have the run,

gi+1
(q,Q)

γ′

−→i+1 Q1 ∪ · · · ∪ Qm
w

−→i Q1
f ∪ · · · ∪ Qm

f

with Q1
f ∪ · · · ∪ Qm

f ⊆ Qf in Gi+1
(q,Q). That is, γ ∈ L(Gi+1

(q,Q)) as required.

Soundness

We show that for any configuration 〈pj , γ〉 such that γ ∈ L(Aqj

i), for some i, we have 〈pj , γ〉
∗
→֒

C with C ⊆ CInit. Let I = {q1, . . . , qz}. The following lemma describes the relationship
between added transitions and the evolution of the order-n PDS. The restrictions on w′ are
technical requirements in the case of popn operations. They may be justified by observing
that only the empty store is accepted from the state qε

f , and that, since initial states are never
accepting, the empty store cannot be accepted from an initial state.

Lemma 5.4.7. For a given run qj w
−→i Q of Ai there exists, for any w′ satisfying the

conditions below, some C such that 〈pj , [ww′]〉
∗
→֒ C, where C contains configurations of the

form 〈pk, w′′w′〉 with qk w′′

−→0 Q′ or 〈pj , ▽〉 with qj ▽

−→0 Q′. Furthermore, the union of all
such Q′ is Q. We require w′ 6= ▽ and,

1. If qε
f ∈ Q then w′ = ε,

2. If qk ∈ Q for some qk then w′ 6= ε.

Proof. The proof proceeds by induction on i. In the base case i = 0 and the property holds
trivially. We now consider the case for i + 1. Since TD does not add any ▽-transitions, we
can assume w 6= ▽.

We perform a further induction over the length of the run. In the base case we have
w = γ (the case w = ε is immediate with C = {〈pj , [w′]〉}) and consider the single transition

qj γ
−→i+1 Q. We assume that the transition is not inherited, else the property holds by

Lemma 5.4.3 and induction over i. If the transition is not inherited, then the run is derived
from some d and we have γ ∈ L(Gi+1

(qj ,Q)
) and the accepting run of Gi+1

(qj ,Q)
is derived from

some S ∈ G̃i+1
(qj ,Q)

introduced during the processing of d.

129

Section 5.4. The General Case

Let d = (pj , a, {(o1, p
k1), . . . , (om, pkm)}). We have 〈pj , [γw′]〉 →֒ C ′ where,

C ′ = { 〈pkt , γ′〉 | t ∈ {1, . . . , m} ∧ γ′ = ot([γw′]) }
∪ { 〈pj , ▽〉 | if ot([γw′]) with t ∈ {1, . . . , m} is not defined }

We can decompose the new transition as per the definition of TD. That is Q = Q′
1∪· · ·∪Q′

m.
There are several cases:

• ot = pushn.

By definition of TD, we have the run,

qkt
eθ1−→i Q′ eθ2−→i Q′

t

with {Ba
n−1} ∪ θ̃1 ∪ θ̃2 ⊆ S. By Lemma 5.4.4 we have γ ∈ L({Ba

n−1} ∪ θ̃1 ∪ θ̃2). Hence
we have,

qkt
γ

−→i Q′ γ
−→i Q′

t

We have pushn[γw′] = [γγw′] and 〈pkt , [γγw′]〉 ∈ C ′. Via induction over i we have the

set Ct with 〈pkt , ot[γw′]〉
∗
→֒ Ct which satisfies the lemma.

• ot = popn.

We have Ba
n−1 ∈ S. We have, by Lemma 5.4.4, γ ∈ L(Ba

n−1).

If Qt = {qkt} we have popn[γw′] = [w′] since w′ is non-empty and Ct = {〈pkt , [w′]〉}.
Note qkt

ε
−→0 {qkt}.

If Qt = {qε
f} then w′ = ε and popn[γw′] is undefined. By definition of TD we have

qj ▽

−→0 {qε
f}. Let Ct = {〈pj , ▽〉}.

• ℓ(ot) < n and if ot = popl then Xa
ℓ(ot)

/∈ S.

By definition, we have qkt
θ

−→i Qt in Ai with (a, ot, θ) ∈ S. Therefore, by Lemma 5.4.5,

we have ot[γ] ∈ L(θ) and the run qkt
ot[γ]
−−−→i Qt in Ai.

Furthermore, we have 〈pkt , ot[γw′]〉 ∈ C ′ and via induction over i we have a set Ct with

〈pkt , ot[γw′]〉
∗
→֒ Ct which satisfies the lemma.

• ℓ(ot) < n, ot = popl and Xa
ℓ(ot)

∈ S.

Since Xa
l ∈ S by Lemma 5.4.4 we have γ ∈ L(Xa

l). Hence ot[γw′] is undefined and

we have 〈pj , ▽〉 ∈ C ′. Because Xa
l ∈ S, by definition we have qj ▽

−→i {qε
f}. Since ▽

transitions are never added, it must be the case that qj ▽

−→0 {qε
f}. Let Ct = {〈pj , ▽〉}.

Hence, we have 〈pj , [ww′]〉 →֒ C ′ ∗
→֒ C1 ∪ · · · ∪ Cm = C where C satisfies the lemma.

This completes the proof of the single transition case. Let w = γ1 . . . γm and (for any Q)
let Q = QI ∪ Q\I where QI contains all initial states in Q and Q\I = Q \ QI . We have the
run,

qj γ1
−→i+1 Q1

γ2
−→i+1 . . .

γm
−→i+1 Qm

For each qk ∈ QI
1 we have a run,

qk γ2
−→i+1 Qk

2
γ3
−→i+1 . . .

γm
−→i+1 Qk

m

130

Section 5.4. The General Case

and by induction on the length of the run we have Ck such that 〈pk, [γ2 . . . γmw′]〉
∗
→֒ Ck and

Ck satisfies the lemma. Furthermore, since we only add new transitions to initial states, we
have,

Q
\I
1

γ2
−→0 . . .

γm
−→0 Q′

m

and Qm = Q′
m ∪

⋃
qk∈QI

1
Qk

m.

From qj γ1
−→i+1 Q1 we have C1 with 〈pj , [γ1 . . . γmw′]〉

∗
→֒ C1 satisfying the lemma for

a single transition. Let CI
1 be the set of all 〈pk, γ2 . . . γmw′〉 ∈ C1 and C ′

1 = C1 \ CI
1 . For

each qk ∈ QI
1 we have 〈pk, [γ2 . . . γmw′]〉 ∈ C1 since there are no transitions to initial states

in A0 (and hence we must have qk ε
−→0 {qk} to satisfy the conditions of the lemma for C1).

From 〈pk, [γ2 . . . γmw′]〉
∗
→֒ Ck and since we have Q

\I
1

γ2...γm
−−−−→0 Q′

m, it is the case that the

set C = C ′
1 ∪

⋃
qk∈QI

1
Ck which has 〈pj , [γ1 . . . γmw′]〉

∗
→֒ C1

∗
→֒ C and satisfies the lemma as

required.

Property 5.4.2 (Soundness). For any configuration 〈pj , γ〉 such that γ ∈ L(Aqj

i) for some

i, we have 〈pj , γ〉
∗
→֒ C such that C ⊆ CInit. That is, 〈pj , γ〉 ∈ Pre∗(CInit).

Proof. Let γ = [wγ]. Since γ ∈ L(Aqj

i) we have a run qj wγ
−→i Qf with Qf ⊆ Qf . Since Qf

contains no initial states, we apply Lemma 5.4.7 with w′ = ε. Therefore, we have 〈pj , γ〉
∗
→֒

C ⊆ L(Aqk

0). Since A0 is defined to represent CInit, soundness follows.

Completeness

Property 5.4.3 (Completeness). For all 〈pj , γ〉 ∈ Pre∗(CInit) there is some i such that

γ ∈ L(Aqj

i).

Proof. We take 〈pj , γ〉 ∈ Pre∗(CInit) and reason by induction over the length of the shortest

path 〈pj , γ〉
∗
→֒ C with C ⊆ CInit.

In the base case the path length is zero and we have 〈pj , γ〉 ∈ CInit and hence γ ∈ L(Aqj

0).

For the inductive step we have 〈pj , γ〉 →֒ C1
∗
→֒ C2 with C2 ⊆ CInit and some i such that

C1 ⊆ L(Ai) by induction. We show γ ∈ L(Aqj

i+1) by analysis of the higher-order APDS
command d used in the transition 〈pj , γ〉 →֒ C1.

Let d = (pj , a, {(o1, p
k1), . . . , (om, pkm)}). We have

C1 = { 〈pkt , γ′〉 | t ∈ {1, . . . , m} ∧ γ′ = ot(γ) }
∪ { 〈pj , ▽〉 | if ot(γ) with t ∈ {1, . . . , m} is not defined }

By induction we have for each e ∈ {1, . . . , m} that qke
woe(γ)
−−−−→i Qe

f with Qe
f ⊆ Qf in Ai if

oe(γ) = [woe(γ)] is defined. Otherwise we have qj ▽

−→i {qε
f} in Ai.

Let γ = [γ′w]. We have S′ = S′
1 ∪ · · · ∪ S′

m and Q′ = Q1 ∪ · · · ∪ Qm where, for each
e ∈ {1, . . . , m},

• When oe = pushn, oe(γ) = [γ′γ′w]. Additionally, we have the transitions,

qke
θ1
e−→i Q′

eθ2
e−→i Qe

in Ai where γ′ ∈ L({Ba
n−1, θ

1
e} ∪ θ̃2

e). Furthermore, we have the run Qe
w

−→i Qe
f with

Qe
f ⊆ Qf and S′

e = {Ba
n−1, θ

1
e} ∪ θ̃2

e .

131

Section 5.4. The General Case

• When oe = popn. If oe(γ) = [w], we have the run,

qke w
−→i Qe

f

in Ai with Qe
f ⊆ Qf , S′

e = {Ba
n−1}, γ′ ∈ L(Ba

n−1) and Qe = {qke}.

If oe(γ) is undefined we have w = ε and the run,

qj ▽

−→i {q
ε
f}

if Ai. Hence we have S′
e = {Ba

n−1}, γ′ ∈ L(Ba
n−1) and Qe = Qe

f = {qε
f}.

• When ℓ(oe) < n, and we have oe(γ) = [oe(γ
′)w], we have the transition qke

θ′e−→i Qe and
run Qe

w
−→i Qe

f with Qe
f ⊆ Qf in Ai. Additionally, oe(γ

′) ∈ L(θ′e) and S′
e = {(a, oe, θ

′
e)}.

If oe(γ) is not defined we have γ = [γ′w], oe = popl for some l < n and the run,

qj ▽

−→i {q
ε
f}

in Ai. Hence we have S′
e = {Xa

l }, γ′ ∈ L(Xa
l) and Qe = {q∗f} with q∗f

w
−→i Qe

f and
Qe

f ⊆ Qf .

Hence, by definition of Ai+1, we have the transition,

qj eG
−→i+1 Q1 ∪ · · · ∪ Qm

with S′ ∈ G̃ and by Lemma 5.4.6 γ′ ∈ L(G). Hence we have the run,

qj γ′

−→i+1 Q1 ∪ · · · ∪ Qm
w

−→i Q1
f ∪ · · · ∪ Qm

f

with Q1
f ∪ · · · ∪ Qm

f ⊆ Qf in Ai+1. That is, γ ∈ L(Aqj

i+1) as required.

5.4.5 Constructing A∗

We have shown how to construct a sequence of automata A0, A1, . . . which is sound and
complete with respect to Pre∗(L(A0)). In this section we show how to compute an automaton
A∗ that is a finite representation of this sequence. That is, L(A∗) = Pre∗(L(A0)). We begin
by defining ., generalising the notion of subset modulo i for the sets G̃i

(q,Q′).

Definition 5.4.4.

1. Given θ ∈ Bl ∪ G̃i
l for some i and l, let

θ[j/i] =

{
θ if θ ∈ Bl

Gj
(q1,Q2) if θ = Gi

(q1,Q2) ∈ G̃i
l

2. For a set S we define S[j/i] such that,

(a) We have θ ∈ S iff we have θ[j/i] ∈ S[j/i], and

(b) We have (a, o, θ) ∈ S iff we have (a, o, θ[j/i]) ∈ S[j/i].

132

Section 5.4. The General Case

3. We extend the notation [j/i] to nested sets of sets structures in a point-wise fashion.

Definition 5.4.5.

1. We write G̃i
(q,Q′) . G̃j

(q,Q′) iff for each S ∈ G̃i
(q,Q′) we have S[j − 1/i − 1] ∈ G̃j

(q,Q′).

2. If G̃i
(q,Q′) . G̃j

(q,Q′) and G̃j
(q,Q′) . G̃i

(q,Q′), then we write G̃i
(q,Q′) ≃ G̃j

(q,Q′).

3. Furthermore, we extend the notation to sets. That is, G̃i
l . G̃j

l iff for all G̃i
(q1,Q2) ∈ G̃i

l

we have G̃j
(q1,Q2) ∈ G̃j

l and G̃i
(q,Q′) . G̃j

(q,Q′).

A fixed point is reached as in the order-2 case: eventually, no more transitions are added
at order-n of the automaton, allowing us to fix the state-set at order-(n − 1). This begins a
cascade of fixed points which ends at order-1, resulting in termination.

Property 5.4.4. There exists in−1 > 0 such that G̃i
n−1 ≃ G̃

in−1

n−1 for all i ≥ in−1.

Proof. (Sketch) Since the order-n state-set in Ai remains constant and we add at most one
transition between any state q and set of states Q, there is some in−1 where no more transitions
are added at order-n. That G̃i

n−1 ≃ G̃
in−1

n−1 for all i ≥ in−1 follows since the contents of any

G̃i
(q,Q′) and G̃

in−1

(q,Q′) are derived from the same transition structure.

Once a fixed point has been reached at order-(l + 1), we can fix the state-set at order-l.

Lemma 5.4.8. Suppose we have constructed a sequence of automata G0
l ,G1

l , . . . and associated

sets G̃0
l , G̃1

l , Further, suppose there exists an il such that for all i ≥ il we have G̃i
l ≃ G̃il

l .

We can define a sequence of automata Ĝil
l , Ĝil+1

l , . . . such that the state-set in Ĝi
l remains

constant (although the automata labelling the transitions may gain states when l > 1). The
following are equivalent for all w,

1. The run gil
(q,Q′)

w
−→i Q with Q ⊆ Qf exists in Ĝi

l for some i.

2. The run gi′

(q,Q′)
w

−→i′ Q′′ with Q′′ ⊆ Qf exists in Gi′

l for some i′.

Again, we use Ĝi+1 = T
eG

il
l

[il/i1−l]
(Ĝi

l) to construct the sequence Ĝil
l , Ĝil+1

l , . . . with Ĝil
l = Gil

l .

Soundness and completeness are shown in Section 5.4.6. Once the state-set has been fixed at
order-l, we will eventually reach another fixed point. In this way the fixed points cascade.

Property 5.4.5. For a sequence of automata G0
l ,G1

l , . . . such that the state-set at order-l of

Gi
l remains constant there exists il−1 > 0 such that G̃i

l−1 ≃ G̃
il−1

l−1 for all i ≥ il−1.

Proof. (Sketch) Since the order-l state-set in G̃i
l remains constant and we add at most one

transition between any state q and set of states Q, there is some il−1 where no more transitions

are added at order-l. That G̃i
l−1 ≃ G̃

il−1

l−1 for all i ≥ il−1 follows since the contents of any G̃i
(q,Q′)

and G̃
il−1

(q,Q′) are derived from the same transition structure.

When the state-set has been fixed at order-1, the finiteness of Σ dictates that only a finite
number of transitions can be added before saturation is reached. At this point any updates to
the automata at order-1 will not change the set of accepted 1-stores. Termination at order-1
implies termination at order-2, and so on down to order-n. That is, for any l, we are able
to define an automaton G∗

l which finitely represents the infinite sequence G0
l ,G1

l , . . . used to
construct A0, A1,

133

Section 5.4. The General Case

Lemma 5.4.9. Suppose we have constructed a sequence of automata G0
l ,G1

l , . . . and associated

sets G̃0
l , G̃1

l , Further, suppose there exists an il such that for all i ≥ il we have G̃i
l ≃ G̃il

l .
We can define an automaton G∗

l such that the following are equivalent for all w,

1. The run g∗(q,Q′)
w

−→∗ Q with Q ⊆ Qf exists in G∗
l .

2. The run gi
(q,Q′)

w
−→i Q′′ with Q′′ ⊆ Qf exists in Gi

l for some i.

Proof. The complete proof is given in Section 5.4.6. We show here how to construct G∗
l .

We proceed by induction over l. In the base case l = 1 and the result follows because
the alphabet is finite: there is a finite bound on the number of new transitions that can be
added. Let Gi0 denote this saturation point. We define G∗

1 = Gi0
1 letting g∗(q,Q) = gi1

(q,Q) for

each gi1
(q,Q).

When l > 1 we generate the sequence Ĝil
l , Ĝil+1

l , . . . by Lemma 5.4.8. Since the state-set

remains constant, it follows from Property 5.4.5 that there is some il−1 with G̃i
l−1 ≃ G̃

il−1

l−1 for
all i ≥ il−1.

By induction, we have G∗
l−1. We then define G∗

l from Ĝ
il−1

l with g∗(q,Q′) = gil
(q,Q′) for all q, Q′

and each transition q −→∗ Q′ in G∗
l labelled with the appropriate B ∈ Bn−1 or automaton

G∗
(q,Q′) from G∗

l−1.

Finally, we have the following algorithm for constructing A∗:

1. Given A0, iterate Ai+1 = TD(Ai) until the fixed point Ain−1 is reached.

2. For l = n − 1 down to l = 1: iterate Gi+1
l = T

eG
il
l

[il/il−1]
(Gi

l) to generate the fixed

point G
il−1

l from Gil
l .

3. For l = 1 to l = n − 1: construct G∗
l as in Lemma 5.4.9.

4. Construct A∗ as in Property 5.4.6.

Property 5.4.6. There exists an automaton A∗ which is sound and complete with respect to
A0, A1, . . . and hence computes the set Pre∗(CInit).

Proof. By Property 5.4.4 there is some in−1 with G̃i
n−1 ≃ G̃

in−1

n−1 for all i ≥ in−1. By
Lemma 5.4.9, we have G∗

n−1. We then define A∗ from Ain−1 with each transition q −→∗ Q′ in
A∗ labelled with the automaton G∗

(q,Q′) from G∗
n−1.

5.4.6 Proofs for A∗

In this section we provide proofs of Lemma 5.4.8 and Lemma 5.4.9. The proof of the first
lemma is somewhat involved, hence we deal with the order-1 and the order-l for l > 1 cases
individually. The main idea in both proofs is that the loops in Ĝi

l can simulate, correctly, the

prefix of any run in Gi′

l and vice-versa. That is, a run in Ĝi
l begins by traversing its initial

loops before progressing to its accepting states. If we unroll this looping we will construct a
run of Gi′

l for a sufficiently large i′. In the other direction, the prefix of a run in Gi′

l can be

simulated by the initial looping behaviour of Ĝi
l .

We begin by proving a small lemma that will ease the remaining proofs.

134

Section 5.4. The General Case

Lemma 5.4.10. Given g
iy
(qy ,Qy)

w
−→iy Qy for all y ∈ {1, . . . , h} for some h, let imax be the

maximum iy. We have {gimax

(q1,Q1), . . . , g
imax

(qh,Qh)}
w

−→
⋃

y∈{1,...,h} Qy.

Proof. By Lemma 5.4.2 we have gimax

(qy ,Qy)

w
−→imax Qy for each y ∈ {1, . . . , h}. Hence we have

the run as required.

Proof of Lemma 5.4.8 for l = 1

There are three parts to the proof. We first prove that a fixed point i0 is reached. We then
prove Lemma 5.4.8 in both directions.

Lemma 5.4.11. There exists some i0 such that Ĝi
1 = Ĝi0

1 for all i > i0. Furthermore, we

have the run gi1
(q,Q′)

w
−→i Qf with Qf ⊆ Qf for some i iff we have gi1

(q,Q′)

w
−→i0 Qf in Ĝi0

1 .

Proof. This is a simple consequence of the finiteness of Σ and that TeG
i1
1 [i1/i1−1]

only adds

transitions and never states. The automaton will eventually become saturated and no new
transitions will be added.

Lemma 5.4.12. For all w, if gi
(q,Q′)

w
−→i Q1 with Q1 ⊆ Qf is a run in Gi

1 for some i, then

we have gi1
(q,Q′)

w
−→i0 Q2 with Q2 ⊆ Qf in Ĝi0

1 .

Proof. We prove the following property. For any path gi
(q,Q′)

w
−→i {q1, . . . , qh} in Gi

1, we have

a path gi1
(q,Q′)

w
−→i0 {q!

1, . . . , q
!
h} in Ĝi0

1 with,

q!
y =

{
gi1
(q′,Q′′) if qy = gi′

(q′,Q′′) and i′ ≥ i1

qy otherwise

for all y ∈ {1, . . . , h}. Since q!
f = qf for all qf ∈ Qf , the lemma follows. When Q = {q1, . . . , qh}

we write Q! to denote the set {q!
1, . . . , q

!
h}.

There are two cases. When i ≤ i1, then using that we have only added transitions to Gi1
1

to define Ĝi0
1 and that q!

y = qy for all y, we have gi1
(q,Q′)

w′

−→i0 {q!
1, . . . , q

!
h} in Ĝi0

1 .
We now consider the case i > i1. We begin by proving that for a single transition,

gi
(q,Q′)

b
−→i {q1, . . . , qh}

in Gi
1 with b ∈ Σ, we have the following transition in Gi0

(q,Q′),

gi1
(q,Q′)

b
−→i0 {q!

1, . . . , q
!
h}

We consider the source S = {α1, . . . , αm} ∈ G̃i
(q,Q′) of the transition from gi

(q,Q′). Since

G̃i
(q,Q′) ≃ G̃i1

(q,Q′) we have S[i1/i− 1] ∈ G̃i1
(q,Q′)[i1/i1 − 1]. Furthermore, we have {q1, . . . , qh} =

Q1 ∪ · · · ∪ Qm. For e ∈ {1, . . . , m} there are two cases,

• If αe = θ, then let g = qθ. We have g
b

−→i−1 Qe exists in Gi−1
1 . By induction over i we

have g! b
−→i0 Q!

e in Ĝi0
1 .

135

Section 5.4. The General Case

• αe = (a, pushwp , θ). Then b = a. Let g = qθ. By definition of TeGi1 [i1/i1−1]
, we have the

path g
wp
−→i−1 Qe in Gi

1. By induction on i we have the path g! wp
−→i0 Q!

e in Ĝi0
1 .

We have Q!
1∪· · ·∪Q!

m = {q!
1, . . . , q

!
h}. Since G̃i

(q,Q′) ≃ G̃i1
(q,Q′) and S[i1/i−1] ∈ G̃i1

(q,Q′)[i1/i1−1],

by definition of Ĝi0
1 , we have,

gi1
(q,Q′)

b
−→i0 {q!

1, . . . , q
!
h}

in Ĝi0
1 as required.
We now prove the result for a run of more than one step by induction over the length of

the run. In the base case we have a run of a single transition. The result in this case has
already been shown. In the inductive case we have a run of the form,

gi
(q,Q′)

a0−→i {q
1
1, . . . , q

1
h1
}

a1−→i . . .
am−→i {q

m
1 , . . . , qm

hm
}

in Gi
1. For each y ∈ {1, . . . , h1} we have a run q1

y
a1...am−−−−→i Qy such that

⋃
y∈{1,...,h1}

Qy =

{qm
1 , . . . , qm

hm
}. By induction over the length of the run we have q!1

y
a1...am−−−−→i0 Q!

y for each y.

Hence, since we have gi1
(q,Q′)

a0−→i0 {q!1
1 , . . . , q!1

h1
} from the above proof for one transition, we

have a run of the form,

gi1
(q,Q′)

a0−→i0 {q!1
1 , . . . , q!1

h1
}

a1−→i0 . . .
am−→i0 {q!m

1 , . . . , q!m
hm

}

in Ĝi0
1 as required.

Lemma 5.4.13. For all w, if we have gi1
(q,Q′)

w
−→i Qf with Qf ⊆ Qf in Ĝi

1 for some i, then

there is some i′ such that the run gi′

(q,Q′)
w

−→i′ Qf exists in Gi′
1 .

Proof. We take a run of Ĝi
(q,Q′),

gi1
(q,Q′)

w
−→i {q1, . . . , qh}

We show that for all i1 ≥ i1, there is some i2 > i1 such that,

gi2

(q,Q′)
w

−→i2 {q?
1, . . . , q

?
h}

in Gi2

(q,Q′) where, for y ∈ {1, . . . , h},

q?
y =

{
gi1

(q′,Q′′) if q1 = gi1
(q′,Q′′)

qy otherwise

Since q?
f = qf for all qf ∈ Qf , the lemma follows. For a set Q = {q1, . . . , qh} we write

Q? = {q?
1, . . . , q

?
h}.

The proof proceeds by induction over i. In the base case i ≤ i1 and the property holds by
Lemma 5.4.2 and since Ĝi1

1 = Gi1
1 and there are no incoming transitions to any gi1

(q′,Q′′) in Gi1
1 .

In the inductive case, we begin by showing for a single transition,

gi1
(q,Q′)

b
−→i {q1, . . . , qh}

136

Section 5.4. The General Case

in Ĝi
(q,Q′) with b ∈ Σ, we have, for all i1 ≥ i1, there is some i2 > i1 such that,

gi2

(q,Q′)
b

−→i2 {q?
1, . . . , q

?
h}

in Gi2

(q,Q′). We analyse the S ∈ G̃i1
(q,Q′)[i1/i1 − 1] that spawned the transition from gi1

(q,Q′) (we

assume the transition is new, else the property holds by induction). Let S = {α1, . . . , αm}.
We have {q1, . . . , qh} = Q1 ∪ · · · ∪ Qm. For each e ∈ {1, . . . , m}, there are several cases,

• αe = θ.

Let ge = qθ. By definition of Ĝi
1 we have the transition ge

b
−→i−1 Qe in Ĝi−1

1 .

If θ = G̃i1
(q′,Q′′) then by induction we have i2e > i1 such that g

i2e
(q′,Q′′)

b
−→i2e

Q?
e in G

i2e
1 .

Otherwise ge is initial in some B ∈ B1 and the transition ge
b

−→i−1 Qe also exists in G0
1

and is the same as ge
b

−→0 Q?
e. Let we = b.

• αe = (a, pushwp , θ). Then b = a.

Let ge = qθ. By definition of Ĝi
1 we have the run ge

wp
−→i−1 Qe in Ĝi−1

1 .

If θ = G̃i1
(q′,Q′′) then by induction we have i2e > i1 such that g

i2e
(q′,Q′′)

wp
−→i2e

Q?
e in Gi2e .

Otherwise ge is initial in some B ∈ B1 and the transition ge
wp
−→i−1 Qe also exists in G0

1

and is the same as ge
wp
−→0 Q?

e. Let we = wp.

Let imax be the maximum i2e. If ge = gi1
(q′,Q′′), we have, by Lemma 5.4.2, gimax

(q′,Q′′)

we−→imax Q?
e.

Also, by Lemma 5.4.2 we have ge
we−→imax Q?

e when ge is not of the form gi1
(q′,Q′′). Since we have

G̃imax+1
(q,Q′) ≃ G̃i1

(q,Q′) we have S[imax/i1 − 1] ∈ G̃imax+1
(q,Q′) and since Q?

1 ∪ · · · ∪ Q?
m = {q?

1, . . . , q
?
h}

we have,

gimax+1
(q,Q′)

b
−→imax+1 {q?

1, . . . , q
?
h}

in Gimax+1
(q,Q′) . Let i2 = imax + 1 and we are done in the case of a single transition.

We now expand the result to a complete run by induction over the length of the run. That
is, we take a run of Ĝi

(q,Q′),

gi1
(q,Q′)

w
−→i {q1, . . . , qh}

and show that for all i1 ≥ i1 there is some i2 > i1 such that,

gi2

(q,Q′)
w

−→i2 {q?
1, . . . , q

?
h}

in Gi2

(q,Q′).
The base case has already been shown. We now consider the run,

gi1
(q,Q′)

a0−→i {q
1
1, . . . , q

1
h1
}

a1−→i . . .
am−→i {q

m
1 , . . . , qm

hm
}

We have q1
y

a1...am−−−−→i Qy for each y ∈ {1, . . . , h1} and
⋃

y∈{1,...,h1}
Qy = {qm

1 , . . . , qm
hm

}. Then

for all y ∈ {1, . . . , h1} via induction and Lemma 5.4.10 we have for all i1 > i1 an imax with

{q?1
1 , . . . , q?1

h1
}

a1...am−−−−→imax {q?m
1 , . . . , q?m

hm
}

137

Section 5.4. The General Case

We then use the result for a single transition to obtain the result for the complete run. That
is, we have for imax an i2 > imax such that,

gi2

(q,Q′)
a0−→i2 {q?1

1 , . . . , q?1
h1
}

a1...am−−−−→i2 {q?m
1 , . . . , q?m

hm
}

exists in Gi2
1 as required.

We are now ready to prove the desired property.

Corollary 5.4.1. Suppose we have constructed a sequence of automata G0
1 ,G1

1 , . . . and asso-

ciated sets G̃0
1 , G̃1

1 , Further, suppose there exists an i1 such that for all i ≥ i1 we have

G̃i
1 ≃ G̃i1

1 . We can define a sequence of automata Ĝi1
1 , Ĝi1+1

1 , . . . such that the state-set in Ĝi
1

remains constant and there exists i0 such that Ĝi0
1 characterises the sequence — that is, the

following are equivalent for all w,

1. The run gi1
(q,Q′)

w
−→i Q1 with Q1 ⊆ Qf exists in Ĝi

1 for some i.

2. The run gi1
(q,Q′)

w
−→i0 Q2 with Q2 ⊆ Qf exists in Ĝi0

1 .

3. The run gi′

(q,Q′)
w

−→i′ Q3 with Q3 ⊆ Qf exists in Gi′
1 for some i′.

Proof. Follows from the definition of Ĝi+1
1 = TeG

i1
1 [i1/i1−1]

(Ĝi
1), Lemma 5.4.11, Lemma 5.4.12

and Lemma 5.4.13.

Proof of Lemma 5.4.8 for l > 1

In this section we prove Lemma 5.4.8 for the case when l > 1. The structure of the proof is
similar to the previous section.

Lemma 5.4.14. For all w, if gi
(q,Q′)

w
−→i Qf with Qf ⊆ Qf is a run in Gi

l for some i, then

we have gil
(q,Q′)

w
−→i′ Qf in Ĝi′

l for some i′.

Proof. We prove the following property. For any path gi
(q,Q′)

w
−→i′ {q1, . . . , qh} we can con-

struct a path gil
(q,Q′)

w
−→i′ {q

!
1, . . . , q

!
h} with,

q!
y =

{
gil
(q′,Q′′) if qy = gi′′

(q′,Q′′) and i′′ ≥ i1

qy otherwise

Since q!
f = qf for all qf ∈ Qf , the lemma follows. When Q = {q1, . . . , qh} we write Q! to

denote the set {q!
1, . . . , q

!
h}.

There are two cases. When i ≤ il, using Lemma 5.4.2, that Gil
l = Ĝil

l and that q!
y = qy for

all y, we have gil
(q,Q′)

w′

−→il {q
!
1, . . . , q

!
h} in Ĝil

l .
We now consider the case i > il. We begin by proving that for a single transition,

gi
(q,Q′)

γ
−→i {q1, . . . , qh}

in Gi
l , we have the following transition in Ĝi′

(q,Q′) for some i′,

gil
(q,Q′)

γ
−→i′ {q

!
1, . . . , q

!
h}

138

Section 5.4. The General Case

We consider the S = {α1, . . . , αm} ∈ G̃i
(q,Q′) from which the transition from gi

(q,Q′) was derived

(if it was inherited, then the property holds by induction over i). We have {q1, . . . , qh} =
Q1 ∪ · · · ∪ Qm. For each e ∈ {1, . . . , m} there are several cases,

• αe = θ.

Let ge = qθ. We have ge
θ′
−→i−1 Qe in Gi−1

l with θ′ ∈ S′ ∈ G̃i
(gi

(q,Q′)
,{q1,...,qh})

and the

accepting run of γ derived from S′. By Lemma 5.4.4 we have γ ∈ L(θ′). Hence, we have

ge
γ

−→i−1 Qe in Gi−1
l . By induction over i, we have g!

e
γ

−→i′e Q!
e in Ĝ

i′e
(q,Q′) for some i′e.

Furthermore, let we = γ.

• αe = (a, pushl, θ).

Let ge = qθ. We have the path

ge
θ1−→i−1 Q

eθ2−→i−1 Qe

in Gi−1
l with {Ba

l−1, θ1} ∪ θ̃2 ⊆ S′ ∈ G̃i
(gi

(q,Q′)
,{q1,...,qh})

and the accepting run of γ is

derived from S′. By Lemma 5.4.4 we have γ ∈ L({Ba
l−1, θ1} ∪ θ̃2). Hence, we have the

run,
ge

γ
−→i−1 Q

γ
−→i−1 Qe

By induction over i, we have,
g!
e

γγ
−→i′e Q!

e

for some i′e. Furthermore, let we = γγ.

• αe = (a, popl, θ).

Let ge = qθ. We have Qe = {ge}.

Additionally, we have Ba
l−1 ∈ S′ ∈ G̃i

(gi
(q,Q′)

,{q1,...,qh})
and the accepting run of γ derived

from S′. By Lemma 5.4.4 we have γ ∈ L(Ba
l−1). Furthermore, let we = ε.

• θ = (a, o, θ) where ℓ(d) < l.

Let ge = qθx . We have ge
θ′
−→i−1 Qe in Gi−1

l with (a, o, θ′) ∈ S′ ∈ G̃i
(gi

(q,Q′)
,{q1,...,qh})

and

the accepting run of γ derived from S′. By Lemma 5.4.5 we have o(γ) ∈ L(θ′). Hence,

we have ge
o(γ)
−→i−1 Qe in Gi−1

l . By induction over i, we have g!
e

o(γ)
−→i′e Q!

e in Ĝ
i′e
(q,Q′) for

some i′e. Furthermore, let we = o(γ).

Let imax be the maximum i′e. By Lemma 5.4.2 we have g!
e

we−→imax Q!
e for all e. Since

S[imax/i − 1] ∈ G̃imax+1
(q,Q′) and Q!

1 ∪ · · · ∪ Q!
m = {q!

1, . . . , q
!
h} we have via Lemma 5.4.6,

gi1
(q,Q′)

γ
−→imax+1 {q!

1, . . . , q
!
h}

in Ĝimax+1
(q,Q′) as required.

We now prove the result for a run of more than one step by induction over the length of
the run. In the base case we have a run of a single transition. The result in this case has
already been shown.

139

Section 5.4. The General Case

In the inductive case we have a run of the form,

gi
(q,Q′)

γ0
−→i {q

1
1, . . . , q

1
h1
}

γ1
−→i . . .

γm
−→i {q

m
1 , . . . , qm

hm
}

For each y ∈ {1, . . . , h1} we have q1
y

γ1...γm
−−−−→i Qy such that

⋃
y∈{1,...,h1}

Qy = {qm
1 , . . . , qm

hm
}.

By induction on the length of the run we have q!1
y

γ1...γm
−−−−→i′ Q!

y for each y for some i′. Let

imax be the maximum i′. We also have gi1
(q,Q′)

γ0
−→i′ {q

!1
1 , . . . , q!1

h1
} for some i′ from the above

proof for one transition. We have, via Lemma 5.4.10, a run of the form,

gi1
(q,Q′)

γ0
−→imax {q!1

1 , . . . , q!1
h1
}

γ1
−→imax . . .

γm
−→imax {q!m

1 , . . . , q!m
hm

}

in Ĝimax

l as required.

Lemma 5.4.15. For all w, if we have gil
(q,Q′)

w
−→i Qf with Qf ⊆ Qf in Ĝi

l for some i, then

there is some i′ such that the run gi′

(q,Q′)
w

−→i′ Qf exists in Gi′

l .

Proof. We take a run of Ĝi
(q,Q′),

gil
(q,Q′)

w
−→i {q1, . . . , qh}

We show that for all i1 ≥ il, there is some i2 > i1 such that,

gi2

(q,Q′)
w

−→i2 {q?
1, . . . , q

?
h}

in Gi2

(q,Q′) where, for y ∈ {1, . . . , h},

q?
y =

{
gi1

(q′,Q′′) if q1 = gil
(q′,Q′′)

qy otherwise

Since q?
f = qf for all qf ∈ Qf , the lemma follows. Given a set Q = {q1, . . . , qm}, we write Q?

to denote the set {q?
1, . . . , q

?
m}.

The proof proceeds by induction over i. In the base case i ≤ il and the property holds by
Lemma 5.4.2 and since Ĝil

1 = Gil
1 and there are no incoming transitions to any gil

(q′,Q′′) in Gil
1 .

In the inductive case, we begin by showing for a single transition,

gil
(q,Q′)

γ
−→i {q1, . . . , qh}

in Ĝi
(q,Q′) we have, for all i1 ≥ il, there is some i2 > i1 such that,

gi2

(q,Q′)

γ
−→i2 {q?

1, . . . , q
?
h}

in Gi2

(q,Q′). We analyse the S ∈ G̃il
(q,Q′)[il/il − 1] from which the transition from gil

(q,Q′) was

derived (we assume the transition is not inherited, else the property holds by induction).
Let S = {α1, . . . , αm}. We have {q1, . . . , qh} = Q1 ∪ · · · ∪ Qm. For each e ∈ {1, . . . , m}

there are several cases,

140

Section 5.4. The General Case

• αe = θ.

Let ge = qθ. We have ge
θ′
−→i−1 Qe in Ĝi−1

l with θ′ ∈ S′ ∈ G̃i

(g
il
(q,Q′)

,{q1,...,qh})
and the

accepting run of γ derived from S′. By Lemma 5.4.4 we have γ ∈ L(θ′). Hence, we have

ge
γ

−→i−1 Qe in Ĝi−1
l .

If θ = G̃il
(q′,Q′′), by induction over i, we have i2e > i1 such that g

i2e
(q′,Q′′)

γ
−→i2e

Q?
e in G

i2e
(q,Q′).

Otherwise ge is initial in some B ∈ Bl and the transition ge
γ

−→i−1 Qe also exists in G0
l

and is the same as ge
γ

−→0 Q?
e. Let we = γ.

• αe = (a, pushl, θ).

Let ge = qθ. We have the path

ge
θ1−→i−1 Q

eθ2−→i−1 Qe

in Ĝi−1
l with {Ba

l−1, θ1} ∪ θ̃2 ⊆ S′ ∈ G̃i

(g
il
(q,Q′)

,{q1,...,qh})
and the accepting run of γ is

derived from S′. By Lemma 5.4.4 we have γ ∈ L({Ba
l−1, θ1} ∪ θ̃2). Hence, we have the

run,
ge

γ
−→i−1 Q

γ
−→i−1 Qe

If θ = G̃il
(q′,Q′′), by induction over i, we have i2e > i1 such that,

g
i2e
(q′,Q′′)

γγ
−→i2e

Q?
e

Otherwise ge is initial in some B ∈ Bl and the transition ge
γγ
−→i−1 Qe also exists in G0

l

and is the same as ge
γγ
−→0 Q?

e. Let we = γγ.

• αe = (a, popl, θ).

Let ge = qθ. We have Qe = {ge}. Additionally, we have Ba
l−1 ∈ S′ ∈ G̃i

(g
il
(q,Q′)

,{q1,...,qh})

and the accepting run of γ derived from S′. By Lemma 5.4.4 we have γ ∈ L(Ba
l−1).

Furthermore, let we = ε.

• θ = (a, o, θ) where ℓ(d) < l.

Let ge = qθ. We have ge
θ′
−→i−1 Qe in Ĝi−1

l with (a, o, θ′) ∈ S′ ∈ G̃i

(g
il
(q,Q′)

,{q1,...,qh})
and

the accepting run of γ derived from S′. By Lemma 5.4.5 we have o(γ) ∈ L(θ′). Hence,

we have ge
o(γ)
−→i−1 Qe in Ĝi−1

l .

When θ = G̃il
(q′,Q′′), we have by induction over i some i2e > i1 such that g

i2e
(q′,Q′′)

o(γ)
−→i2e

Q?
e

in Ĝ
i2e
(q,Q′). Otherwise ge is initial in some B ∈ Bl and the transition ge

o(γ)
−→i−1 Qe also

exists in G0
l and is the same as ge

o(γ)
−→0 Q?

e. Let we = o(γ).

Let imax be the maximum i2e. If ge = gil
(q′,Q′′), we have, by Lemma 5.4.2, gimax

(q′,Q′′)

we−→imax Q?
e.

Also, by Lemma 5.4.2 we have ge
we−→imax Q?

e when ge is not of the form gil
(q′,Q′′). Since we

141

Section 5.4. The General Case

have G̃imax+1
(q,Q′) ≃ G̃il

(q,Q′) we have S[imax/il] ∈ G̃imax+1
(q,Q′) and since Q?

1 ∪ · · · ∪ Q?
m = {q?

1, . . . , q
?
h}

we have via Lemma 5.4.6,
gimax+1
(q,Q′)

γ
−→imax+1 {q?

1, . . . , q
?
h}

in Gimax+1
(q,Q′) . Let i2 = imax + 1 and we are done in the case of a single transition.

We now expand the result to a complete run by induction over the length of the run. That
is, we take a run of Ĝi

(q,Q′),

gil
(q,Q′)

w
−→i {q1, . . . , qh}

and show that for all i1 ≥ il there is some i2 > i1 such that,

gi2

(q,Q′)
w

−→i2 {q?
1, . . . , q

?
h}

in Gi2

(q,Q′).
The base case has already been shown. We now consider the run,

gil
(q,Q′)

γ0
−→i {q

1
1, . . . , q

1
h1
}

γ1
−→i . . .

γm
−→i {q

m
1 , . . . , qm

hm
}

We have q1
y

γ1...γm
−−−−→i Qy for each y ∈ {1, . . . , h1} and

⋃
y∈{1,...,h1}

Qy = {qm
1 , . . . , qm

hm
}. Then

for all y ∈ {1, . . . , h1} we have via induction and Lemma 5.4.10 we have for all i1 > il an imax

with
{q?1

1 , . . . , q?1
h1
}

γ1...γm
−−−−→imax {q?m

1 , . . . , q?m
hm

}

We then use the result for a single transition to obtain the result for the complete run.
That is, we have for imax an i2 > imax such that,

gi2

(q,Q′)

γ0
−→i2 {q?1

1 , . . . , q?1
h1
}

a1...am−−−−→i2 {q?m
1 , . . . , q?m

hm
}

as required.

Corollary 5.4.2. Suppose we have constructed a sequence of automata G0
l ,G1

l , . . . and as-

sociated sets G̃0
l , G̃1

l , Further, suppose there exists an il such that for all i ≥ il we have

G̃i
l ≃ G̃il

l . We can define a sequence of automata Ĝil
l , Ĝi1+1, . . . such that the state-set in

Ĝi
l remains constant (although the automata labelling the transitions may gain states). The

following are equivalent for all w,

1. The run gil
(q,Q′)

w
−→i Q1 with Q1 ⊆ Qf exists in Ĝi

l for some i.

2. The run gi′

(q,Q′)
w

−→i′ Q2 with Q2 ⊆ Qf exists in Gi
l for some i′.

Proof. From Lemma 5.4.14 and Lemma 5.4.15.

Proof of Lemma 5.4.9

Finally, we show that the constructed automaton G∗
l is correct.

Lemma 5.4.9. Suppose we have constructed a sequence of automata G0
l ,G1

l , . . . and associated

sets G̃0
l , G̃1

l , Further, suppose there exists an il such that for all i ≥ il we have G̃i
l ≃ G̃il

l .
We can define an automaton G∗

l such that the following are equivalent for all w,

142

Section 5.4. The General Case

1. The run g∗(q,Q′)
w

−→∗ Q with Q ⊆ Qf exists in G∗
l .

2. The run gi
(q,Q′)

w
−→i Q′′ with Q′′ ⊆ Qf exists in Gi

l for some i.

Proof. We proceed by induction over l. In the base case l = 1 and the result follows from
Corollary 5.4.1. That is, G∗

1 = Gi0
1 letting g∗(q,Q) = gi1

(q,Q) for each gi1
(q,Q). The equivalence of

(1) and (2) is immediate.
When l > 1 we generate the sequence Ĝil

l , Ĝil+1
l , . . . by Corollary 5.4.2. Since the state-set

remains constant, it follows from Property 5.4.5 that there is some il−1 with G̃i
l−1 ≃ G̃

il−1

l−1 for
all i ≥ il−1.

By induction, we have G∗
l−1. We then define G∗

l from Ĝ
il−1

l with g∗(q,Q′) = gil
(q,Q′) for all

q, Q′ and each transition q −→∗ Q′ in G∗
l labelled with the automaton G∗

(q,Q′) from G∗
l−1.

We show (1) and (2) are equivalent. By Lemma 5.4.8 (2) is equivalent to a run gil
(q,Q′)

w
−→i′

Q1 with Q1 ⊆ Qf in Ĝi′

l for some i′.

We proceed by induction over the length of w. Note that gil
(q,Q′) = g∗(q,Q′). We prove that

if w 6= ε a run gi
(q,Q′)

w
−→∗ Q exists in G∗

l iff a run gi
(q,Q′)

w
−→i′ Q exists in Ĝi′

l for some i′. It

is necessarily the case that i ≤ il. The Lemma follows because a state of the form gi
(q′,Q′′) is

never accepting and therefore w 6= ε.
In the base case, let w = γ. Let g = gi

(q,Q′). To prove (1) implies (2) we assume the

transition g
G∗

(g,Q)
−−−−→∗ Q in G∗

l with γ ∈ G∗
(g,Q). By induction over l we have γ ∈ Ĝi′

(g,Q) for

some i′. Hence, we have g
γ

−→i′ Q in Ĝi′

l as required.

To show (2) implies (1) we assume the transition g
Ĝi′

(g,Q1)
−−−−−→i′ Q1 in Ĝi′

l for some i′ with

γ ∈ Ĝi′

(g,Q1). By induction over l we have γ ∈ G∗
(g,Q1). Hence, we have g

γ
−→∗ Q1 in G∗

l as
required. This completes the proof of the base case.

For the induction, let w = γw′ and w′ 6= ε. To show (2) follows from (1) assume we have

a transition g
G∗

(g,Q)
−−−−→∗ Q = {q1, . . . , qm} with γ ∈ G∗

(g,Q) in G∗
l and the run,

{q1, . . . , qm}
w′

−→∗ Qf

in G∗
l . As before, we have g

γ
−→i′ Q in Ĝi′

l for some i′. For all e ∈ {1, . . . , m}, we have a

run qe
w′

−→∗ Qe
f with Qf = Q1

f ∪ · · · ∪ Qm
f . If qe is of the form gj

(q′,Q′′) for some j, then by

induction we have gj
(q′,Q′′)

w′

−→i′ Qe
f in Ĝi′

l for some i′ by induction over the length of the word.

Otherwise the run over w′ uses only states and transitions left unchanged by the algorithm.

Hence we have qe
w′

−→il Qe
f in Ĝil

l . As required, by Lemma 5.4.10 we have in Ĝimax

l for some
imax,

g
γ

−→imax {q1, . . . , qm}
w′

−→imax Q1
f ∪ · · · ∪ Qm

f

To show (1) follows from (2) assume we have a transition g
Ĝi′

(g,Q)
−−−−→i′ Q = {q1, . . . , qm}

with γ ∈ Ĝi′

(g,Q) in Ĝi′

l and the run,

{q1, . . . , qm}
w′

−→i′ Qf

143

Section 5.4. The General Case

in Gi′

l for some i′. As in the base case, we have g
γ

−→∗ Q in G∗
l . For all e ∈ {1, . . . , m}, we

have a run qe
w′

−→i′ Qe
f with Qf = Q1

f ∪ · · · ∪ Qm
f . If qe is of the form gj

(q′,Q′′) for some j,

then by induction we have gj
(q′,Q′′)

w′

−→∗ Qe
f in G∗

l by induction over the length of the word.

Otherwise the run over w′ uses only states and transitions left unchanged by the algorithm.

Hence, since G∗
l is derived from Ĝ

il−1

l , we have qe
w′

−→∗ Qe
f in G0

l . Subsequently, we have,

g
γ

−→∗ {q1, . . . , qm}
w′

−→∗ Q1
f ∪ · · · ∪ Qm

f

in G∗
l as required.

5.4.7 Complexity

We claim our algorithm runs in n-EXPTIME. We define,

exp1(m) = 2O(m) and expl(m) = 2O(expl−1(m))

Furthermore, let B =
⋃

1≤l<n Bl.

The algorithm requires the construction of an automaton G∗
l from Gil

l for 1 ≤ l ≤ n−1 and
fixed point il. Because the construction of G∗

l follows the same pattern as the construction of
Gi+1

l from Gi
l but with at least as many states, it follows that it dominates the complexity of

the algorithm. We calculate the complexity inductively, beginning at order-one with a fixed
state-set. Ultimately, the induction reaches order-n, where the state-set is fixed from the start
of the algorithm.

Let |Q| be the number of states in Gil
l . When l = 1 we can add at most O(|Q|×exp1(|Q|)×

|Σ|) transitions to Gi1
1 to define G∗

1 , where Q is the state-set of Gi1
1 . This means we need at

most O(exp1(|Q|)) iterations before a fixed point is reached. Each iteration requires the
processing of up to O(|Q|) sets G̃(q1,Q2) (one for each state gi1

(q1,Q2)). To process each set we

need to process up to O(exp1(|Q| + |B|)) sets S. This step in turn requires the analysis of
O(|Q|+ |B|) elements. The most expensive operation is to enumerate all runs over a word for
a push command. To enumerate all runs of the form Q1

w
−→ Q2 for some w (from a pushw

command) we require time O(exp1(|Q|)) (Proposition 5.6.1). Therefore, to construct G∗
1 from

Gi1 takes O(|Q| × (|B| + |Q|) × exp1(|B| + 3 × |Q|)). That is, O(exp1(|Q|) × exp1(|B|)).
When l > 1 and the state-set Q of Gil

l is frozen, we add at most O(|Q| × exp1(|Q|))

transitions to Gil
l during the construction of G∗

l . This means we need at most O(exp1(|Q|))
iterations before a fixed point is reached. Each iteration requires the processing of up to
O(|Q|) sets G̃(q1,Q2) (one for each state gi1

(q1,Q2)). To process each set we need to process up

to O(exp1(|Q|+ |B|)) sets S. This step in turn requires the analysis of O(|Q|+ |B|) elements.
The most expensive operation is to enumerate all runs of two transitions for a push command.

To enumerate all runs of the form Q1

fB1−→ Q2

fB2−→ Q3 requires time O(exp1(|∆| + |Q|)) (by
Proposition 5.6.2) Since |∆| is O(exp1(|Q|)), the run enumeration requires time O(exp2(|Q|)).

Since the contents of the sets G̃i
(q,Q′) ∈ G̃i

l−1 are derived from the transition structure,
we will reach a fixed point one step after we have reached a point where no more tran-
sitions are added. During this step we will add O(exp1(|Q|)) states to Gil

l−1 to construct

G
il−1

l−1 (since there are O(exp1(|Q|)) new transitions added in O(exp1(|Q|)) steps). By in-

duction, the construction of Gi+1
l−1 from Gi

l−1 performed at the end of each iteration takes
O(exp(l−1)(exp1(|Q|)) × exp1(|B|)) time.

144

Section 5.5. An Alternative Order-2 Construction

Hence, to reach a fixed point we require time O(exp1(|Q|) × ((|Q| + |B|) × exp1(|Q| +
|B|) × exp2(|Q|) + (expl(|Q|) × exp1(|B|)))). That is O(expl(|Q|) × exp1(|B|)). By induction
we can construct G∗

l−1 in time O(exp(l−1)(exp1(|Q|)) × exp1(|B|)). Hence, we can construct
G∗

l in time O(expl(|Q|) × exp1(|B|)).
Finally, at order-n we can add at most O(exp1(|Q|)) new transitions before a fixed point

is reached. Hence we must perform O(exp1(|Q|)) iterations. Each iteration requires us to
process O(exp1(|Q|)) commands (since |Q| is larger than the number of control states in
the higher-order APDS). In processing each command we must process O(|Q|) pairs of the
form (o, p). The most expensive of which requires run enumeration that takes O(exp2(|Q|))

time. Hence we construct G
in−1

n−1 with O(exp1(|Q|)) states in O(exp1(|Q|) × (exp1(|Q|) ×
|Q| × exp2(|Q|) + (exp(n−1)(exp1(|Q|)) × exp1(|B|)))) time. Thus, G∗

n−1 and hence A∗ can
be constructed in time O(exp(n−1)(exp1(|Q|))× exp1(|B|)), that is O(expn(|Q|)× exp1(|B|)).
The algorithm runs in n-EXPTIME.

5.5 An Alternative Order-2 Construction

An alternative backwards reachability algorithm for order-2 pushdown systems was presented
by Seth [23]. This construction was developed independently of our work. Using this method,
sets of order-2 stacks are represented with multi-automata as in the order-1 case. That is,
the automata are not nested. The stack alphabet is augmented with the symbols [1, [2,]1 and
]2. The stack [[abc][abc]] corresponds to a run over the word [2[1abc]1[1abc]1]2. It was shown
by Bouajjani and Meyer that these automata are equally expressive as nested automata, and
hence, the notions of regularity coincide.

The Algorithm

The algorithm is a saturation algorithm based on the order-1 construction discussed in Sec-
tion 3.1. The order-1 command pushw is handled in a directly analogous manner. To process
a (pj , a, pop2, p

k) command a transition is made to a state that checks that the current top1

character is an a and then skips over the remainder of the top2 stack until a]1 character is
reached. We then move to the state qk and check that the rest of the order-2 stack can be

accepted. This is analogous to the nested construction where we add a transition qj Ba
1−→ qk.

The idea underlying the nested construction for a command (pj , a, push2, p
k) is the addi-

tion of a transition qj B1×B2−−−−→ q for every run qk B1−→ q′
B2−→ q. Seth’s construction uses the

power of alternation. From the state qj we add a branch that splits into two runs. The first
run checks that the current top2 stack is accepted by B1. The second checks that the stack
is accepted by B2.

Because the automata are not nested, it is not clear where the portion of the run corre-
sponding to B2 begins. We use nondeterminism to overcome this problem: the state analogous
to the state q′ above is guessed and the second run proceeds as if it had started from q′. After
checking B2, this thread continues to check the acceptance of the remainder of the stack. The
first thread performs two duties: it ensures that the current top2 stack is accepted by B1, and
it makes sure that the guessed q′ is correct. That is, the run proceeds as if it had begun at
qk, but, when the symbol]1 is encountered — marking the end of the top2 stack — we insist
that the next state must be q′. If this is the case, the runs terminates with acceptance.

145

Section 5.6. Algorithms over n-Store (Multi-)Automata

Although extra states are needed to provide the memory required for the above strategy to
work, these states can be computed from the given PDS and are only polynomial in number.
The saturation step operates on this fixed state-set and hence, termination is obvious. We
refer the reader to the paper for the formal details of the algorithm [23].

Discussion

The complexity of Seth’s approach matches the complexity of ours. In particular, when the
order-2 pushdown system is non-alternating, the construction runs in EXPTIME. This com-
plexity is matched by our algorithm under the assumption that the initial 2-store automaton
does not use alternation. This can be seen because all commands are of the form (pj , a, o, pk)

and hence all new transitions are of the form q
eG

−→ q′. This means that a polynomial, rather
than exponential, number of transitions are added at order-2, and the second exponential
blow-up is avoided.

Our algorithm does not require the addition of new, worker states to the automaton.
Hence, a pre-computation step is avoided. However, since our algorithm adds new states
during the saturation step, it is not clear which will perform better in practice. It can also
be noted that the worker states needed by Seth’s construction can be computed on-the-fly.

An advantage of Seth’s approach is the computation of winning strategies. We have
avoided asking this of our algorithm for the sake of syntactical complexity. Seth shows that,
from an accepting run of a configuration, a winning strategy from that configuration can be
computed. Furthermore, there is a linear time algorithm for determining the move a player
should make from a winning configuration to reach the target destination in the shortest
time. Although the above construction is limited to order-2 PDSs, it may be generalised to
the order-n case.

5.6 Algorithms over n-Store (Multi-)Automata

In this section we describe several algorithms over n-store automata and n-store multi-
automata. These algorithms explain how to perform operations required in the preceding
sections, as well as construct boolean combinations of automata. Observe that an n-store
automaton is a special case of an n-store multi-automaton.

5.6.1 Enumerating Runs

Proposition 5.6.1. Given a 1-store (multi-)automaton A = (Q, Σ, ∆, ,Qf), a set of states

Q and word w, the set of all Q′ reachable via a run Q
w

−→ Q′ can be calculated in time
O(exp1(|Q|)).

Proof. We define the following procedure, which given a set of sets of states Q̃ computes the
set of sets Q′ with Q ∈ Q̃ and Q

a
−→ Q′.

Expand(a, Q̃)

let Q̃next = ∅
for each {q1, . . . , qm} ∈ Q̃

let ok = (∃(q1, a,) ∈ ∆) and Q̃∆ = ∆(q1, a)
for i = 2 to m

146

Section 5.6. Algorithms over n-Store (Multi-)Automata

ok = ok ∧ (∃(qi, a,) ∈ ∆)
Q̃∆ = { Q′ ∪ Q′′ | Q′ ∈ Q̃∆ ∧ (qi, a, Q′′) ∈ ∆ }

if ok then Q̃next = Q̃next ∪ Q̃∆

return Q̃next

The outer loop repeats O(exp1(|Q|)) times and the inner loop O(|Q|). Since the number of
Q′ ∈ Q̃∆ is O(exp1(|Q|)) and the number of (qi, a, Q′′) ∈ ∆ is also O(exp1(|Q|)), construc-
tion of Q̃∆ takes time O(exp1(|Q|)). Hence the procedure takes time O(exp1(|Q|) × |Q| ×
exp1(|Q|)), that is O(exp1(|Q|)).

Expand is correct since Q ∈ Q̃next at the end of the procedure iff we have {q1, . . . , qm} ∈ Q̃
and some (qi, a, Qi) ∈ ∆ for each i ∈ {1, . . . , m} with Q = Q1 ∪ · · · ∪ Qm.

Over a word w = a1 . . . am we define the following procedure,

ExpandWord(a1 . . . am, Q)

let Q̃ = {Q}
for i = 1 to m

Q̃ = Expand(ai, Q̃)

return Q̃

This procedure requires m runs of Expand and consequently runs in time O(exp1(|Q|)).
We prove the correctness of ExpandWord by induction over the length of the word.

When w = a1 correctness follows from the correctness of Expand. In the inductive case
w = a1 . . . am. We have all runs of the form Q

a1−→ Q1 as before, and all runs over a2 . . . am

from all Q1 by induction. We have all runs of the form Q
w

−→ Q′ therefrom.

Proposition 5.6.2. Given an l-store (multi-)automaton A = (Q, Σ, ∆, ,Qf) with l > 1, and

a set of states Q, the set of all Q′ reachable via a run Q
eB1−→ Q′

eB2−→ Q′′ can be calculated in
time O(exp1(|∆| + |Q|)).

Proof. We define the following procedure, which given a set of sets of states Q̃ computes the

set of sets Q′ and set of (l − 1)-store automata B̃ with Q ∈ Q̃ and Q
eB

−→ Q′.

Expand(Q̃)

let Q̃next = ∅
for each {q1, . . . , qm} ∈ Q̃

for each set {(q1, B1, Q
1), . . . , (qm, Bm, Qm)} ⊆ ∆

Q̃next = Q̃next ∪ {({B1, . . . , Bm}, Q1 ∪ · · · ∪ Qm)}

return Q̃next

The outer loop repeats at most O(exp1(|Q|)) times. At most O(exp1(|∆|)) sets need to be
enumerated during the inner loop. Hence, Expand runs in time O(exp1(|∆| + |Q|)). The
correctness of Expand is immediate.

To complete the algorithm, we define the following procedure,

ExpandETimes(e, Q)

147

Section 5.6. Algorithms over n-Store (Multi-)Automata

let Q̃ = Expand({Q})
for h = 1 to e

for each (B̃1, . . . , B̃h, Q′) ∈ Q̃

Q̃ = Q̃ ∪ ({(B̃1, . . . , B̃h)}×Expand({Q′}))

return Q̃ ∩ ((Bl)
e × 2Q)

This procedure requires O(e×(e×exp1(|∆|))×exp1(|Q|)) iterations of the loop. Each iteration
requires time O(exp1(|∆|+ |Q|)) and consequently the procedure runs in time O(exp1(|∆|+
|Q|)).

By the correctness of Expand we have (B̃, Q′) ∈ Q̃ iff we have the path Q
eB

−→ Q′ in A.
After execution of the loop we have, by correctness of Expand, (B̃1, . . . , B̃e, Q

′) ∈ Q̃ iff we

have the following path in A: Q
eB1−→ . . .

eBe−→ Q′.

5.6.2 Membership

Proposition 5.6.3. Given an n-store (multi-)automaton A = (Q, Σ, ∆,, Qf) and an n-store
w we can determine whether there is an accepting run over w in A from a given state q ∈ Q
in time O(|w||∆||Q|).

Proof. When w = ▽ we can check membership immediately. Otherwise the algorithm is
recursive. In the base case, when n = 1 and w = a1 . . . am, we present the following well-
known algorithm,

let Q = Qf

for i = m downto 1

Q = { q′ | (q′, ai, Q
′) ∈ ∆ ∧ Q′ ⊆ Q }

return (q ∈ Q)

This algorithm requires time O(m|∆||Q|). We prove that this algorithm is correct at order-1
by induction over m. When m = 1, we have q ∈ Q at the end of the algorithm iff there exists
a transition (q, a1, Q

′) ∈ ∆ where Q′ ⊆ Qf . When w = a1a2 . . . am we have q ∈ Q at the end
of the algorithm iff there exists a transition (q, a1, Q

′) where, by induction if q′ ∈ Q′ then the
word a2 . . . am is accepted from q′. Hence, we have q ∈ Q iff there is an accepting run over w
from q.

When n > 1 we generalise the algorithm given above. Let w = γ1 . . . γm,

let Q = Qf

for i = m downto 1

Q = { q′ | (q′, B, Q′) ∈ ∆ ∧ γ ∈ L(B) ∧ Q′ ⊆ Q }

return (q ∈ Q)

The outer loop of the program repeats m times, there are |∆| transitions to be checked. By
considering all labelling automata as a single automaton with an initial state for each (as
in the backwards reachability construction), we make a single recursive call (for each γ in
w), obtaining all states accepting γ. Checking γ ∈ L(B) then requires checking whether the

148

Section 5.6. Algorithms over n-Store (Multi-)Automata

appropriate initial state is in the result of the recursive call. We have |w| = |γ1| + · · · + |γm|,
hence the algorithm requires O(|γ1||∆1||Q|+ · · ·+ |γm||∆1||Q|) = O(|w||∆1||Q|) time for the
pre-computation, then O(m|∆2||Q|) time for the body of the algorithm, where ∆ = ∆1 ∪∆2

is the partition of ∆ into the order-n and lower-order parts. Hence, we require O(|w||∆||Q|)
time.

We prove that this algorithm is correct at order n > 1 by induction over m. When m = 1,
we have q ∈ Q at the end of the algorithm iff there exists a transition (q, B, Q′) ∈ ∆ with
γ ∈ L(B) and Q′ ⊆ Qf . When w = γ1γ2 . . . γm we have q ∈ Q at the end of the algorithm
iff there exists a transition (q, B, Q′) where γ ∈ L(B) and, by induction, if q′ ∈ Q′ then the
word a2 . . . am is accepted from q′. Hence, we have q ∈ Q iff there is an accepting run over w
from q.

5.6.3 Boolean Operations

We define the boolean operations on n-store multi-automata.

Definition 5.6.1. Given two n-store multi-automata A1 = (Q1, Σ, ∆1, {q
1
1, . . . , q

z
1},Q

1
f) and

A2 = (Q2, Σ, ∆2, {q
1
2, . . . , q

z
2},Q

2
f), we define,

A1 ∪ A2 = (Q1 ∪Q2 ∪ {q1, . . . , qz}, Σ, ∆∪, {q1, . . . , qz},Q∪
f)

where qi /∈ Q1 ∪Q2 for i ∈ {1, . . . , z} and

∆∪ = ∆1 ∪ ∆2

∪ { (qi, B, Q) | (qi
1, B, Q) ∈ ∆1 ∧ 1 ≤ i ≤ z }

∪ { (qi, B, Q) | (qi
2, B, Q) ∈ ∆2 ∧ 1 ≤ i ≤ z }

Q∪
f = Q1

f ∪ Q2
f ∪ { qi | qi

j ∈ Qj
f ∧ 1 ≤ j ≤ 2 ∧ 1 ≤ i ≤ z }

We define,

A1 ∩ A2 = (Q1 ∪Q2 ∪ {q1, . . . , qz}, Σ, ∆∩, {q1, . . . , qz},Q∩
f)

where qi /∈ Q1 ∪Q2 for i ∈ {1, . . . , z} and at order-1 we have,

∆∩ = ∆1 ∪ ∆2 ∪ { (qi, a, Q1 ∪ Q2) | (qi
1, a, Q1) ∈ ∆1 ∧ (qi

2, a, Q2) ∈ ∆2 ∧ 1 ≤ i ≤ z }

Q∩
f = Q1

f ∪ Q2
f ∪ { qi | qi

1 ∈ Q1
f ∧ qi

2 ∈ Q2
f ∧ 1 ≤ i ≤ z }

Otherwise we have,

∆∩ = ∆1 ∪ ∆2

∪ { (qi, B1 ∩ B2, Q1 ∪ Q2) | (qi
1, B1, Q1) ∈ ∆1 ∧ (qi

2, B2, Q2) ∈ ∆2 ∧ 1 ≤ i ≤ z }
∪ { (qi, ▽, {qε

f}) | (qi
1, ▽, {qε

f}) ∈ ∆1 ∧ (qi
2, ▽, {qε

f}) ∈ ∆2 ∧ 1 ≤ i ≤ z }

Q∩
f = Q1

f ∪Q2
f

Where B1 ∩ B2 is defined recursively.

Property 5.6.1. Given two n-store multi-automata A1 and A2, we have L(A1) ∩ L(A2) =
L(A1 ∩ A2) and L(A1) ∪ L(A2) = L(A1 ∪ A2).

149

Section 5.6. Algorithms over n-Store (Multi-)Automata

Proof. To prove the property for A1 ∪ A2 in the case of an empty stack ε we have for all
i ∈ {1, . . . , z} that qi ∈ Q∪

f iff we have qi
j ∈ Qj

f for j = 1 or j = 2. Otherwise, we observe
that we have for any i ∈ {1, . . . , z} an accepting run in A1 ∪ A2 of a store [γw],

qi γ
−→ Q

w
−→ Qf

with Qf ⊆ Qf iff we have a run,

qi
j

γ
−→ Q

w
−→ Qf

in Ai for j = 1 or j = 2.
For A1 ∩A2 we proceed by induction over n. When n = 1, in the case of the empty stack

ε we have for any i ∈ {1, . . . , z} that qi ∈ Q∩
f iff qi

j ∈ Qj
f for j = 1 and j = 2. Otherwise, we

have an accepting run of A1 ∩ A2 over the word aw,

qi a
−→ Q1 ∪ Q2

w
−→ Q1

f ∪ Q2
f

with Q1
f ∪ Q2

f ⊆ Qf iff we have the accepting runs,

qi
j

a
−→ Qj

w
−→ Qj

f

in Aj for j = 1 and j = 2.
When n > 1, we have an accepting run of A1 ∩ A2 over the word γw (note we may have

γ = ▽ and w = ε),

q0
γ

−→ Q1 ∪ Q2
w

−→ Q1
f ∪ Q2

f

with Q1
f ∪ Q2

f ⊆ Qf iff (via the induction hypothesis) we have the accepting runs,

qi γ
−→ Qi

w
−→ Qi

f

in Ai for i = 1 and i = 2.

We now show how to complement n-store multi-automata. We begin by defining an
operation on sets of sets.

Definition 5.6.2. Given a set of sets {Q1, . . . , Qm} we define,

invert({Q1, . . . , Qm}) = { {q1, . . . , qm} | qi ∈ Qi ∧ 1 ≤ i ≤ m }

Definition 5.6.3. Given an n-store multi-automaton A = (Q, Σ, ∆, {q1, . . . , qz},Qf), we
define Ā as follows.

• When n = 1 we assume A is total (this is a standard assumption that can easily be
satisfied by adding a sink state). We define Ā = (Q, Σ, ∆′, {q1, . . . , qz},Q \ Qf) where
∆′ is the smallest set such that for each q ∈ Q and a ∈ Σ we have,

1. The transitions from q in ∆ over a are (q, a, Q1), . . . , (q, a, Qm), and

2. Qa = invert
(⋃

1∈{1,...,m}{Qi}
)
, and

3. ∆′(q, a) = Qa.

Since Qa may be exponential in size, the construction runs in exponential time when
n = 1.

150

Section 5.6. Algorithms over n-Store (Multi-)Automata

• When n > 1 we define Ā = (Q∪ {q∗f , qε
f}, Σ, ∆′, {q1, . . . , qz}, (Q∪ {q∗f , qε

f}) \ Qf) where
q∗f , qε

f /∈ Q, all n-stores are accepted from q∗f and qε
f has no outgoing transitions.

Furthermore ∆′ is the smallest set such that for each q ∈ Q we have,

1. The non-▽ transitions from q in ∆ are (q, B1, Q1), . . . , (q, Bm, Qm), and

2. For all B̃ ∈ 2{B1,...,Bm} we have,

Q eB
=

{
{q∗f} if B̃ = ∅

invert
(⋃

Bi∈ eB
{Qi}

)
otherwise

B eB
=

⋂
Bi∈ eB

Bi ∩
⋂

Bi /∈ eB
B̄i

Note we have B̄i recursively; and

3. ∆′(q, B eB
) = Q eB

, and

4. For all j ∈ {1, . . . , z} we have (qj , ▽, {qε
f}) ∈ ∆′ iff there is no ▽-transition from qj

in A.

Overall, when n > 1 there may be an exponential blow-up in the number of transi-
tions and the construction of each B eB

may take exponential time. The construction is
therefore exponential.

We now show that the above definition is correct.

Property 5.6.2. Given an n-store multi-automaton A, we have L(Āqj
) = L(Aqj) for all

qj ∈ {q1, . . . , qz}.

Proof. We propose the following induction hypothesis: an accepting run q
w

−→ Q exists in Ā
iff there is no accepting run q

w
−→ Q′ in A. We proceed first by induction over n and then by

induction over the length of the run.
When n = 1, and the length of the run is zero, the induction hypothesis follows since

Qf ∩ (Q \Qf) = ∅. When the length of the run is larger than zero, we begin by showing the
if direction. Assume we have an accepting run,

q
a

−→ Q1 w
−→ Q

in Ā for some a and w. Suppose for contradiction we have a run,

q
a

−→ Q2 w
−→ Q′

in A with Q′ ⊆ Qf . Then, by induction over the length of the run, there are no accepting
runs over w in Ā from any state in Q2. In ∆ we have the transition (q, a, Q2). By definition
there is some q′ ∈ Q2 with q′ ∈ Q1 and consequently the accepting run Q1 w

−→ Q cannot exist
in Ā. We have a contradiction.

In the only-if direction, assume there is no run,

q
a

−→ Q1 w
−→ Q′

with Q′ ⊆ Qf in A. For all transitions of the form q
a

−→ Q1 (guaranteed to exist since A is

total) there is no accepting run Q1 w
−→ Q′. Hence, there is some q′ ∈ Q1 with no accepting

151

Section 5.6. Algorithms over n-Store (Multi-)Automata

run over w, and by induction over the length of the run, there is an accepting run from q′

over w in Ā.
Let {(q, a, Q⊤

1), . . . , (q, a, Q⊤
e)} be the set of all transitions in ∆ from q over a. For each

i ∈ {1, . . . , e}, let q⊤i ∈ Q⊤
i be the state from which there is no accepting run over w in A and

hence an accepting run over w in Ā. By definition of ∆′ the transition q
a

−→ {q⊤1 , . . . , q⊤e }
exists in Ā. Hence we have the accepting run,

q
a

−→ {q⊤1 , . . . , q⊤e }
w

−→ Q′

in Ā as required.
We now consider the inductive case n > 1. If q = q∗f or qε

f the result is immediate.
Similarly, when the length of the run is zero, then the property follows since Qf ∩ (Q ∪
{qε

f , q∗f}) \ Qf = ∅. Furthermore, since we have an (accepting) ▽-transition from qj for all

j ∈ {1, . . . , z} in A iff there is no (accepting) ▽-transition from qj in Ā the result is also
straightforward in this case.

Otherwise, in the if direction, assume we have an accepting run,

q
γ

−→ Q1 w
−→ Q

in Ā for some γ and w. Suppose for contradiction we have a run,

q
γ

−→ Q2 w
−→ Q′

in A with Q′ ⊆ Qf . Then, by induction over the length of the run, there are no accepting
runs over w in Ā from any state in Q2. In ∆ we have the transition (q, B, Q2) with γ ∈ L(B),
hence B must appear positively on the transition in ∆′ from q to Q1 (else B̄ appears, and
by induction over n, γ /∈ L(B̄)). By definition there is some q′ ∈ Q2 with q′ ∈ Q1 and
consequently the run Q1 w

−→ Q cannot exist in Ā. We have a contradiction.
In the only-if direction, assume there is no run,

q
γ

−→ Q1 w
−→ Q′

with Q′ ⊆ Qf in A. There are two cases.

• If there are no transitions q
γ

−→ Q1 in A then for all q
B
−→ Q1 we have γ ∈ B̄ by

induction over n. Hence, in Ā we have a run,

q
γ

−→ q∗f
w

−→ Q∗

which is an accepting run as required.

• If there are transitions of the form q
γ

−→ Q1 in A then for each of these runs there is
no accepting run Q1 w

−→ Q′. Hence, there is some q′ ∈ Q1 with no accepting run over
w, and by induction over the length of the run, there is an accepting run from q′ over
w in Ā.

Let {(q, Bt
1, Q

t
1), . . . , (q, B

t
e, Q

t
e), (q, B

f
1 , Qf), . . . , (q, Bf

h , Qf
h)} be the set of all transitions

in ∆ from q such that γ ∈ Bt
i for all i ∈ {1, . . . , e} and γ /∈ Bf

i for all i ∈ {1, . . . , h}

(and consequently γ ∈ B̄f
i). For each i ∈ {1, . . . , e} let qt

i ∈ Qt
i be the state from which

Ā has no accepting run over w in A and hence has an accepting run over w in Ā. By

152

Section 5.7. Summary

definition of ∆′ the transition q
B
−→ {qt

1, . . . , q
t
e} with B = Bt

1 ∩ · · · ∩Bt
e ∩ B̄f

1 ∩ · · · ∩ B̄f
h

exists in Ā. Hence we have the accepting run,

q
γ

−→ {qt
1, . . . , q

t
e}

w
−→ Q′

in Ā as required.

We have shown that Ā has an accepting run from any state iff there is no accepting run from
that state in A as required.

5.7 Summary

In this chapter we discussed our backwards-reachability algorithm for higher-order pushdown
systems. This result was first published in FoSSaCS 2007 [78]. This algorithm constructs in
n-EXPTIME an n-store multi-automaton which accepts the complete set of configurations
that can reach a given set of configurations CInit. This extends work due to Bouajjani et al. [3]
and Bouajjani and Meyer [2]. The main innovation of the approach is the careful management
of transition updates that allow us to identify a series of cascading fixed points, resulting in
termination. We also described an alternative proof due to Seth [23].

In the next chapter, we discuss applications of this result to reachability games and non-
emptiness of higher-order pushdown automata. The application to the non-emptiness of
higher-order pushdown automata shows that the problem is n-EXPTIME-hard, and hence,
our algorithm is optimal.

153

Chapter 6

Applications

In this chapter we discuss some of the applications of our algorithm to decision problems over
higher-order PDSs. In particular, we investigate LTL and branching-time model-checking over
non-deterministic higher-order pushdown systems, reachability games, the non-emptiness of
non-deterministic higher-order pushdown automata and goal sets in Büchi games over higher-
order pushdown systems.

The non-emptiness in Section 6.4 also shows the n-EXPTIME-hardness of the reachability
problem for higher-order pushdown systems.

6.1 Model-Checking Linear-Time Temporal Logics1

Bouajjani et al. use their backwards reachability algorithm to provide a model-checking algo-
rithm for linear-time temporal logics over the configuration graphs of pushdown systems [3].
In this section we show that this work permits a simple generalisation to higher-order PDSs.

Let Prop be a finite set of atomic propositions and (P,D, Σ) be a higher-order PDS with
a labelling function Λ : P → 2Prop which assigns to each control state a set of propositions
deemed to be true at that state. Given formula φ of an ω-regular logic such as LTL or µTL,
we calculate the set of configurations C of (P,D, Σ) such that every run from each c ∈ C
satisfies φ.

It is well known that any formula of an ω-regular logic has a Büchi automaton repre-
sentation [140, 83, 82] etc.. We form the product of the higher-order PDS and the Büchi
automaton corresponding to the negation of φ. This gives us a higher-order Büchi PDS; that
is, a higher-order PDS with a set F of accepting control states. Thus, model-checking reduces
to the non-emptiness problem for higher-order Büchi PDSs. Specifically, we compute the set
of configurations from which there is an infinite run visiting configurations with control states
in F infinitely often. Note that C is the complement of this set.

This problem can be reduced further to a number of applications of the reachability
problem. We present a generalisation of the reduction of Bouajjani et al.. Let [1a]1 denote
the order-1 stack consisting of a single character a and [la]l for l > 1 denote the stack consisting
of a single order-(l − 1) stack [(l−1)a](l−1).

1Correction: the proof of Proposition 6.1.1 is mistaken. For example, 〈p, [[ab]]〉 →֒ 〈q, [[ab][ab]]〉 →֒
〈q, [[b][ab]]〉 →֒ 〈p, [[ab]]〉 forms a loop without a repeating head. A correct and optimal algorithm for linear-time
model checking was published in FSTTCS 2010 [77].

155

Section 6.1. Model-Checking Linear-Time Temporal Logics

Proposition 6.1.1. Let c be a configuration of an order-n Büchi PDS BP . It is the case that
BP has an accepting run from c iff there exist distinct configurations 〈pj , [na]n〉 and 〈pj , γ2〉
with top1(γ2) = a and a configuration 〈pf , γ1〉 such that pf ∈ F and,

1. c
∗
→֒ 〈pj , γ3〉 for some γ3 with top1(γ3) = a, and

2. 〈pj , [na]n〉
∗
→֒ 〈pf , γ1〉

∗
→֒ 〈pj , γ2〉

Proof. ⇒: Every higher-order stack may be flattened into a well bracketed string, as per
Definition 2.8.1. Given a suffix of an n-store w, let comp(w) be a number of symbols “[”
added to the beginning of w to form an n-store proper.

Given an accepting run of BP ρ = c0c1 . . ., there exists a sequence of suffixes w1, w2, . . .
such that there exists an increasing sequence of natural numbers i1, i2, . . . and for all j > 0
and i ≥ ij ci has a stack with the suffix wj . Additionally cij has the n-store comp(wj) and wi

is a suffix of wj for all i ≤ j (it may be the case that wi = wj). Take the sequence ci1ci2
Due to the finiteness of P and Σ there must be p, a with an infinite number of cij with control
state p and a stack whose top1 element is a. Furthermore, since ρ is accepting, we must have
distinct cia and cib with p as their control states and a as the top1 element, with a cf whose
control state is pf ∈ F ,

c0
∗
→֒ cia

∗
→֒ cf

∗
→֒ cib

We have (1) from c0
∗
→֒ cia . By definition of ci1 , ci2 . . . we have cia = 〈p, comp(wia)〉 and all

configurations between cia and cib have the suffix wia . This implies,

〈p, [na]n〉
∗
→֒ 〈pf , u〉

∗
→֒ 〈p, v〉

with top1(v) = a. Hence, (2) holds as required.

⇐: From (1) we have c
∗
→֒ 〈p, γ1〉 with top1(γ1) = a. From (2) we can construct a path,

〈p, γ2〉
∗
→֒ 〈pf , γ3〉

∗
→֒ 〈p, γ4〉

with pf ∈ F and top1(γ4) = a for any γ2 with top1(γ2) = a. Thus, through infinite applications
of (2), we can construct an accepting run of BP .

We reformulate these conditions as follows, where CΣ
n is the set of all order-n stacks over

the alphabet Σ. We remind the reader that Ba
n is the n-store automaton accepting all n-stores

γ such that top1(γ) = a.

1. c ∈ Pre∗({pj} × L(Ba
n)),

2. 〈pj , [na]n〉 ∈ Pre∗((F × CΣ
n) ∩ Pre+({pj} × L(Ba

n)))

We can compute the set of pairs 〈pj , [na]n〉 satisfying (2) in (n− 1)-EXPTIME by calculating
Pre∗({pj} × L(Ba

n)) over the higher-order PDS described below. Note that the (n − 1)-
EXPTIME complexity is lower than the n-EXPTIME claimed in Section 5.4.7. This is be-
cause there is no alternation in the PDS. Hence, no alternation is required at order-n of the
automaton describing Pre∗({pj}×L(Ba

n)) (since Ba
n also requires no alternation). Hence, we

avoid the final exponential blow up.

156

Section 6.1. Model-Checking Linear-Time Temporal Logics

Definition 6.1.1. Given an order-n Büchi PDS BP = (P,D, Σ,F) we define BP ′ = (P ×
{0, 1},D′, Σ) where,

D′ = { ((p, 0), b, o, (p′, 0)) | p ∈ P ∩ F ∧ (p, b, o, p′) ∈ D } ∪
{ ((p, 0), b, o, (p′, 1)) | p ∈ F ∧ (p, b, o, p′) ∈ D } ∪
{ ((p, 1), b, o, (p′, 1)) | (p, b, o, p′) ∈ D }

Lemma 6.1.1. There exists a run 〈(p, 0), [na]n〉
∗
→֒ 〈(p, 1), w′〉 with w′ ∈ L(Ba

n) in BP ′ iff
〈p, [na]n〉 satisfies (2).

Proof. We begin by showing if 〈p, [na]n〉 satisfies (2), then a run 〈(p, 0), [na]n〉
∗
→֒ 〈(p, 1), γ〉

with γ ∈ L(Ba
n) exists in BP . The run over BP satisfying (2) can be split into two parts,

〈p, [na]n〉
∗
→֒ 〈pf , γf 〉

∗
→֒ 〈p, γ〉

with γ ∈ L(Ba
n) and pf is the first accepting state seen in the run. We consider each part

separately.

• Suppose we have a run,
〈p0, γ0〉 →֒ . . . →֒ 〈pm, γm〉

such that pm is the only accepting control state in the run. This run is derived from a
sequence of commands d1, . . . , dm. Let di = (pi−1, ai, oi, pi) for all i ∈ {1, . . . , m}. We
show the run,

〈(p0, 0), γ0〉 →֒ . . . →֒ 〈(pm, 0), γm〉

exists in BP ′ by induction over m. In the base case m = 0 and the result is trivial.
Suppose we have,

〈(p1, 0), γ1〉 →֒ . . . →֒ 〈(pm, 0), γm〉

by the induction hypothesis. Since d1 = (p0, a1, o1, p1) and p0 /∈ F , we have that
((p0, 0), a1, o1, (p1, 0)) is in D′. Hence we have the run,

〈(p0, 0), γ0〉 →֒ . . . →֒ 〈(pm, 0), γm〉

as required.

• We have 〈pf , γf 〉 ∈ (F × CΣ
n) ∩ Pre+({p} × L(Ba

n))), we show there exists the run

〈(pf , 0), γf 〉
∗
→֒ 〈(p, 1), γ〉 in BP’ with γ ∈ L(Ba

n).

We have the run 〈pf , γf 〉
∗
→֒ 〈p, γ〉 in BP with γ ∈ L(Ba

n). This run is of the form,

〈p0, γ0〉 →֒ 〈p1, γ1〉 →֒ . . . →֒ 〈pm, γm〉

with m ≥ 1, p0 = pf , γ0 = γf , pm = p and γm = γ. The run is the consequence
of a sequence of commands d1, . . . , dm. Let di = (pi−1, ai, oi, pi). Since p0 ∈ F we
have ((p0, 0), a1, o1, (p1, 1)) in D′ by definition. Furthermore, for i ∈ {2, . . . , m} we have
((pi−1, 1), ai, oi, (pi, 1)) in D′. We have the run

〈(p0, 0), γ0〉 →֒ 〈(p1, 1), γ1〉 →֒ . . . →֒ 〈(pm, 1), γm〉

in BP’ therefrom.

157

Section 6.1. Model-Checking Linear-Time Temporal Logics

The proof of this direction follows immediately.

We now consider the proof in the opposite direction. Suppose we have 〈(p, 0), [na]n〉
∗
→֒

〈(p, 1), γ〉 with γ ∈ L(Ba
n). From the definition of D′ it follows that the run is of the form,

〈(p, 0), [na]n〉 →֒ . . . →֒ 〈(pf , 0), γf 〉 →֒ 〈(p′, 1), γ′〉 →֒ . . . →֒ 〈(p, 1), γ〉

where the second element of each control state/flag pair changes only in the position shown.
Furthermore, pf is the first occurrence of an accepting control state in BP . This run is the
result of a sequence of commands d1, . . . , dm where m ≥ 1. From a simple projection on
the first element of each control state/flag pair, we immediately derive a sequence commands
d′1, . . . , d

′
m in D and the following run of BP ,

〈p, [na]n〉 →֒ . . . →֒ 〈pf , γf 〉 →֒ 〈p′, γ′〉 →֒ . . . →֒ 〈p, γ〉

Since 〈pf , γf 〉 and 〈p′, γ′〉 must be distinct, the existence of this run implies 〈p, [na]n〉 satisfies
(2).

Since BP ′ is twice as large as BP , and no alternation is used, Pre∗({pj} × L(Ba
n)) can

be calculated in (n − 1)-EXPTIME.

To construct an n-store automaton accepting all configurations from which there is an
accepting run, we calculate the configurations 〈pj , [na]n〉 satisfying the second condition. Since
there are only finitely many pj ∈ P and a ∈ Σ we can perform a simple enumeration. We
then construct an n-store automaton A corresponding to the union of the n-store automata
accepting these configurations and compute Pre∗(L(A)).

Theorem 6.1.1. Given an order-n Büchi PDS BP = (P,D, Σ,F), we can calculate in
(n − 1)-EXPTIME the set of configurations C such that from all c ∈ C there is an accepting
run of BP .

Proof. We appeal to Lemma 6.1.1 for each pj and a (of which there are polynomially many)
to construct an n-store automaton O(expn−1(2 × |P|)) in size which accepts 〈pj , [na]n〉 iff it
satisfies (2). Membership can be checked in polynomial time (Proposition 5.6.3).

It is straightforward to construct an automaton A polynomial in size which accepts 〈p, w〉
iff 〈p, [ntop1(w)]n〉 satisfies (2). We can construct Pre∗(L(A)) in (n − 1)-EXPTIME. Thus,
the algorithm requires (n − 1)-EXPTIME.

Corollary 6.1.1. Given an order-n PDS (P,D, Σ) with a labelling function Λ : P → 2Prop

and a formula φ of an ω-regular logic, we can calculate in (n + 1)-EXPTIME the set of
configurations C of (P,D, Σ) such that every run from each c ∈ C satisfies φ.

Proof. The construction of BP is exponential in size. Hence, we construct the n-store multi-
automaton A that accepts the set of configurations from which there is a run satisfying the
negation of φ as described above in time O(expn−1(exp1(|φ|))). To calculate C we complement
A as described in Appendix 5.6.3. This may include an exponential blow-up in the transition
relation of A, hence we have (n + 1)-EXPTIME.

Observe that since we can test c ∈ C by checking c /∈ L(A) where A is defined as above,
we may avoid the complementation step, giving us an n-EXPTIME algorithm. Currently
we do not have a tight lower bound for the LTL model-checking problem. From the (n −
1)-EXPTIME completeness of the emptiness problem for HOPDA [59], we obtain an (n −

158

Section 6.2. Reachability Games

1)-EXPTIME lower bound for LTL model-checking. The final exponential blow up in our
algorithm comes from the translation from LTL to Büchi automata. We believe it is unlikely
that such a blow is avoidable.

6.2 Reachability Games

Our algorithm may be used to compute the winning region for a player in a two-player
reachability game over higher-order PDSs. This generalises a result due to Cachat [128]. We
call our players Élöıse and Abelard.

Definition 6.2.1. Given an order-n PDS (P,D, Σ), an order-n Pushdown Reachability
Game (PRG) (P,D, Σ,R) over the order-n PDS is given by a partition P = PA ⊎PE and a
set R of configurations considered winning for Élöıse.

We write 〈p, γ〉 ∈ CE iff p ∈ PE and 〈p, γ〉 ∈ CA iff p ∈ PA. From a configuration 〈p, γ〉
play proceeds as follows:

• If 〈p, γ〉 ∈ CA, Abelard chooses a move (p, a, o, p′) ∈ D with top1(γ) = a and o(γ)
defined. Play moves to the configuration 〈p′, o(γ)〉.

• If 〈p, γ〉 ∈ CE , Élöıse chooses a move (p, a, o, p′) ∈ D with top1(γ) = a and o(γ) defined.
Play moves to the configuration 〈p′, o(γ)〉.

Élöıse wins the game iff play reaches a configuration 〈p, γ〉 where 〈p, γ〉 ∈ R or p ∈ PA and
Abelard is unable to choose a move. Abelard wins otherwise.

The winning region for a given player is the set of all configurations from which that
player can force a win. The winning region for Élöıse can be characterised using an attractor
AttrE(R) defined as follows,

Attr0
E(R) = R

Attri+1
E (R) = Attri

E(R) ∪ { c ∈ CE | ∃c′.c →֒ c′ ∧ c′ ∈ Attri
E(R) }

∪ { c ∈ CA | ∀c′.c →֒ c′ ⇒ c′ ∈ Attri
E(R) }

AttrE(R) =
⋃

i≥0 Attri
E(R)

Conversely, the winning region for Abelard is AttrE(R). Intuitively, from a position in
Attri

E(R), Élöıse’s winning strategy is to simply choose a move such that the next con-

figuration is in Attri−1
E (R). Abelard’s strategy is to avoid Élöıse’s winning region.

We can use backwards-reachability for order-n APDSs to calculate AttrE(R), and hence
the winning regions of both Abelard and Élöıse. To simplify the reduction, we make a
totality assumption. That is, we assume a bottom-of-the-stack symbol ⊥ that is never popped
nor pushed, and for all a ∈ Σ ∪ {⊥} and control states p ∈ P, there exists a command
(p, a, o, p′) ∈ D. This can be ensured by adding sink states pE

lose and pA
lose from which Élöıse

and Abelard lose the game. In particular, for every p ∈ P and a ∈ Σ ∪ {⊥} we have
(p, a, pusha, p

x
lose) where x = E if p ∈ PE or x = A otherwise. Furthermore, the only

commands available from px
lose are of the form (px

lose, a, pusha, p
x
lose) for x ∈ {A, E}. To ensure

that pA
lose is losing for Abelard, we set 〈pA

lose, γ〉 ∈ R for all γ. Conversely, 〈pE
lose, γ〉 /∈ R for

all γ.

159

Section 6.2. Reachability Games

Definition 6.2.2. Given an order-n PRG (P,D, Σ,R) we define an order-n APDS (P,D′, Σ)
where,

D′ = { (p, a, {(o, p′)}) | (p, a, o, p′) ∈ D ∧ p ∈ PE }
∪ { (p, a, { (o, p′) | (p, a, o, p′) ∈ D }) | p ∈ PA }

Furthermore, let Rstuck be the set of configurations 〈p, ▽〉 such that p ∈ PA. The set Rstuck

is regular and represents the configurations reached if Abelard performs an move with an
undefined next stack.

Let C▽

A be the set of order-n configurations with an undefined stack and a control state
belonging to Abelard.

Theorem 6.2.1. Given an order-n PRG, where R is a regular set of configurations, and an
order-n APDS as defined above, AttrE(R) is regular and equivalent to Pre∗(R∪Rstuck)\C▽

A.
Hence, computing the winning regions in the order-n PRG is n-EXPTIME.

Proof. Let R′ = R∪Rstuck. Since the size of an n-store multi-automaton recognising Rstuck

is linear, the complexity follows from the complexity of computing Pre∗(R′).
We show AttrE(R) = Pre∗(R′) \ C▽

A. We begin by proving AttrE(R) ⊇ Pre∗(R′) \ C▽

A.
Take a configuration 〈p, γ〉 ∈ Pre∗(R′) \ C▽

A. We show 〈p, γ〉 ∈ AttrE(R) by induction

over the shortest path 〈p, γ〉
∗
→֒ C of the order-n APDS with C ⊆ R′.

For the base case, we have 〈p, γ〉 ∈ R′\C▽

A. Hence, 〈p, γ〉 ∈ AttrE(R) since R ⊆ AttrE(R).
Now, suppose we have 〈p, γ〉 →֒ C via the command d = (p, a, OP) in the higher-order

APDS with C ∈ Pre∗(R) \ C▽

A and by induction C ⊆ Attri
E(R) for some i. There are two

cases,

• If p ∈ PA then for each (o, p′) ∈ OP and hence each move (p, a, o, p′) in the higher-order
PDS we have a corresponding 〈p′, γ′〉 ∈ C. We have either 〈p′, γ′〉 ∈ Pre∗(R′) \ C▽

A or
we have 〈p′, γ′〉 = 〈p, ▽〉.

If we have 〈p′, γ′〉 ∈ Pre∗(R′) \ C▽

A then 〈p′, γ′〉 ∈ Attri
E(R) for some i by induction.

If we have 〈p′, γ′〉 = 〈p, ▽〉 then o(γ) is undefined. Hence (p, a, o, p′) is not a valid move
for Abelard.

Hence we have 〈p, γ〉 ∈ CA and ∀c′.〈p, γ〉 →֒ c′ ⇒ c′ ∈ Attri
E(R) which implies 〈p, γ〉 ∈

Attri+1
E (R) ⊆ AttrE(R).

• If p ∈ PE then C = {〈p′, o(γ)〉} and (p, a, o, p′) ∈ D. Thus, we have ∃c′.〈p, γ〉 →֒ c′∧c′ ∈
Attri

E(R) and 〈p, γ〉 ∈ CE . Therefore 〈p, γ〉 ∈ Attri+1
E (R) ⊆ AttrE(R).

Thus, we have AttrE(R) ⊇ Pre∗(R′) \ C▽

A as required.
To show AttrE(R) ⊆ Pre∗(R′)\C▽

A we use induction over i in AttrE(R) =
⋃

i≤0 Attri
E(R).

When i = 0 we have Attr0
E(R) = R ⊆ R′ \ C▽

A ⊆ Pre∗(R′) \ C▽

A. For i > 1 there are two cases
for all c such that c /∈ Attri−1

E (R) and c ∈ Attri
E(R),

• c ∈ { c ∈ CE | ∃c′.c →֒ c′ ∧ c′ ∈ Attri−1
E (R) }.

Hence there is some command d = (p, a, o, p′) in the higher-order PDS and command
(p, a, {(o, p′)}) in the higher-order APDS. By induction c′ ∈ Pre∗(R′)\C▽

A and c = 〈p, γ〉
and c′ = 〈p′, o(γ)〉. Hence c ∈ Pre∗(R′) \ C▽

A.

160

Section 6.3. Model-Checking Branching-Time Temporal Logics

• c ∈ { c ∈ CA | ∀c′.c →֒ c′ ⇒ c′ ∈ Attri−1
E (R) }.

Let c = 〈p, γ〉. We have d = (p, a, OP) in the higher-order APDS such that for all moves
(p, a, o, p′) we have (o, p′) ∈ OP . If o(γ) is defined, we have 〈p, γ〉 →֒ 〈p′, o(γ)〉 and
〈p′, o(γ)〉 ∈ Pre∗(R′) by induction. If o(γ) is undefined, then since we have 〈p, ▽〉 ∈ R′

we have 〈p, ▽〉 ∈ Pre∗(R′).

Thus, we have 〈p, γ〉 →֒ C via an application of the command d such that C ⊆ Pre∗(R′).
Hence 〈p, γ〉 ∈ Pre∗(R′) and since γ 6= ▽, we have 〈p, γ〉 ∈ Pre∗(R′) \ C▽

A as required.

Thus, we have AttrE(R) = Pre∗(R′) \ C▽

A.

6.3 Model-Checking Branching-Time Temporal Logics

Generalising a further result of Bouajjani et al. [3], we show that backwards-reachability for
higher-order APDSs may be used to perform model-checking for the alternation-free (propo-
sitional) µ-calculus over higher-order PDSs. Common logics such as CTL are sub-logics of
the alternation-free µ-calculus.

Preliminaries

Given a set of atomic propositions Prop and a finite set of variables χ, the propositional
µ-calculus is defined by the following grammar,

φ := π ∈ Prop | X ∈ χ | ¬φ | φ1 ∪ φ2 | ⋄ φ | µX.φ

with the condition that, for a formula µX.φ, X must occur under an even-number of negations.
This ensures that the logic is monotonic. As well as the usual abbreviations for ⇒ and ∧, we
may also use, 2φ = ¬ ⋄ ¬φ, νX.φ(X) = ¬µX.¬φ(¬X) and σ for either µ or ν. A σ-formula
is of the form σX.φ.

A variable X is bound in φ if it occurs as part of a sub-formula σX.φ′(X). We call an
unbound variable (free) and write φ(X) to indicate that X is free in φ. A closed formula has
no variables occurring free, otherwise the formula is open.

Formulae in positive normal form are defined by the following syntax,

φ := π ∈ Prop | ¬π | X ∈ χ | φ1 ∪ φ2 | φ1 ∩ φ2 | ⋄ φ | 2φ | µX.φ | νX.φ

We can translate any formula into positive normal form by “pushing in” the negations using
the abbreviations defined above.

A σ-sub-formula of σX.φ(X) is proper iff it does not contain any occurrence of X. We
are now ready to define the alternation-free µ-calculus:

Definition 6.3.1. The alternation-free µ-calculus is the set of formulae in positive normal
form such that for every σ-sub-formula ψ of φ we have,

• If ψ is µ-formula, then all ν-sub-formulae of ψ are proper, and

• If ψ is a ν-formula, then all µ-sub-formulae of ψ are proper.

The closure cl(φ) of a formula φ is the smallest set such that,

• If ψ1 ∧ ψ2 ∈ cl(φ) or ψ ∨ ψ ∈ cl(φ), then ψ1 ∈ cl(φ) and ψ2 ∈ cl(φ), and

161

Section 6.3. Model-Checking Branching-Time Temporal Logics

• If ⋄ψ ∈ cl(φ) or 2ψ ∈ cl(φ), then ψ ∈ cl(φ), and

• If σX.ψ(X) ∈ cl(φ), then ψ(σX.ψ(X)) ∈ cl(φ).

The closure of any formula is a finite set whose size is bounded by the length of the formula.
Finally, we give the semantics of the µ-calculus over higher-order PDSs. Given a formula

φ, an order-n PDS (P,D, Σ), a labelling function Λ : P → 2Prop, and a valuation function
V assigning a set of configurations to each variable X ∈ χ, the set of configurations JφKV
satisfying φ is defined,

JπKV = Λ−1(π) × CΣ
n

JXKV = V(X)
J¬ψKV = (P × CΣ

n) \ JψKV
Jψ1 ∨ ψ2KV = Jψ1KV ∪ Jψ2KV

J⋄ψKV = Pre(JψKV)
JµX.ψKV =

⋂
{ C ⊆ P × CΣ

n | JψKV[X 7→C] ⊆ C }

where V[X 7→ C] is the valuation mapping all variables Y 6= X to V(Y) and X to C.

Model-Checking the Alternation-Free µ-Calculus

Given an order-n PDS (P,D, Σ) with a labelling function Λ : P → 2Prop, a formula φ of the
alternation-free µ-calculus, and a valuation V we show that we can generalise the construction
of Bouajjani et al. to produce an n-store multi-automata Aφ accepting the set JφKV .

Initially, we only consider formulae whose σ-sub-formulae are µ-formulae. We construct a
product of the higher-order PDS and the usual “game” interpretation of φ [118, 33] as follows:
observing that the commands of the form (, a, pusha,) do not alter the contents of the stack,

we construct the order-n PRG A = (P(P,φ),Dφ
P , Σ,R) where P

(P,φ)
A , P

(P,φ)
E and Dφ

P are the
smallest sets such that for every (p, ψ) ∈ P × cl(φ) and a ∈ Σ,

• If ψ = ψ1 ∨ ψ2, then (p, ψ) ∈ P
(P,φ)
E and the commands ((p, ψ), a, pusha, (p, ψ1)) and

((p, ψ), a, pusha, (p, ψ2)) are in Dφ
P ,

• If ψ = ψ1 ∧ ψ2, then (p, ψ) ∈ P
(P,φ)
A and the commands ((p, ψ), a, pusha, (p, ψ1)) and

((p, ψ), a, pusha, (p, ψ2)) are in Dφ
P ,

• If ψ = µX.ψ′(X), then (p, ψ) ∈ P
(P,φ)
A and the command ((p, ψ), a, pusha, (p, ψ′(ψ))) is

in Dφ
P ,

• If ψ = ⋄ψ′ and (p, a, o, p′) ∈ D, then (p, ψ) ∈ P
(P,φ)
E and ((p, ψ), a, o, (p′, ψ′)) is in Dφ

P ,

• If ψ = 2ψ′, then (p, ψ) ∈ P
(P,φ)
A and for every (p, a, o, p′) ∈ D we have the command

((p, ψ), a, o, (p′, ψ′)) in Dφ
P .

Finally, we define the set of configurations R that indicate that the formula φ is satisfied by
(P,D, Σ), Λ and V. The set R contains all configurations of the form,

• 〈(p, π), γ〉 where π ∈ Λ(p),

• 〈(p,¬π), γ〉 where π /∈ Λ(p),

162

Section 6.3. Model-Checking Branching-Time Temporal Logics

• 〈(p, X), γ〉, where X is free in φ and 〈p, w〉 ∈ V(X).

If V(X) is regular for all X free in φ, then R is also regular.
Commands of the form (, a, pusha,) are designed to deconstruct sub-formulae into literals

that can be evaluated immediately. These commands require that the top order-one stack
is not empty — otherwise play would be unable to proceed. Correctness of the construction
requires the top order-one stack to contain at least one stack symbol. This condition may be
ensured with a special “bottom of the stack” symbol ⊥∈ Σ. This symbol marks the bottom
of all order-one stacks and is never pushed or popped, except in the case of a command
(,⊥, push⊥,). The use of such a symbol is common throughout the literature [53, 133, 128]
etc..

Proposition 6.3.1. Given the order-n PRG A = (P(P,φ),Dφ
P , Σ,R) constructed from the

order-n PDS (P,D, Σ), a labelling function Λ, a valuation V and a formula of the alternation-
free µ-calculus φ such that all σ-sub-formulae of φ are µ-sub-formulae, we have 〈p, γ〉 ∈ JφKV
iff 〈(p, φ), γ〉 ∈ AttrE(R).

Proof. The result follows from the fundamental theorem of the propositional µ-calculus [118,
58]. If 〈(p, φ), γ〉 ∈ AttrE(R), then there is a winning strategy for Élöıse in A. In the absence
of ν-sub-formulae, this winning strategy defines a well-founded choice function and hence
a well-founded pre-model for (P,D, Σ), Λ, V and φ with initial state 〈p, γ〉. Thus, by the
fundamental theorem, 〈p, γ〉 satisfies φ.

In the opposite direction, if 〈p, γ〉 satisfies φ, then — by the fundamental theorem — there
is a well-founded pre-model with choice function f . Since there are no νX.ψ sub-formula in
φ, all paths in the pre-model are finite and all leaves are of a form accepted by R. Hence, a
winning strategy for Élöıse is defined by f and we have 〈(p, φ), γ〉 ∈ AttrE(R).

In the dual case — when all σ-sub-formulae of φ are ν-sub-formulae — we observe that the
negation φ̄ of φ has only µ-sub-formulae. We construct AttrE(R) for φ̄ and complement the
resulting n-store multi-automaton (see Section 5.6.3) to construct the set of configurations
satisfying φ.

We are now ready to give a recursive algorithm for model-checking with the alternation-
free µ-calculus. We write Φ = {φi}

m
i=1 to denote a set of sub-formulae such that no φi is a

sub-formula of another. Furthermore, we write φ[U/Φ] where U = {Ui}m
i=1 is a set of fresh

variables to denote the simultaneous substitution in φ of φi with Ui for all i ∈ {1, . . . , m}.
The following proposition is taken directly from [3]:

Proposition 6.3.2. Let φ be a µ-formula (ν-formula) of the alternation-free µ-calculus, and
let Φ = {φi}

n
i=1 be the family of maximal ν-sub-formulae (µ-sub-formulae) of φ with respect

to the sub-formula relation. Then,

JφKV = Jφ[U/Φ]KV ′

where U = {Ui}
n
i=1 is a suitable family of fresh variables, and V ′ is the valuation which extends

V by assigning to each Ui the set JφiKV .

Since, given a µ-formula (ν-formula) φ, the formula φ[U/Φ] has only µ-sub-formulae (ν-
sub-formulae) we can calculate JφiKV for all φi ∈ Φ, using the above propositions to calculate
an automaton recognising JφKV .

163

Section 6.4. Non-emptiness of Higher-Order Pushdown Automata

Theorem 6.3.1. Given an order-n PDS (P,D, Σ), a labelling function Λ, a valuation func-
tion V and a formula φ of the alternation-free µ-calculus, we can construct an n-store multi-
automaton A such that L(A) = JφKV .

Complexity

A formula φ can be described as a tree structure with φ at the root. Each node in the tree is
a µ-sub-formula or a ν-sub-formula ψ of φ. The children of the node are all maximal ν-sub-
formulae or µ-sub-formulae of ψ respectively. There are at most nφ nodes in the tree, where
nφ is the length of φ. Let nR be the number of states in the n-store automaton recognising R.
The size of this automata is linear in the size of the automata specifying V for each variable
X.

The n-store multi-automaton recognising JψKV for a leaf node ψ has O(expn(nR)) states.
Together with a possible complementation step (which does not increase the state-set)2 we
require O(expn+1(nP · nφ)) time and B may be of size O(expn+1(nV)).

Similarly, the n-store multi-automaton recognising JψKV ′ for an internal node ψ with
children φ1, . . . , φm has O(expn(Σm

i=1ni + nR) × exp1(bi)) states, where ni is the size of the
automaton recognising JφiKVi

for i ∈ {1, . . . , m} and bi is the size of B for that automaton.
Due to the final complementation step, |B| may be of size O(expn+1(Σ

m
i=1ni + nR)), which is

also the total time required.
Subsequently, the automaton A recognising JφKV ′ has O(expnφ·n(nR)) states and can be

constructed in O(exp(nφ·n)+1(nR)) time. Since we may test c ∈ C for any configuration c and

set of configurations C by checking c /∈ C, we may avoid the final complementation step to
give us an O(expnφ·n(nR)) time algorithm.

6.4 Non-emptiness of Higher-Order Pushdown Automata

We show that the n-EXPTIME complexity of the algorithm is optimal. In fact, the backwards-
reachability problem for order-n PDSs is n-EXPTIME-complete. This result is widely re-
garded to follow from the work of Engelfriet [59]. However, because Engelfriet considers a
broad range of automata, it is not immediately clear that his work can be applied directly
to our own. We provide another proof of the result which uses a clearly stated theorem of
Engelfriet: the non-emptiness problem for (non-deterministic) order-n pushdown automata
is (n − 1)-EXPTIME-complete [59]3.

Walukiewicz and Cachat have provided another proof of this property [130]. Initially this
proof was not published due to Engelfriet’s result. The following proof was constructed before
their paper was made available. The proof strategy is due to Olivier Serre.

We show that the reachability problem for order-n APDS is n-EXPTIME-hard via a
polynomial reduction from the non-emptiness problem over non-alternating order-(n + 1)
pushdown automata. Let ⊥∈ Σ be a dedicated “bottom of the stack” symbol that is neither

2Correction: the state set in the nested automata is actually increased. However, by following the conven-
tion of representing all the automata labelling the transitions by a single automaton with designated initial
states, we can ensure that the blow up does not take us outside the n-exponential blow up incurred by the
reachability step.

3Completeness follows from Theorem 2.6, which states that 2N(multi)-P k = (k − 1)-EXPTIME, and
Theorem 7.11, which can be instantiated to show that one-way non-deterministic order-k pushdown automata
are log-space complete in 2N(multi)-P k.

164

Section 6.4. Non-emptiness of Higher-Order Pushdown Automata

popped from nor pushed onto the stack. We define ⊥1= [⊥] and ⊥n= [⊥n−1]. In this case,
the initial configuration of the automaton is of the form 〈p0,⊥n〉 for some p0.

We define the order-n PRG PG which can be used to determine whether the order-(n+1)
pushdown automaton P is non-empty. Note that the construction is polynomial in size. Also,
observe that commands of the form (p, a, pusha, p

′) leave the stack contents unchanged.

Definition 6.4.1. Given an order-(n + 1) pushdown automaton P = (P,D, Σ, Γ, p0,Pf) we
define the order-n PRG PG = (P ′,D′, Σ,R) where,

P ′ = P ′
E ∪ P ′

A

P ′
E = P × (P ∪ {⊗}) ∪ {ff}

P ′
A = P × (P ∪ {⊗}) × (P ∪ {⊗}) ∪ {tt}

with tt, ff,⊗ /∈ P. Furthermore,

R = (Pf × {⊗} × CΣ
n)

Finally,

D′ = { ((p, pr), a, o, (p′, pr)) | (p, , a, o, p′) ∈ D ∧ o ∈ On } ∪
{ ((p, pr), a, pusha, tt) | (p, , a, popn+1, pr) ∈ D } ∪
{ ((p, pr), a, pusha, ff) | (p, , a, popn+1, p

′) ∈ D ∧ p 6= pr } ∪
{ ((p, pr), a, pusha, (p

′, p′r, pr)) | (p, , a, pushn+1, p
′) ∈ D ∧ p′r ∈ (P ∪ {⊗}) } ∪

{ ((p′, p′r, pr), a, pusha, (p
′, p′r)) | p′ ∈ P ∧ p′r, pr ∈ (P ∪ {⊗}) ∧ a ∈ Σ } ∪

{ ((p′, p′r, pr), a, pusha, (p
′
r, pr)) | p′, p′r ∈ P ∧ pr ∈ (P ∪ {⊗}) ∧ a ∈ Σ }

Intuitively, PG is defined to directly simulate any order-n moves of the pushdown automa-
ton. When a pushn+1 move is to be played, Eloise is required to give a control state pr which
she claims play will be returned to when the top store added by the pushn+1 command is
removed. If the top store will never be removed, she is able to play pr = ⊗. Abelard then has
a choice: either he can accept this assertion and let play continue from pr with the current
store contents, or he can challenge it. If he challenges Eloise’s claim, play moves to the control
state specified by the pushn+1 command. From this configuration, Eloise is required to move
play to the state pr as the current top store is popn+1-ed. If she succeeds, she wins the game,
otherwise the play is a victory for Abelard.

Property 6.4.1. If L(P) 6= ∅ then 〈(p0,⊗),⊥n〉 ∈ AttrE(R).

Proof. Assume there exists w = α1 . . . αm ∈ L(P). Since w ∈ L(P) there exists a run,

〈p0, γ0〉
α1
→֒ . . .

αm
→֒ 〈pm, γm〉

with γ0 =⊥n+1, pm ∈ Pf and the corresponding sequence of commands d1, . . . , dm such that
for each 1 ≤ i ≤ m we have di = (pi−1, αi, ai, oi, pi) with topi(γi−1) = ai and γi = oi(γi−1).

We show by induction over the number of order-(n + 1) commands in the sequence
d1, . . . , dm that Eloise has a winning strategy in the game PG. In particular we show that if
there exists a run,

〈p0, γ0〉
α1
→֒ . . .

αm
→֒ 〈pm, γm〉

for arbitrary p0 and γ0 — with the further condition that if oi = popn+1 for some i, then
there exists i′ < i with oi′ = pushn+1 — then from a configuration 〈(p0, pr), topn+1(γ0)〉 of

165

Section 6.4. Non-emptiness of Higher-Order Pushdown Automata

PG Eloise has a strategy to reach the configuration 〈(pm, pr), topn+1(γm)〉 or win the game.
For convenience we define the abbreviation γn = topn+1(γ) for all γ.

In the base case, no order-(n + 1) commands appear in the sequence d1, . . . , dm. That is
oi ∈ On for all 1 ≤ i ≤ m. Therefore, from the configuration 〈(p0, pr), γ

n
0 〉 Eloise can play the

sequence of moves d′1, . . . , d
′
m where d′i = ((pi−1, pr), ai, oi, (pi, pr)) and reach the configuration

〈(pm, pr), γ
n
m〉.

In the inductive case we have oi = pushn+1 for some i such that for all i′ < i, oi′ ∈ On.
By induction Eloise can force play into the configuration 〈(pi−1, pr), γ

n
i−1〉 or win the game.

In the former case there are two further cases to consider. Note that γn
i−1 = γn

i .

• There is no i′ ≥ i such that γi−1 = γi′ . That is, the top stack added by the push
command is never removed. In this case Eloise moves play to 〈(pi,⊗, pr), γ

n
i 〉 via the

command d′i = ((pi−1, pr), a, pusha, (pi,⊗, pr)) where a = top1(γi−1). From this config-
uration Abelard may only move play to the configuration 〈(pi,⊗), γn

i 〉. By induction,
Eloise has a strategy as required from this configuration.

• There is some i′ ≥ i such that γi−1 = γi′ . Take the least such i′. We have oi′ =
popn+1. Eloise moves play to the configuration 〈(pi, pi′ , pr), γ

n
i 〉 via the command d′i =

((pi−1, pr), a, pusha, (pi, pi′ , pr)) where a = top1(γi−1). There are two further subcases:

– Abelard moves play to the configuration 〈(pi, pi′), γ
n
i 〉. By induction, Eloise can

either win from this configuration, or force play to 〈(pi′−1, pi′), γ
n
i′−1〉. In the latter

case, since oi′ = popn+1, Eloise moves play to 〈tt, γn
i′−1〉 and wins the game.

– Abelard moves play to the configuration 〈(pi′ , pr), γ
n
i 〉 = 〈(pi′ , pr), γ

n
i′〉. By induc-

tion Eloise can either win from this configuration or force play to the configuration
〈(pm, pr), γ

n
m〉 as required.

Since any run from 〈p0,⊥n+1〉 must perform a pushn+1 before a popn+1 can occur, it is the
case that from 〈(p0,⊗),⊥n+1〉 Eloise can either win the game or force play to the configuration
〈(pm,⊗), γn

m〉. Since pm ∈ Pf , this is a victory for Eloise.

Property 6.4.2. If 〈(p0,⊗),⊥n〉 ∈ AttrE(R) then L(P) 6= ∅.

Proof. Assume that Eloise has a winning strategy from the configuration 〈(p0,⊗),⊥n〉 in the
game PG. We begin by proving that there is some bound k on the length of any play of PG

played according to Eloise’s strategy. We then show that a word w can be constructed such
that w ∈ L(P).

To show there is some bound k on the length of any play of PG we observe that if
〈(p0,⊗),⊥n〉 ∈ AttrE(R) then 〈(p0,⊗),⊥n〉 ∈ Attri

E(R) for some i. We proceed by induction
over i. We show for any c ∈ Attri

E(R), there is a bound on the length of any play according
to Eloise’s winning strategy.

When i = 0 then c ∈ R and k = 0. For i + 1 then in both cases c ∈ P ′
E or c ∈ P ′

A play
moves to a configuration c′ ∈ Attri

E(R). By induction there is some bound k on the length of
any play according to Eloise’s strategy from c′. Hence, we have a bound k + 1 on the length
of any play from c. Thus we have a bound on the length of any play from 〈(p0,⊗),⊥n〉 as
required.

We now show that there exists a word w such that w ∈ L(P). We proceed by induction
over k. In particular, we prove the following result: if Eloise has a winning strategy from a
configuration 〈(p, pr), γ〉, then there exists some w ∈ Γ∗ with, for all γ′ such that topn+1(γ

′) =

166

Section 6.4. Non-emptiness of Higher-Order Pushdown Automata

γ and — if pr 6= ⊗ — popn+1(γ
′) is defined, a run of P of the form 〈p, γ′〉

w
→֒ 〈p′, γ′′〉 where

either p′ = pr, γ′′ = popn+1(γ
′) or p′ ∈ Pf and pr = ⊗.

In the base case k = 0. That is p ∈ Pf and pr = ⊗. The property holds trivially. For
k + 1 there are several cases depending on Eloise’s next move d.

• d = ((p, pr), a, o, (p′, pr)) and o ∈ On.

By definition of D′, there exists some command (p, α, a, o, p′) ∈ D. Hence, the transition

〈p, γ′〉
α
→֒ 〈p′, o(γ′)〉 exists in P .

After Eloise moves, play continues from 〈(p′, pr), o(γ)〉 and topn+1(o(γ
′)) = o(γ). By

induction over k there exists w′ ∈ Γ∗ such that P has the run 〈p′, o(γ′)〉
w′

→֒ 〈p′′, γ′′〉

satisfying the induction hypothesis. Hence, the run 〈p, γ′〉
αw′

−֒−→ 〈p′′, γ′′〉 exists in P and
satisfies the induction hypothesis.

• d = ((p, pr), a, pusha, tt).

By definition of D′, there exists some command (p, α, a, popn+1, pr) ∈ D. Hence, because

pr ∈ P and thus pr 6= ⊗, the transition 〈p, γ′〉
α
→֒ 〈pr, γ

′′〉 exists in P where topn+1(γ
′) =

γ and γ′′ = popn+1(γ
′).

• d = ((p, pr), a, pusha, ff).

In this case, play moves to the position 〈ff, γ〉, which is a loss for Eloise. Since Eloise’s
strategy is winning, this case cannot occur.

• d = ((p, pr), a, pusha, (p
′, p′r, pr)).

By definition of D′, there exists some command (p, α, a, pushn+1, p
′) ∈ D. Hence,

the transition 〈p, γ′〉
α
→֒ 〈p′, pushn+1(γ

′)〉 exists in P . Note that it is the case that
topn+1(γ

′) = topn+1(pushn+1(γ
′)) = γ.

Play moves to the configuration 〈(p′, p′r, pr), γ〉. Eloise’s strategy must accommodate
both of Abelard’s possible replies. In the case where Abelard moves play to the con-
figuration 〈(p′, pr), γ〉, since Eloise’s strategy is winning we have by induction w′ ∈ Γ′

such that 〈p′, pushn+1(γ
′)〉

w′

→֒ 〈p′′, γ′′〉 exists and satisfies the induction hypothesis.

If p′′ ∈ Pf and pr = ⊗, then we have the run 〈p, γ′〉
αw′

−֒−→ 〈p′′, γ′′〉 and the induction
hypothesis is satisfied.

Otherwise we have a run 〈p, γ′〉
αw′

−֒−→ 〈pr, γ
′〉. In the case where Abelard moves play to

the configuration 〈(p′r, pr), γ〉, we have by induction a run 〈pr, γ
′〉

w′′

→֒ 〈p′′′, γ′′′〉 for some

w′′ which satisfies the induction hypothesis. We consequently have a run 〈p, γ′〉
αw′w′′

−֒−−−→
〈p′′′, γ′′′〉 as required.

Thus, since Eloise has a winning strategy from the configuration 〈(p0,⊗),⊥n〉, we have a run

〈p0,⊥n+1〉
w
→֒ 〈p, γ〉 for some w, p and γ. Since ⊗ /∈ P, we must have p ∈ Pf . Thus, L(P) 6= ∅

as required.

Corollary 6.4.1. L(P) 6= ∅ iff 〈(p0,⊗),⊥n〉 ∈ AttrE(R).

167

Section 6.5. Regular Goal Sets of Higher-Order Büchi Games

Corollary 6.4.2. The backwards reachability problem for order-n APDSs is n-EXPTIME-
hard.

Proof. The non-emptiness problem for an order-(n+1) pushdown automata is n-EXPTIME-
hard [59]. By Definition 6.4.1 and Property 6.4.1 there is a polynomial reduction of this
problem to computing the Eloise’s winning region in an order-n pushdown game. By Theo-
rem 6.2.1 there is a further polynomial reduction of this problem to backwards reachability
over an order-n alternating pushdown system. Hence, the backwards reachability problem for
order-n APDSs is n-EXPTIME-hard.

6.5 Regular Goal Sets of Higher-Order Büchi Games

In this section we generalise pushdown Büchi games to higher-order PBGs and show how
nested automata can be used to reduce regular sets of goal sets to set defined by control state
only. A higher-order parity games algorithm can then be used to compute the winners of the
game.

Definition 6.5.1. Given an order-n PDS (P,D, Σ), an order-n Pushdown Büchi Game
(PBG) (P,D, Σ,R) is given by a partition P = PA ⊎ PE and a set R of fair configurations.

Play proceeds as in the order-1 case. A play c0, c1, c2, . . . is a win for Eloise iff there exists
i ≥ 0 such that ci ∈ CA and Abelard is unable to move, or for all i ≥ 0, there exists j ≥ i such
that cj ∈ R — that is, the set of fair configurations R is visited infinitely often. Similarly to
Section 6.2 we make a totality assumption. In the Büchi case, we set 〈pA

lose, γ〉 ∈ R for all γ.
We define Attr+

E(T) and BüchiE(R):

X0(T) = ∅
Xi+1(T) = Xi(T) ∪ { c ∈ CE | ∃c′.c →֒ c′ ∧ c′ ∈ T ∪ Xi(T) }

∪ { c ∈ CA | ∀c′.c →֒ c′ ⇒ c′ ∈ T ∪ Xi(T) }
Attr+

E(T) =
⋃

i≥0 Xi(T)

Büchi0(R) = CΣ
n

Büchiα+1
E (R) = Attr+

E(BüchiαE(R) ∩R) for any ordinal α
BüchiλE(R) =

⋂
α<λ BüchiαE(R) for a limit ordinal λ

Current algorithms for computing the winner of the game assume the set R is of the form
R = F × CΣ

n for some F ⊆ P. That is, the set of fair configurations is defined by a set of
control states. In the order-1 case, Cachat shows that this assumption can be made without
loss of generality. In the next section, we show, using a different proof technique, that this
result holds in the higher-order case.

A simple goal set R is of the form F × CΣ
n for some F ⊆ P. In this section we show

that for every Büchi game, there is an equivalent game with a simple goal set.
We begin by showing how to construct a reachability game GR such that Eloise can win

from 〈p, γ〉 iff 〈p, γ〉 ∈ R. To encode a Büchi game as a game with a simple goal set Eloise
declares after each move whether the current configuration is in R. Abelard can choose to
accept or challenge this claim. Eloise wins the game if Abelard accepts an infinite number of
positive claims or play reaches an accepting state of GR (this can be translated to a Büchi
condition by adding a self-loop).

168

Section 6.5. Regular Goal Sets of Higher-Order Büchi Games

q qB GB qB
f

qlast q′

qlose

p
op

n

Figure 6.1: Encoding an n-store transition as a game

We first construct a reachability game GR which Eloise can win from a configuration 〈p, γ〉
iff 〈p, γ〉 ∈ R. We assume that the bottom of every order-one stack is marked with the symbol
⊥ that is neither pushed onto nor popped from the stack. Since no n-store is empty, every
n-store (multi-)automaton can be assumed to have a single final state qf with no outgoing
transitions. Furthermore, we assume, without loss of generality, that R is represented by a
non-deterministic n-store multi-automaton.

The idea behind the translation is that a transition q
B
−→ q′ is represented by a transition

from the state q into a sub-game representing the automaton B. Should this automaton
accept the current top stack, play will return from the sub-game to the state q′, removing the
top stack in the process.

The main subtlety of this approach is that, once a final state of B has been reached, we
must only exit the sub-game if the complete top stack has been checked. In the order-1 case,
this can be easily checked using the ⊥ symbol. In the higher-order case the bottom stack
cannot be marked in this way. Instead, when Eloise wishes to exit the sub-game, she must
pass control to Abelard. At this stage, Abelard can force play to a designated losing state
(for Eloise) if a popn action can be performed on the stack. In the case that the current
stack is the bottom stack, the popn operation is not defined, therefore Abelard must exit the
sub-game as Eloise requested. Figure 6.1 illustrates the construction.

Definition 6.5.2. Let B = (Q, Σ, ∆, {q1, . . . , qz}, {qf}) be a non-deterministic n-store (multi-
)automaton accepting n-stores in R. We define GR = GB. GB is defined recursively.

When n = 1, GB = (QB, Σ,DB, {qB
f } × CΣ

n) where QB = Q, qB
f = qf , and,

DB = { (q, a, pop1, q
′) | (q, a, q′) ∈ ∆ and q′ 6= qf } ∪

{ (q,⊥, push⊥, qB
f) | (q,⊥, qf) ∈ ∆ }

When n > 1, GB = (QB,DB, Σ, {qB
f } × CΣ

n),

QB = Q⊎ {qlast, qlose} ⊎
⊎

(q,B′,q′)∈∆

QB′

and (where qB′

and qB′

f are the initial state and finial state respectively of an automaton B′),

DB = { (q, a, pusha, q
B′

) | (q, B′, q′) ∈ ∆, q′ 6= qf and a ∈ Σ } ∪

{ (qB′

f ,⊥, popn, q′) | (q, B′, q′) ∈ ∆ } ∪

{ (qB′

f ,⊥, push⊥, qlast) | (q, B′, qf) ∈ ∆ } ∪

{ (qlast, a, popn, qlose) | a ∈ Σ } ∪
{ (qlast, a, pusha, q

B
f) | a ∈ Σ } ∪⋃

(q,B′,q′)∈∆ DB′

169

Section 6.5. Regular Goal Sets of Higher-Order Büchi Games

In all cases, all control states except qlast belong to Eloise and we assume qlast and qlose are
fresh states.

Property 6.5.1. 〈p, γ〉 ∈ L(B) ⇐⇒ 〈p, γ〉 ∈ AttrE(QB
f × CΣ

n).

Proof. We induct over n. In the base case n = 1.
Let γ = [wγ⊥]. We show by induction over the length of wγ that wγ⊥ is accepted from

q iff Eloise wins the reachability game from 〈q, [wγ ⊥]〉. In the base case wγ = ε and the
result is trivial. Let wγ = aw′. By induction, w′⊥ is accepted from q′ iff 〈q′, [w′⊥]〉 is
winning for Eloise. By induction and since (q, a, q′) ∈ ∆ iff (q, a, pop1, q

′) ∈ D, it follows that

q
a

−→ q′
w′⊥
−−→ qf iff 〈q, [aw′⊥]〉

∗
→֒ 〈q′, [w′⊥]〉.

When n > 1, let γ = [wγ]. We show by induction over the length of wγ that q
wγ
−→ qf

iff Eloise can win from 〈q, [wγ]〉. In the base case wγ = [w] where w ∈ CΣ
n−1. For every

transition q
B
−→ qf we have that Eloise can force 〈qB, [[w]]〉 to 〈qB

f , [[w′]]〉 with top1(w
′) =⊥ iff

[w] ∈ L(B). Therefore, we have q
[w]
−→ qf iff we have 〈q, [[w]]〉

∗
→֒ 〈qB, [[w]]〉

∗
→֒ 〈qB

f , [[w′]]〉
∗
→֒

〈qlast, [[w
′]]〉. Furthermore, since popn cannot be performed, Abelard must move play to

〈qB
f , [[w′]]〉.

Let wγ = [w]w′. By induction over the length, q
w′

−→ qf iff 〈q, [w′]〉
∗
→֒ 〈qB

f , [w′′]〉 with

top1(w
′′) =⊥. Since (q, B′, q′) ∈ ∆ iff (q, a, pusha, q

B′

) ∈ D it follows by induction on n that

q
[w]
−→ q′ iff Eloise can force 〈q, [[w]w′]〉

∗
→֒ 〈qB′

, [[w]w′]〉
∗
→֒ 〈qB′

f , [[w′′]w′]〉.

If Eloise plays (qB′

f ,⊥, push⊥, qlast), Abelard will play (qlast, a, popn, qlose) and Eloise will

lose the game. Hence, she must play (qB′

f ,⊥, popn, q′) to 〈q′, [w′]〉, from which she can win by

induction over the length of the w′ iff q′
w′

−→ qf . Hence q
[w]w′

−−−→ qf iff Eloise can force play
from 〈q, [w]w′〉 to 〈qB

f , [w′′]〉 with top1(w
′′) =⊥.

For a Büchi game G, we are now ready to construct an equivalent game GS with a simple
goal set. Intuitively, after each game move Eloise is asked to state whether the current
configuration is in R. If a positive claim is made, Abelard can challenge the claim by moving
play to GR (as in Definition 6.5.2) or let play continue in G. If Eloise can make an infinite
number of positive claims without a successful challenge from Abelard, then it follows that the
set R was seen an infinite number of times. The moves of the game for a move 〈p, γ〉 →֒ 〈p′, γ′〉
are illustrated in Figure 6.2.

Definition 6.5.3. Given a Büchi game G = (P,D, Σ,R) and GR = (PR,DR, Σ, {qf} ×CΣ
n)

constructed according to Definition 6.5.2, we define GS = (PS ,DS , Σ,RS) where (letting

170

Section 6.5. Regular Goal Sets of Higher-Order Büchi Games

〈(p, play), γ〉 〈(p′, claim), γ′〉 〈(p′, play), γ′〉

〈(p′, inR), γ′〉

qp′

Figure 6.2: Reduction to a game with simple goal sets

qp = qj be the (initial) control state of GR corresponding to the control state p = pj of G),

PS
A = (PA × {play}) ∪ (P × {inR}) ∪ PR

A

PS
E = (PE × {play}) ∪ (P × {claim}) ∪ PR

E

DS = { ((p, play), a, o, (p′, claim)) | (p, a, o, p′) ∈ D } ∪
{ ((p, claim), a, pusha, (p, play)) | a ∈ Σ } ∪
{ ((p, claim), a, pusha, (p, inR)) | a ∈ Σ } ∪
{ ((p, inR), a, pusha, (p, play)) | a ∈ Σ } ∪
{ ((p, inR), a, pusha, q

p) | a ∈ Σ } ∪
{ (qf , a, pusha, qf) | a ∈ Σ} ∪
DR

RS = ((P × {inR}) ∪ {qf}) × CΣ
n

Property 6.5.2. Given a Büchi game G with winning region (for Eloise) BüchiE(R) and
associated reachability game GR with winning region AttrE({qf} × CΣ

n), let

winS = AttrE({qf} × CΣ
n) ∪

{ 〈(p, play), γ〉 | 〈p, γ〉 ∈ BüchiE(R) } ∪
{ 〈(p, claim), γ〉 | 〈p, γ〉 ∈ BüchiE(R) } ∪
{ 〈(p, inR), γ〉 | 〈p, γ〉 ∈ BüchiE(R) ∩ R }

It is the case that winS is Eloise’s winning region in GS.

Proof. We show that winS is the greatest fixed point of X 7→ Attr+
E(X ∩RS).

winS is a fixed point: to show winS ⊆ Attr+
E(winS ∩ RS) we take c ∈ winS. There are

several cases,

• Case c = 〈p, γ〉 ∈ AttrE({qf} × CΣ
n): if p = qf and top1(γ) = a then Eloise can play

(qf , a, pusha, qf) to c ∈ winS ∩ RS and hence c ∈ Attr+
E(winS ∩ RS). Otherwise,

since c ∈ AttrE({qf} × CΣ
n) we have c ∈ Attr+

E(winS ∩ RS) immediately.

171

Section 6.5. Regular Goal Sets of Higher-Order Büchi Games

• Case c = 〈(p, play), γ〉. Since 〈p, γ〉 ∈ BüchiE(R) there exists (if p ∈ PE) a (p, a, o, p′) ∈
D with — or (if p ∈ PA) for all (p, a, o, p′) ∈ D it is the case that — 〈p′, o(γ)〉 ∈
Attr∗E(BüchiE(R) ∩ R). We proceed by induction over the number of moves required
for Eloise to reach BüchiE(R) ∩ R. In the base case, no moves are required. That is
〈p′, o(γ)〉 ∈ BüchiE(R)∩R. Therefore 〈(p′, inR), o(γ)〉 ∈ winS∩RS . Thus, since Eloise
can force play from 〈(p′, claim), o(γ)〉 to 〈(p′, inR), o(γ)〉, we have (p′, claim), o(γ)〉 ∈
Attr+

E(winS ∩RS).

In the inductive case, Eloise is able to force play to 〈p′′, γ′′〉 ∈ AttrE(BüchiE(R) ∩ R)
in one move. Therefore, in GS , Eloise is able to force play from 〈(p′, play), o(γ)〉 to
〈(p′′, claim), γ′′〉. By induction over the distance to BüchiE(R) ∩ R we have that
〈(p′′, claim), γ′′〉 ∈ Attr+

E(winS∩RS). Since Eloise can force play from 〈(p′, claim), o(γ)〉
to 〈(p′, play), o(γ)〉 and then to 〈(p′′, claim), γ′′〉, we have that 〈(p′, claim), o(γ)〉 ∈
Attr+

E(winS ∩RS).

Since Eloise can force play to 〈(p′, claim), o(γ)〉, it follows that we have 〈(p, play), γ〉,∈
Attr+

E(winS ∩RS).

• Case c = 〈(p, inR), γ〉: since c ∈ winS it must be the case that 〈p, γ〉 ∈ BüchiE(R)∩R.
Abelard can move play to 〈(p, play), γ〉 or 〈qp, γ〉. Both of these configurations have
been shown in the previous cases to be in Attr+

E(winS ∩RS), hence c is also.

• Case c = 〈(p, claim), γ〉: since c ∈ winS we know 〈p, γ〉 ∈ BüchiE(R). There are two
cases. If 〈p, γ〉 ∈ R, then 〈(p, inR), γ〉 ∈ winS, and, by the previous case 〈(p, inR), γ〉 ∈
Attr+

E(winS∩RS). Since Eloise can always move to this configuration, we have 〈p, γ〉 ∈
Attr+

E(winS ∩RS).

In the other case, 〈p, γ〉 /∈ R, since 〈p, γ〉 ∈ BüchiE(R), we have 〈(p, play), γ〉 ∈ winS
and by the previous case 〈(p, play), γ〉 ∈ winS ∈ Attr+

E(winS ∩ RS). Since Eloise can
force play to this position, we also have 〈p, γ〉 ∈ Attr+

E(winS ∩RS).

We now show Attr+
E(winS ∩ RS) ⊆ winS. Take c ∈ Attr+

E(winS ∩ R). If no moves are
possible from this configuration it must belong to Abelard and be in AttrE({qf}×CΣ

n) ⊆ winS
or of the form 〈(p, play), γ〉. In the latter case Abelard will have no available moves from 〈p, γ〉
in G and hence 〈p, γ〉 ∈ BüchiE(R) and 〈(p, play), γ〉 ∈ winS.

Otherwise, we induct over the number of steps required to reach (winS∩RS). In the base
case we have that Eloise can force play to a configuration c′ ∈ winS∩RS in one move. There
are two cases. If c′ = 〈qf , γ〉 then c ∈ AttrE({qf}×CΣ

n) ⊆ winS. Otherwise c′ = 〈(p, inR), γ〉,
〈p, γ〉 ∈ BüchiE(R) ∩R and c = 〈(p, claim), γ〉. Hence c ∈ winS.

In the inductive case Eloise can force play to some c′ with c′ ∈ win by induction. We
consider the format of c:

• c = 〈q, γ〉: In this case c and hence c′ are in AttrE({qf} × CΣ
n) ⊆ winS.

• c = 〈(p, play), γ〉: c′ = 〈(p′, claim), γ′〉 and since c′ ∈ winS we have that 〈p′, γ′〉 ∈
BüchiE(R). Since Eloise can force play to c′ it follows that Eloise can force play to
〈p′, γ′〉 from 〈p, γ〉 in G, hence 〈p, γ〉 ∈ BüchiE(R) and c ∈ winS.

• c = 〈(p, claim), γ〉: In this case c′ = 〈(p, play), γ〉 or 〈(p, inR), γ〉. Both cases imply
〈p, γ〉 ∈ BüchiE(R) (since c′ ∈ winS) and hence c ∈ winS.

172

Section 6.5. Regular Goal Sets of Higher-Order Büchi Games

• c = 〈(p, inR), γ〉: Abelard can force play to both c′ = 〈(p, play), γ〉 and c′ = 〈qp, γ〉.
Hence 〈p, γ〉 ∈ BüchiE(R) ∩R. Thus, c ∈ winS.

Thus, we have that winS is a fixed point of X 7→ Attr+
E(X ∩ RS). We now show that winS

is the greatest such fixed point.

winS is the greatest fixed point: assume YS ⊃ winS is a fixed point of X 7→ Attr+
E(X ∩RS).

There cannot be some configuration 〈q, γ〉 ∈ AttrE({qf} × CΣ
n) in YS but not in winS since

winS ⊇ AttrE({qf} ×CΣ
n). Furthermore, there cannot be some configuration 〈(p, inR), γ〉 in

YS with 〈p, γ〉 /∈ R. If there were, Abelard could simply move play to 〈qp, γ〉 /∈ Attr+
E(YS ∩

RS). Hence, all c in YS but not winS must be of the form 〈(p, play), γ〉 or 〈(p, claim), γ〉,
or of the form 〈(p, inR), γ〉 with 〈p, γ〉 ∈ R. Furthermore, whenever 〈(p, inR), γ〉 is in YS

then 〈(p, play), γ〉 is since Abelard can always move to this configuration. Finally, whenever
〈(p, claim), γ〉 is in YS , then Eloise’s available moves imply that either 〈(p, inR), γ〉 and hence
〈(p, play), γ〉 is in YS or 〈(p, play), γ〉 is in YS directly.

We define,
Y = { 〈p, γ〉 | 〈(p, play), γ〉 ∈ YS }

From the above, we have Y ⊃ BüchiE(R). We show that if YS is a fixed point of X 7→
Attr+

E(X ∩RS), then Y is a fixed point of X 7→ Attr+
E(X ∩R) in G. This is a contradiction

since BüchiE(R) is the greatest such fixed point.
We show Y ⊆ Attr+

E(Y ∩R). Take 〈p, γ〉 ∈ Y . If no moves are available from 〈p, γ〉, then
no moves are available from 〈(p, play), γ〉 in GS . Since 〈(p, play), γ〉 ∈ Attr+

E(YS ∩ RS), it
follows that p ∈ PA. Hence 〈p, γ〉 ∈ Attr+

E(Y ∩R).
Otherwise we induct over the number of moves from 〈(p, play), γ〉 to YS ∩RS in GS . The

base case is two moves 〈(p, play), γ〉 →֒ 〈(p′, claim), γ′〉 →֒ 〈(p′, inR), γ′〉. From the fact that
〈(p′, inR), γ′〉 ∈ YS ∩ RS we have 〈p′, γ′〉 ∈ R and 〈p′, γ′〉 ∈ Y ∩ R. Since Eloise can force
play to 〈(p′, claim), γ′〉 in GS it follows that Eloise can force play to 〈p′, γ′〉 in G. Hence
〈p, γ〉 ∈ Attr+

E(Y ∩R).
In the inductive case Eloise can force play to 〈(p′, claim), γ′〉 ∈ Attr+

E(YS ∩RS). If Eloise
moves play directly to 〈(p′, play), γ′〉 then by induction we have 〈p′, γ′〉 and hence 〈p, γ〉 in
Attr+

E(Y ∩ R). If Eloise moves play to 〈(p′, inR), γ′〉 then since Abelard can move play to
〈(p′, play), γ′〉 and by induction we have 〈p′, γ′〉 and hence 〈p, γ〉 in Attr+

E(Y ∩R).
Finally, we show Attr+

E(Y ∩R) ⊆ Y . Take 〈p, γ〉 ∈ Attr+
E(Y ∩R). If no moves are available

from 〈p, γ〉 it follows that p ∈ PA and no moves are available from 〈(p, play), γ〉 in GS . Hence
〈(p, play), γ〉 ∈ YS . Thus, 〈p, γ〉 ∈ Y .

Otherwise we induct over the number of moves required to reach Y ∩ R. In the base
case Eloise can force play to 〈p′, γ′〉 ∈ Y ∩ R in one move. By definition of Y we have
〈(p′, play), γ′〉 in YS and hence (since YS = Attr+

E(YS ∩RS)) we have 〈(p′, inR), γ′〉 ∈ YS ∩RS

and 〈(p′, claim), γ′〉 ∈ YS . Since Eloise can force play from 〈p, γ〉 to 〈p′, γ′〉 in G, it follows that
Eloise can force play from 〈(p, play), γ〉 to 〈(p′, claim), γ′〉 in GS . Hence 〈(p, play), γ〉 ∈ YS

and 〈p, γ〉 ∈ Y .
In the inductive case Eloise can force play to 〈p′, γ′〉 ∈ Attr+

E(Y ∩ R) and by induc-
tion 〈p′, γ′〉 ∈ Y . Hence 〈(p′, play), γ′〉 ∈ YS . From 〈(p′, claim), γ′〉 Eloise can move to
〈(p′, play), γ′〉, hence 〈(p′, claim), γ′〉 is in YS . Since Eloise can force play from 〈p, γ〉 to
〈p′, γ′〉 in G, it follows that Eloise can force play from 〈(p, play), γ〉 to 〈(p′, claim), γ′〉 in GS .
Hence 〈(p, play), γ〉 ∈ YS and 〈p, γ〉 ∈ Y .

173

Section 6.6. Summary

Therefore, if YS is a greater fixed point in GS than winS, then Y is a greater fixed point
in G than BüchiE(R), which is a contradiction as required.

6.6 Summary

In this chapter we provided a number of applications of our backwards reachability result
to LTL and branching-time model-checking, reachability games, Büchi games and the non-
emptiness of higher-order pushdown automata.

174

Chapter 7

Conclusion

We are now ready to conclude. We begin with a summary of the work presented before
discussing possible avenues of future research.

7.1 Summary of Contributions

We have provided several new model-checking algorithms for pushdown systems. In Chap-
ter 5 we described a backwards reachability algorithm for alternating higher-order pushdown
systems and showed how it can be used to calculate the winning regions of higher-order
pushdown games played over such systems. In Chapter 6 we gave a number of applications
of this work. Finally, in Chapter 4 we gave an novel algorithm for computing the winning
regions of pushdown parity games which is more direct that previous approaches, and is not
immediately exponential.

Parity Conditions

The first contribution of the thesis is what we believe to be the first extension of saturation
techniques to parity games played over pushdown systems. Previous methods, due indepen-
dently to Cachat [128] and Serre [93], computed winning regions in the order-1 case using
Walukiewicz’s local model-checking algorithm [53] as an oracle. These techniques have the
disadvantage of having to construct a large (immediately exponential), finite parity game
for the local model-checking algorithm. Another approach, due to Vardi et al. [91, 87] uses
two-way alternating parity tree-automata, a reduction to one-way alternating parity tree au-
tomata, and then the construction of a Büchi automaton requiring a complementation step.
In contrast, our saturation algorithm constructs an automaton accepting Élöıse’s winning
region directly by expanding a small initial automaton. Consequently, a large automaton will
only be constructed if necessary.

Our technique used a characterisation, due to Walukiewicz [53], of Élöıse’s winning region
as a series of fixed points of a kind of reachability formula. We were able to adapt the order-1
reachability algorithm and Cachat’s Büchi algorithm to compute greatest fixed points, and,
with a slight variation, least fixed points. These three components were combined to give an
algorithm for computing Élöıse’s winning region of an order-1 pushdown parity game.

175

Section 7.2. Further Research

Reachability Conditions

Bouajjani, Esparza and Maler [3, 8] and Finkel, Willems and Wolper [15] first introduced
saturation methods for model-checking order-1 pushdown systems. They provided a symbolic
backwards reachability algorithm. Given a regular set of pushdown configurations C — rep-
resented using a finite multi-automaton — their algorithm computed the set of configurations
that could reach C in a finite number of moves. The computation is a fixed point calculation:
during each iteration, transitions are added to the initial automaton, which has the effect
of adding new configurations that can reach C. Eventually, no more new transitions can be
added to the automaton, and we are left with the set Pre∗(C).

In 2007, Bouajjani and Meyer extended this technique to the case of higher-order push-
down systems with a single control-state [2]. Their approach introduced nested automata
which mimicked the nested structure of higher-order pushdown stores. Transitions of these
automata were labelled by nested automata that were ultimately labelled by finite-word au-
tomata. During iteration, updates filtered through the nested structure. A slightly modified
saturation argument ensured termination.

In Chapter 5 we provided an extension of these algorithms to the general case of alternating
higher-order pushdown systems. To ensure termination, rather than updating the automata
labelling transitions directly, we labelled new transitions with a recipe for the construction
of the required automata. This allowed us to identify when updates become repetitive, and
hence, we were able to identify a cascade of fixed points, resulting in termination.

Applications

In Chapter 6 we showed that an order-n reachability game can be encoded as an order-n
APDS, and hence, we can compute the winning regions of such a game. We also showed
that the n-EXPTIME complexity of our reachability algorithm is optimal. The proof is a
reduction from the non-emptiness problem for order-(n+1) pushdown automata and is based
on techniques suggested by Olivier Serre.

In this chapter, we also generalised results due to Bouajjani et al. [3] that show how
to use the backwards reachability algorithm to perform LTL model-checking and branching-
time model-checking for the alternation-free µ-calculus. Finally, we presented a new reduction
from regular goal sets to simple goal sets for order-n pushdown Büchi games, using a game
simulation, rather than the product construction used by Cachat in the order-1 case.

7.2 Further Research

We have presented algorithms for several model-checking problems for higher-order pushdown
systems. This work suggests a number of possibilities for future research.

Symmetric Higher-Order Pushdown Systems

An alternative definition of higher-order pushdown systems defines the higher-order pop oper-
ation as the inverse of the push operation. That is, a stack may only be popped if it matches
the stack below. The results of Carayol [11] imply that the set Pre∗(CInit) over these struc-
tures is regular, using Carayol’s notion of regularity. However, the complexity of computing
this set is unknown. We may attempt to adapt our algorithm to this setting and prove the
required complexity bounds.

176

Section 7.2. Further Research

Winning Strategies

Winning strategies are important in model-checking — for constructing counter-examples
— and synthesis. Whilst our algorithms compute the winning regions for several varieties of
higher-order pushdown game, we do not give a method for constructing the associated winning
strategies. In the order-1 case, Cachat [128] extended Bouajjani, Esparza and Maler’s [3]
algorithm to compute the winning strategies of a reachability or Büchi game. His approach
annotates new transitions with the information required to associate an accepting run of a
configuration with a strategy that reaches the destination set. We believe a similar approach
will work in the higher-order case.

In the case of order-1 parity games, we may attempt an approach based on signatures.
However, initial efforts in this direction have proved unsuccessful.

Order-n Parity Games

Given a suitable extension of the µ- and ν-safety properties used to show the correctness
of our order-1 parity games algorithm, we may be able to extend the approach to higher-
order games. However, this does not seem to be technically trivial since the nested automata
become in some sense detached from the game structure. However, the sets G̃ used in the
higher-order reachability algorithm have the flavour of an order-(n − 1) pushdown system.
Using this observation we may be able to perform the full generalisation.

Implementation

In this thesis we have extended the theory behind successful order-1 model-checking tools
such as Moped [124, 66] to the case of higher-order pushdown systems. A natural next step
is to attempt an implementation of these algorithms.

Our algorithms have an n-EXPTIME complexity for an order-n pushdown system, which
is optimal. Even though we expect n to be low in most cases, the complexity is still high.
A full implementation will require significant optimisation through the use of (for example)
CEGAR, BDDs, SAT solving and SMT solving.

There are a number of candidate input languages for our tool, each suited to different
applications. For example, we may use recursion schemes — which mimic the structure of
functional programs — or an extension of Moped’s input language. The choice of input lan-
guage will require research into the features that can be supported by higher-order pushdown
systems.

Collapsible Pushdown Systems

The (ε-closure) of the graphs generated by collapsible pushdown systems (CPDSs) strictly
contain those generated by higher-order pushdown systems [76]. In order to capture the full
expressibility of higher-order recursion schemes we may extend our techniques to collapsible
pushdown systems. This will require the development of new algorithms if we are to maintain
the global model-checking paradigm.

The first question to be addressed is the representation of sets of collapsible pushdown
configurations. The primary difficulty in this task is the representation of the collapse links.
Because this information will be encoded implicitly using a notion of regularity based on

177

Section 7.3. Summary

that of Carayol (see Section 3.4), we expect a generalisation of Carayol’s approach will be
preferred.

Following this work we may search for generalisations of CPDSs which define a larger class
of structures with decidable MSO properties.

Concurrency

A number of concurrent extensions of pushdown systems have been discussed in the literature.
Some of these systems have decidable reachability problems [7, 113] whilst others do not [6, 4].
In the cases where reachability is undecidable, abstraction techniques such as finite-chain
abstraction [5] or context-bounded model-checking [123] have provided verification algorithms.

As an extension of our work, we may explore the decidability of model-checking prob-
lems over higher-order pushdown systems equipped with concurrent constructs. Since the
techniques used to show the decidability of reachability for dynamic networks of pushdown
systems [6] are based on the reachability algorithm due to Bouajjani et al. [3] on which our
work is based, it is likely that the algorithms will generalise — using our reachability re-
sults — to the higher-order case. However, because these techniques may be complex, it
may be beneficial to attempt to find more elegant algorithms which may include the use of
abstraction.

Winning Conditions of High Borel Complexity

In Section 2.6.4 we discussed a number of model-checking results for order-1 pushdown games
with winning conditions of high Borel complexity. We may wish to investigate whether similar
model-checking results can be obtained in the higher-order case. For example, Cachat’s Σ3

winning condition requires an extension of the reachability algorithm that provided the basis
for our higher-order algorithm. A similar extension may be successful for order-n pushdown
systems.

Lower Bounds for Model-Checking Temporal Logics

In Section 6.1 we observed that a tight lower bound for LTL model-checking over higher-order
pushdown systems is unknown. It would be interesting to investigate the complexity of model
checking for temporal logics such as LTL, CTL and CTL* and their respective fragments.

7.3 Summary

We have presented a summary of the contributions made during this thesis. These include
saturation based global model-checking algorithms for order-1 parity games and higher-order
pushdown games with reachability conditions. We have also discussed several avenues of
further research.

178

Bibliography

[1] A. Arnold and D. Niwiński. Rudiments of µ-Calculus. Elsevier, Amsterdam, The
Netherlands, 2001.

[2] A. Bouajjani and A. Meyer. Symbolic Reachability Analysis of Higher-Order Context-
Free Processes. In Proc. 24rd Conf. on Found. of Software Technology and Theoretical
Computer Science (FSTTCS’04), volume 3328 of Lecture Notes in Computer Science,
Madras, India, December 2004. Springer Pub.

[3] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:
Application to model-checking. In International Conference on Concurrency Theory,
pages 135–150, 1997.

[4] A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejcek. Reachability analysis of mul-
tithreaded software with asynchronous communication. In FSTTCS, pages 348–359,
2005.

[5] A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis of
concurrent programs with procedures. SIGPLAN Not., 38(1):62–73, 2003.

[6] A. Bouajjani, J. Esparza, and T. Touili. Reachability analysis of synchronized PA-
systems. In Proceedings of Infinity 2004, 2004.

[7] A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic
networks of pushdown systems. CONCUR 2005 - Concurrency Theory, pages 473–487,
2005.

[8] A. Bouajjani and O. Maler. Reachability analysis of pushdown automata, 1996. Tech-
nical Report MIP-9614, Faculty of Mathematics and Computer Science, University of
Passau. In INFINITY’96.

[9] A. Bouajjani and P. Habermehl. Constrained properties, semilinear systems, and petri
nets. In CONCUR ’96: Proceedings of the 7th International Conference on Concurrency
Theory, pages 481–497, London, UK, 1996. Springer-Verlag.

[10] A. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games with unboundedness and
regular conditions. In FSTTCS’03, volume 2914 of lncs, pages 88–99. Springer-Verlag,
2003.

[11] A. Carayol. Regular sets of higher-order pushdown stacks. In MFCS, pages 168–179,
2005.

179

Bibliography

[12] A. Carayol, M. Hague, A. Meyer, C.-H. L. Ong, and O. Serre. Winning regions of
higher-order pushdown games. In Logic in Computer Science, pages 193–204. IEEE
Computer Society, 2008.

[13] A. Carayol and S. Wöhrle. The caucal hierarchy of infinite graphs in terms of logic and
higher-order pushdown automata. In FSTTCS, pages 112–123, 2003.

[14] A. Cataldo, E. Cheong, T. H. Feng, E. A. Lee, and A. Mihal. A formalism for higher-
order composition languages that satisfies the church-rosser property. Technical Re-
port 48, EECS Dept., University of California, Berkeley, December 2006.

[15] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model checking
pushdown systems. In Proc. 2nd Int. Workshop on Verification of Infinite State Systems
(INFINITY’97), Bologna, Italy, July 11–12, 1997, volume 9 of Electronic Notes in
Theor. Comp. Sci. Elsevier, 1997.

[16] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–
133, 1981.

[17] A. Kechris. Classical Descriptive Set Theory (Graduate Texts in Mathematics).
Springer, January 1995.

[18] A. Lal and T. W. Reps. Improving pushdown system model checking. In CAV, pages
343–357, 2006.

[19] A. Lal, T. W. Reps, and G. Balakrishnan. Extended weighted pushdown systems. In
CAV, pages 434–448, 2005.

[20] A. N. Maslov. Multilevel stack automata. Problems of Information Transmission,
15:1170–1174, 1976.

[21] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics.
J. ACM, 32(3):733–749, 1985.

[22] A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57, 1977.

[23] A. Seth. An alternative construction in symbolic reachability analysis of second order
pushdown systems. In Workshop on Reachability Problems, 2007.

[24] A. V. Aho. Indexed grammars — an extension of context-free grammars. J. ACM,
15(4):647–671, 1968.

[25] B. Banieqbal and H. Barringer. Temporal logic with fixed points. In Temporal Logic in
Specification, pages 62–74, 1987.

[26] B. Cook, A. Podelski, and A. Rybalchenko. Terminator: Beyond safety. In CAV, pages
415–418, 2006.

[27] B. Courcelle. The monadic second-order logic of graphs ix: Machines and their be-
haviours. Theoretical Computer Science, 151:125–162(38), 1995.

[28] B. Courcelle and I. Walukiewicz. Monadic second-order logic, graph coverings and
unfoldings of transitions systems. In Computer Science Logic, pages 53–75, 1995.

180

Bibliography

[29] C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes.
In LICS ’06: Proceedings of the 21st Annual IEEE Symposium on Logic in Computer
Science, pages 81–90, Washington, DC, USA, 2006. IEEE Computer Society.

[30] C. Löding, P. Madhusudan, and O. Serre. Visibly pushdown games. In Proceedings of
FSTTCS’04, volume 3328 of LNCS, pages 408–420. Springer-Verlag, 2004.

[31] C. Löding and W. Thomas. Alternating automata and logics over infinite words. In
TCS ’00: Proceedings of the International Conference IFIP on Theoretical Computer
Science, Exploring New Frontiers of Theoretical Informatics, pages 521–535, London,
UK, 2000. Springer-Verlag.

[32] C. Stirling. Bisimulation, model checking and other games, June 1997. Notes for a
Mathfit instructional meeting on games and computation, held in Edinburgh, Scotland.

[33] C. Stirling. Bisimulation, modal logic and model checking games. Logic Journal of the
IGPL, 7(1):103–124, 1999.

[34] D. Box and T. Pattison. Essential .NET: The Common Language Runtime. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[35] D. Caucal. On infinite transition graphs having a decidable monadic theory. In F. Meyer
auf der Heide and B. Monien, editors, Proceedings of the 23th International Colloquium
on Automata, Languages and Programming (ICALP’96), volume 1099, pages 194–205,
Berlin-Heidelberg-New York, 1996. Springer.

[36] D. Caucal. On infinite terms having a decidable monadic theory. In Proc. MFCS’02,
pages 165–176, 2002. LNCS 2420.

[37] D. Caucal and R. Monfort. On the transition graphs of automata and grammars. In
WG ’90: Proceedings of the 16rd International Workshop on Graph-Theoretic Concepts
in Computer Science, pages 311–337, London, UK, 1991. Springer-Verlag.

[38] D. E. Muller, A. Saoudi, and P. E. Schupp. Weak alternating automata give a simple
explanation of why most temporal and dynamic logics are decidable in exponential
time. In Y. Gurevich, editor, Proceedings of the Third Annual IEEE Symp. on Logic
in Computer Science, LICS 1988, pages 422–427. IEEE Computer Society Press, July
1988.

[39] D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata, the weak monadic
theory of trees and its complexity. Theor. Comput. Sci., 97(2):233–244, 1992.

[40] D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata, and second-
order logic. Theor. Comput. Sci., 37:51–75, 1985.

[41] D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Program.,
8(3):231–274, 1987.

[42] D. Janin and I. Walukiewicz. On the expressive completeness of the propositional mu-
calculus with respect to monadic second order logic. In CONCUR ’96: Proceedings of
the 7th International Conference on Concurrency Theory, pages 263–277, London, UK,
1996. Springer-Verlag.

181

Bibliography

[43] E. A. Emerson and C.-L. Lei. Modalities for model checking: branching time logic
strikes back. Sci. Comput. Program., 8(3):275–306, 1987.

[44] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for fragments of
mu-calculus. In 5th International Computer-Aided Verification Conference, 1993.

[45] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games:
A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume
2500 of Lecture Notes in Computer Science. Springer, 2002.

[46] E. M. Clark and E. A. Emerson. Design and synthesis of synchronisation skeletons using
branching time temporal logic. In Proceedings IBM Workshop on Logics of Programs,
volume 131, pages 52–71. Lecture Notes in Computer Science, Springer, 1981.

[47] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst., 8(2):244–263, 1986.

[48] E. W. Mayr. An algorithm for the general petri net reachability problem. In STOC ’81:
Proceedings of the thirteenth annual ACM symposium on Theory of computing, pages
238–246, New York, NY, USA, 1981. ACM Press.

[49] G. Gazdar. Applicability of indexed grammars to natural languages. Natural Language
Parsing and Linguistic Theories, pages 69–94, 1988.

[50] G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable.
ACM Trans. Program. Lang. Syst., 22(2):416–430, 2000.

[51] G. S. Rohde. Alternating automata and the temporal logic of ordinals. PhD thesis,
University of Illinois, 1997. Adviser-Paul E. Schupp.

[52] H. Gimbert. Parity and exploration games on infinite graphs. In Proceedings of CSL’04,
volume 3210 of LNCS, pages 56–70. Springer-Verlag, 2004.

[53] I. Walukiewicz. Pushdown processes: Games and model checking. In Rajeev Alur
and Thomas A. Henzinger, editors, Proceedings of the Eighth International Conference
on Computer Aided Verification CAV, volume 1102, pages 62–74, New Brunswick, NJ,
USA, / 1996. Springer Verlag.

[54] I. Walukiewicz. Model checking ctl properties of pushdown systems. In FST TCS
2000: Proceedings of the 20th Conference on Foundations of Software Technology and
Theoretical Computer Science, pages 127–138, London, UK, 2000. Springer-Verlag.

[55] J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication. Infor-
mation and Control, 60(1-3):109–137, 1984.

[56] J. A. Brzozowski and E. L. Leiss. On equations for regular languages, finite automata,
and sequential networks. Theor. Comput. Sci., 10:19–35, 1980.

[57] J. A. Cataldo. The Power of Higher-Order Composition Languages in System Design.
PhD thesis, University of California, Berkeley, December 2006.

182

Bibliography

[58] J. Bradfield and C. Stirling. Modal logics and mu-calculi: an introduction, 2001.

[59] J. Engelfriet. Iterated pushdown automata and complexity classes. In STOC ’83:
Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages
365–373, New York, NY, USA, 1983. ACM Press.

[60] J. Esparza. On the decidability of model checking for several mu-calculi and petri nets.
In CAAP: Colloquium on Trees in Algebra and Programming. LNCS, Springer-Verlag,
1994.

[61] J. Esparza. Decidability of model checking for infinite-state concurrent systems. Acta
Inf., 34(2):85–107, 1997.

[62] J. Esparza. Petri nets, commutative context-free grammars, and basic parallel processes.
Fundam. Inf., 31(1):13–25, 1997.

[63] J. Esparza and A. Kiehn. On the model checking problem for branching time logics
and basic parallel processes. In Proceedings of the 7th International Conference on
Computer Aided Verification, pages 353–366, London, UK, 1995. Springer-Verlag.

[64] J. Esparza, A. Kučera, and S. Schwoon. Model-checking LTL with regular valuations for
pushdown systems. In Proc. of TACS 2001, number 2215 in Lecture Notes in Computer
Science, pages 306–339, 2001.

[65] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model
checking pushdown systems. In Computer Aided Verification, pages 232–247, 2000.

[66] J. Esparza, S. Kiefer, and S. Schwoon. Abstraction refinement with craig interpolation
and symbolic pushdown systems. In TACAS, pages 489–503, 2006.

[67] J. Harrison. Formal verification at intel. In LICS ’03: Proceedings of the 18th Annual
IEEE Symposium on Logic in Computer Science, page 45, Washington, DC, USA, 2003.
IEEE Computer Society.

[68] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic Model
Checking: 1020 States and Beyond. In Proceedings of the Fifth Annual IEEE Symposium
on Logic in Computer Science, pages 1–33, Washington, D.C., 1990. IEEE Computer
Society Press.

[69] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not a restriction at level 2 for
string languages. In FoSSaCS, pages 490–504, 2005.

[70] K. Bhargavan, C. Fournet, and Andrew D. Gordon. Verified reference implementations
of ws-security protocols. In WS-FM, pages 88–106, 2006.

[71] K. Etessami. Analysis of recursive game graphs using data flow equations. In VMCAI,
pages 282–296, 2004.

[72] K. Havelund, M. Lowry, S. Park, C. Pecheur, J. Penix, W. Visser, and J. L. White.
Formal analysis of the remote agent before and after flight. In 5th NASA Langley Formal
Methods Workshop, Williamsburg, Virginia, 2000.

183

Bibliography

[73] K. Sen and M. Viswanathan. Model checking multithreaded programs with asyn-
chronous atomic methods. In CAV, pages 300–314, 2006.

[74] L. Gong. Inside Java 2 platform security architecture, API design, and implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[75] M. Benedikt, P. Godefroid, and T. W. Reps. Model checking of unrestricted hierarchical
state machines. In ICALP ’01: Proceedings of the 28th International Colloquium on
Automata, Languages and Programming,, pages 652–666, London, UK, 2001. Springer-
Verlag.

[76] M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown automata
and recursion schemes. In Logic in Computer Science, pages 452–461. IEEE Computer
Society, 2008.

[77] M. Hague and A. W. To. The complexity of model checking (collapsible) higher-order
pushdown systems. In FSTTCS, pages 228–239, 2010.

[78] M. Hague and C.-H. L. Ong. Symbolic backwards-reachability analysis for higher-order
pushdown systems. In FoSSaCS, pages 213–227, 2007.

[79] M. Hague and C.-H. L. Ong. Symbolic backwards-reachability analysis for higher-order
pushdown systems. Logical Methods in Computer Science, 4(4), 2008.

[80] M. Lange. Weak automata for the linear time µ-calculus. In R. Cousot, editor, Proc.
6th Int. Conf. on Verification, Model Checking and Abstract Interpretation, VMCAI’05,
volume 3385 of LNCS, pages 267–281, 2005.

[81] M. Pistoia, A. Banerjee, and D. A. Naumann. Beyond stack inspection: A unified
access-control and information-flow security model. In SP ’07: Proceedings of the 2007
IEEE Symposium on Security and Privacy, pages 149–163, Washington, DC, USA, 2007.
IEEE Computer Society.

[82] M. Y. Vardi. A temporal fixpoint calculus. In POPL ’88: Proceedings of the 15th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
250–259, New York, NY, USA, 1988. ACM Press.

[83] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Banff Higher
Order Workshop, pages 238–266, 1995.

[84] M. Y. Vardi. Branching vs. linear time: Final showdown. In TACAS, pages 1–22, 2001.

[85] M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115(1):1–37, 15 1994.

[86] N. Piterman. Verification of Infinite State Systems. PhD thesis, Weizmann Institute of
Science, 2004.

[87] N. Piterman and M. Y. Vardi. Global model-checking of infinite-state systems. In CAV,
pages 387–400, 2004.

[88] O. Burkart. Model checking rationally restricted right closures of recognizable graphs.
Electr. Notes Theor. Comput. Sci., 9, 1997.

184

Bibliography

[89] O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the process taxonomy.
In CONCUR ’96: Proceedings of the 7th International Conference on Concurrency
Theory, pages 247–262, London, UK, 1996. Springer-Verlag.

[90] O. Kupferman and M. Y. Vardi. An automata-theoretic approach to reasoning about
infinite-state systems. In E. A. Emerson and A. P. Sistla, editors, Proceedings of the
12th International Conference on Computer-Aided Verification (CAV’00), volume 1855.
Springer, 2000.

[91] O. Kupferman, N. Piterman, and M. Vardi. Model checking linear properties of prefix-
recognizable systems. In Proc. 14th CAV, pages 371–385, 2002.

[92] O. Lichtenstein, A. Pnueli, and L. D. Zuck. The glory of the past. In Proceedings of the
Conference on Logic of Programs, pages 196–218, London, UK, 1985. Springer-Verlag.

[93] O. Serre. Note on winning positions on pushdown games with ω-regular conditions.
Information Processing Letters, 85:285–291, 2003.

[94] O. Serre. Games with winning conditions of high Borel complexity. In Proceedings of
ICALP’04, volume 3142 of LNCS, pages 1150–1162. Springer-Verlag, 2004.

[95] P. Müller and J. N. Ruskiewicz. A modular verification methodology for C# delegates.
In Rigorous Methods for Software Construction and Analysis, 2007.

[96] P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1/2):72–
99, 1983.

[97] R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state machines. In CAV
’01: Proceedings of the 13th International Conference on Computer Aided Verification,
pages 207–220, London, UK, 2001. Springer-Verlag.

[98] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and returns.
In TACAS, 2004.

[99] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yannakakis. Analysis
of recursive state machines. ACM Trans. Program. Lang. Syst., 27(4):786–818, 2005.

[100] R. Alur and M. Yannakakis. Model checking of hierarchical state machines. ACM Trans.
Program. Lang. Syst., 23(3):273–303, 2001.

[101] R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC ’04: Proceedings of
the thirty-sixth annual ACM symposium on Theory of computing, pages 202–211, New
York, NY, USA, 2004. ACM Press.

[102] R. Alur, S. Chaudhuri, and P. Madhusudan. Visibly pushdown tree languages.
http://www.cis.upenn.edu/~swarat/pubs/vptl.ps.

[103] R. Alur, S. Chaudhuri, and P. Madhusudan. A fixpoint calculus for local and global
program flows. In POPL ’06: Conference record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 153–165, New York, NY,
USA, 2006. ACM Press.

185

Bibliography

[104] R. Alur, S. Kannan, and M. Yannakakis. Communicating hierarchical state machines.
In ICAL ’99: Proceedings of the 26th International Colloquium on Automata, Languages
and Programming, pages 169–178, London, UK, 1999. Springer-Verlag.

[105] R. Alur, S. La Torre, and P. Madhusudan. Modular strategies for infinite games on
recursive graphs. In CAV, pages 67–79, 2003.

[106] R. Alur, S. La Torre, and P. Madhusudan. Modular strategies for recursive game graphs.
In TACAS, pages 363–378, 2003.

[107] R. Büchi. Regular canonical systems. Archiv fur Math. Logik und Grundlagenforschung
6, pages 91–111, 1964.

[108] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972.

[109] R. Mayr. Weak bisimulation and model checking for basic parallel processes. In Pro-
ceedings of the 16th Conference on Foundations of Software Technology and Theoretical
Computer Science, pages 88–99, London, UK, 1996. Springer-Verlag.

[110] R. Mayr. Combining petri nets and pa-processes. In TACS ’97: Proceedings of the Third
International Symposium on Theoretical Aspects of Computer Software, pages 547–561,
London, UK, 1997. Springer-Verlag.

[111] R. Mayr. Model checking pa-processes. In CONCUR ’97: Proceedings of the 8th In-
ternational Conference on Concurrency Theory, pages 332–346, London, UK, 1997.
Springer-Verlag.

[112] R. Mayr. Tableau methods for PA-processes. In Analytic Tableaux and Related Methods,
pages 276–290, 1997.

[113] R. Mayr. Dedicability and Complexity of Model Checking Problems for Infinite-State
Systems. PhD thesis, TU-München, 1998.

[114] R. Mayr. Strict lower bounds for model checking BPA. In Electronic Notes in Theoretical
Computer Science (ENTCS), volume 18, 1998.

[115] R. Mayr. Process rewrite systems. Inf. Comput., 156(1-2):264–286, 2000.

[116] R. Mc Naughton and S. Papert. Counter-Free Automata. M.I.T. Press, Cambridge,
Mass., 1971.

[117] R. P. Kurshan. Formal verification in a commercial setting. In DAC ’97: Proceedings
of the 34th annual conference on Design automation, pages 258–262, New York, NY,
USA, 1997. ACMPress.

[118] R. S. Streett and E. A. Emerson. An automata theoretic decision procedure for the
propositional mu-calculus. Inf. Comput., 81(3):249–264, 1989.

[119] R. V. Book and F. Otto. String-Rewriting Systems. Springer-Verlag, 1993.

[120] S. Christensen. Decidability and Decomposition in process Algebras. PhD thesis, Uni-
versity of Edinburgh, 1993.

186

Bibliography

[121] S. Göller and M. Lohrey. Infinite state model-checking of propositional dynamic logics,
2006. Technical report 2006/04 of Universität Stuttgart, Institut für Formale Methoden
der Informatik, Theoretische Informatik.

[122] S. Jha and T. Reps. Analysis of SPKI/SDSI certificates using model checking. In CSFW
’02: Proceedings of the 15th IEEE workshop on Computer Security Foundations, page
129, Washington, DC, USA, 2002. IEEE Computer Society.

[123] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In
TACAS, pages 93–107, 2005.

[124] S. Schwoon. Model-checking Pushdown Systems. PhD thesis, Technical University of
Munich, 2002.

[125] S. Schwoon, S. Jha, T. Reps, and S. Stubblebine. On generalized authorization prob-
lems. In Proceedings of the 16th IEEE Computer Security Foundations Workshop
(CSFW), pages 202–218. IEEE Computer Society, June 2003.

[126] T. A. Henzinger, R. Jhala, R. Majumdar, G. C. Necula, G. Sutre, and W. Weimer.
Temporal-safety proofs for systems code. In CAV ’02: Proceedings of the 14th Interna-
tional Conference on Computer Aided Verification, pages 526–538, London, UK, 2002.
Springer-Verlag.

[127] T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via
static analysis. In Conference Record of POPL’02: The 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 1–3, Portland, Oregon,
January 16–18, 2002.

[128] T. Cachat. Games on Pushdown Graphs and Extensions. PhD thesis, RWTH Aachen,
2003.

[129] T. Cachat. Higher order pushdown automata, the caucal hierarchy of graphs and parity
games. In ICALP, pages 556–569, 2003.

[130] T. Cachat and I. Walukiewicz. The complexity of games on higher order pushdown au-
tomata, 2007. http://www.citebase.org/abstract?id=oai:arXiv.org:0705.0262.

[131] T. Cachat, J. Duparc, and W. Thomas. Solving pushdown games with a Σ3 winning
condition. In Proceedings of the 11th Annual Conference of the European Association
for Computer Science Logic (CSL’02), volume 2471 of LNCS, pages 322–336. Springer-
Verlag, 2002.

[132] T. Knapik, D. Niwinski, and P. Urzyczyn. Deciding monadic theories of hyperalgebraic
trees. In TLCA, pages 253–267, 2001.

[133] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy. In
FoSSaCS ’02: Proceedings of the 5th International Conference on Foundations of Soft-
ware Science and Computation Structures, pages 205–222, London, UK, 2002. Springer-
Verlag.

[134] T. Knapik, D. Niwinski, P. Urzyczyn, and I. Walukiewicz. Unsafe grammars and panic
automata. In ICALP, pages 1450–1461, 2005.

187

Bibliography

[135] T. P. Jensen, D. Le Métayer, and T. Thorn. Verification of control flow based security
properties. In IEEE Symposium on Security and Privacy, pages 89–103, 1999.

[136] T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and their
application to interprocedural dataflow analysis. Sci. Comput. Program., 58(1-2):206–
263, 2005.

[137] T. Wilke. CTL+ is exponentially more succinct than CTL. In Foundations of Software
Technology and Theoretical Computer Science, pages 110–121, 1999.

[138] W. Damm and A. Goerdt. An automata-theoretical characterization of the oi-hierarchy.
Inf. Control, 71(1-2):1–32, 1986.

[139] W. Thomas. A combinatorial approach to the theory of ω-automata. In Information
and Computation, volume 48, pages 261–283, 1981.

[140] W. Thomas. Automata on infinite objects. Handbook of theoretical computer science
(vol. B): formal models and semantics, pages 133–191, 1990.

[141] W. Thomas. Languages, automata, and logic. Handbook of formal languages, vol. 3:
beyond words, pages 389–455, 1997.

188

