
From Separation Logic to First-Order Logic

Cristiano Calcagno, Philippa Gardner, and Matthew Hague

Department of Computing
Imperial College

University of London

Abstract. Separation logic is a spatial logic for reasoning locally about
heap structures. A decidable fragment of its assertion language was pre-
sented in [1], based on a bounded model property. We exploit this prop-
erty to give an encoding of this fragment into a first-order logic contain-
ing only the propositional connectives, quantification over the natural
numbers and equality. This result is the first translation from Separa-
tion Logic into a logic which does not depend on the heap, and provides
a direct decision procedure based on well-studied algorithms for first-
order logic. Moreover, our translation is compositional in the structure
of formulae, whilst previous results involved enumerating either heaps or
formulae arising from the bounded model property.

1 Introduction

Separation Logic [2] is a spatial logic for reasoning about mutable heap struc-
tures. It provides an elegant method for reasoning locally about separate areas
of memory, and combining the results in a modular way. Its primary application
is as the basis of a Hoare Logic for reasoning about memory update. An essential
task is therefore to study decision procedures for validity checking, as part of a
wider goal to develop verification tools for analysing C-programs.

The assertion language of Separation Logic is very expressive, due to the
presence of two connectives: the separating conjunction φ1 ∗φ2 which asserts the
existence of a split of the current heap into two disjoint sub-heaps that satisfy
φ1 and φ2 respectively; and its adjunct implication φ1 −∗ φ2 which asserts that,
whenever a fresh heap that satisfies φ1 is composed with the current heap, then
the result satisfies φ2. In particular, validity checking is internalizable, which
means that finding decision procedures is difficult.

Validity checking for the full Separation logic is undecidable [1]. Calcagno et
al. have therefore been studying decidable fragments of the logic [1, 3]. They have
shown that the Propositional Separation Logic (no quantifiers) is decidable [1],
based on a finite model property which bounds the number of heaps that need to
be checked. This is a surprising result since there is an implicit existential quan-
tification in ∗, and more significantly an implicit universal quantification over
fresh heaps in −∗. However, their result does not provide a pragmatic decision
procedure, since it relies on checking all the heaps of a certain size. In this paper
we study a new approach. We provide a translation of Propositional Separation

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 395–409, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

396 C. Calcagno, P. Gardner, and M. Hague

Logic into a decidable fragment of first-order logic, for which decision procedures
have been widely studied. We avoid the inefficient enumeration of the heaps by
using the universal quantification of first-order logic.

As well as the results in [1], we take inspiration from the work of Dal Zilio
et al. [4] which provides a novel decision procedure for the Static Ambient
Logic [5]. Calcagno et al. adapted the decidability result of Propositional Sepa-
ration Logic [1] to show decidability for the Static Ambient Logic, which relied
this time on a finite model property for trees. Dal Zilio spotted a more efficient
decision procedure for the Ambient Logic, that used a combination of Presburger
Arithmetic and automata which did not depend on tree enumeration.

We provide a translation from Propositional Separation Logic into first order
logic with only the propositional connectives, quantification over the natural
numbers and equality. Our results rely on the bounded model property of [1].
The main idea is that vectors of a fixed length are used to represent all the states
up to a given size. This means that we can represent sets of bounded states
directly as first-order formulae over a fixed number of variables. The crucial
cases in our translation are the connectives ∗ and −∗. Since the current heap is
decomposed by ∗ and extended by −∗, the vector representation must change
across subformulae. We define vector operations that represent decomposition
and composition of heaps, and show that they simulate ∗ and −∗. These results
are then used to give a simple proof of correctness of our translation.

The expressiveness of Separation Logic can thus be obtained in an ordinary
classical logic that is independent of heap structures. This is interesting because
the translation provides a more elegant decision procedure than the one in [1]
(which was based on enumerating all the heaps in a finite set arising from the
finite model property). Since our translation is polynomial in the length of for-
mula, we will be able to take advantage of the maturity of existing tools for
first-order logic to provide an efficient decision procedure for Propositional Sep-
aration Logic.

In [6, 7], Lozes shows a related result that the spatial connectives can be
eliminated from Propositional Separation Logic. His result is obtained by using
the finite model property to produce a formula that is a disjunction of (charac-
teristic formulae of) all heaps that satisfy the given formula. Their result differs
from ours in that their target logic is not independent of heap structures and
the method for translating the logic requires a decision procedure for a fragment
of Separation Logic. More importantly, our translation is compositional in the
structure of the formulae, and is not based on an enumeration of the exponential
number of satisfying heaps. An immediate consequence of our approach is that
a prover can use an existing axiomatization of first-order logic to output a direct
proof. A complete axiomatization for Propositional Separation Logic is still an
open problem.

The structure of the paper is the following. We begin in section 2 by in-
troducing Propositional Separation Logic and its bounded model properties. In
section 3 we present our vector representation of bounded heaps and the trans-
lation into first-order logic. In section 4 we discuss the conclusions of our work
and describe several avenues for further research.

From Separation Logic to First-Order Logic 397

2 Propositional Separation Logic

In this section we present Propositional Separation Logic. This fragment of Sepa-
ration Logic has the property that formulae can be assigned a size, which bounds
the size of the states that need to be considered to check validity.

We begin by defining the sets of stacks and heaps, for which we need some
notation.

Definition 1 (Notation). We use the following notation. A partial function
f : X ⇀fin Y is a finite map f from X to Y . We write f#g to indicate that
partial maps f and g have disjoint domains. The composition of two partial
functions f and g with disjoint domains is defined as (f ∗ g)(x) = y iff f(x) = y
or g(x) = y. The empty map is denoted []. We use the notation | | to indicate the
cardinality of sets (which will be overloaded to also represent the size of formulae
in Definition 3).

Values, stacks, heaps, and states are defined as follows:

v ∈ V al � Loc ∪ {0}
s ∈ Stack � V ar ⇀fin V al

h ∈ Heap � Loc ⇀fin V al × V al

(s, h) ∈ State � Stack ×Heap

where locations Loc are the natural numbers greater than zero. The value 0
represents the null location. A heap maps locations to binary heap cells and its
domain indicates which locations are currently allocated. A stack is a partial
function mapping program variables to values.

The syntax of Propositional Separation Logic is defined as follows

E ::= Expressions
x, y Variables
0 Nil

φ, ψ ::= Formulae
E = E Equality
false Falsity
φ ⇒ ψ Implication
E �→ E1, E2 Binary heap cell
emp Empty heap
ψ ∗ ψ Composition
ψ −∗ ψ Composition adjunct

The binary cell formula E �→ E1, E2 asserts that the location denoted by the
expression E is the only allocated cell, and that it contains (E1, E2). The formula
emp asserts that the heap is empty, i.e. no location is allocated. Composition φ∗ψ
means that the current heap can be split into two disjoint sub-heaps satisfying
φ and ψ respectively. Its adjunct φ −∗ ψ asserts that all heaps disjoint from the
current heap and satisfying φ, when composed with the current heap satisfy ψ.
The semantics is given by the satisfaction relation between formulae and states

398 C. Calcagno, P. Gardner, and M. Hague

Table 1. Semantics of formulae given a stack s and a heap h

JxKs � s(x)
J0Ks � 0

(s, h) |= E1 = E2 iff JE1Ks = JE2Ks

(s, h) |= false never
(s, h) |= φ1 ⇒ φ2 iff s, h |= φ1 then s, h |= φ2

(s, h) |= (E �→ E1, E2) iff dom(h) = {JEKs} and h(JEKs) = (JE1Ks, JE2Ks)
(s, h) |= emp iff dom(h) = ∅
(s, h) |= φ1 ∗ φ2 iff there exists h1 and h2 such that

h1#h2; h1 ∗ h2 = h; s, h1 |= φ1 and s, h2 |= φ2

(s, h) |= φ1 −∗ φ2 iff for all h1 such that h#h1

and (s, h1 |= φ1), (s, h ∗ h1) |= φ2

defined in Table 1. Standard logical connectives are defined as derived operators,
such as ¬φ � (φ ⇒ false).

Definition 2 (Validity). A formula φ is valid iff (s, h) |= φ holds for all states
(s, h).

Given a fixed stack, we can use −∗ to reduce satisfaction for all heaps to satis-
faction for the empty heap.

Lemma 1. Given a stack s and a formula φ,

(∀h. (s, h) |= φ) ⇐⇒ ((s, []) |= (¬φ) −∗ false)

Proof. Since h ∗ [] = h, the assertion (s, []) |= (¬φ) −∗ false states that any heap
that satisfies ¬φ must also satisfy false. That is, no heap satisfies ¬φ and so φ
holds for all heaps.

We now introduce the notion of size of formulae, as in [1].

Definition 3 (Size of Formulae). Given a formula φ, its size |φ| is defined
by

|E1 = E2| = 0 |false| = 0
|φ ⇒ ψ| = max(|φ|, |ψ|) |(E �→ E1, E2)| = 1

|emp| = 1 |φ ∗ ψ| = |φ| + |ψ|
|φ −∗ ψ| = |ψ|

The size of a formula is used to determine a bound to the size of the heaps
that need to be considered when checking validity, and to bound the size of new
heaps needed to check satisfaction for formulae of the form P −∗ Q. Technically,
one can define an equivalence relation ∼n on states, parameterized on the size

From Separation Logic to First-Order Logic 399

parameter n. The main property is that formulae of size n cannot distinguish
between ∼n-related states. For example, the size of (x �→ y, z) is one because,
in order to satisfy it or its negation, it is enough to consider heaps with at most
one allocated location. The size of φ ∗ ψ is the sum since ∗ combines subheaps
together. The size of φ −∗ ψ is |ψ| because ∼n is a congruence, and adding
identical heaps in parallel (the φ part) does not affect the distinguishing power
of formulae.

Because the semantics of −∗ quantifies over all heaps, algorithmically deter-
mining if (s, h) |= φ for any formula φ is not straightforward. The following
Proposition, which is an adaptation of an analogous one in [1], shows how to
bound the size of new heaps that need to be considered.

Proposition 1. For a given a state (s, h) and formulae φ1 and φ2, (s, h) |=
φ1 −∗ φ2 holds iff for all h1 such that,

– h#h1 and (s, h1) |= φ1, and
– |dom(h1)| ≤ max(|φ1|, |φ2|) + |FV (φ1) ∪ FV (φ2)|

we have that (s, h ∗ h1) |= φ2.

Proof. The proposition is a corollary of Proposition 1 given on page 7 of [1].

The above Proposition requires max(|φ1|, |φ2|) since the observations that
φ1 −∗ φ2 can make on the current heap depend on both φ1 and φ2. It is worth
noting that the set of heaps satisfying the properties in Proposition 1 is infinite
(the size of heaps is bounded but the values contained are arbitrary), whereas
the similar proposition in [1] explicitly defines a finite set of heaps. A finite set of
heaps was necessary in [1] to give a direct decision procedure enumerating those
heaps. However, our translation to first-order logic only depends on the size of
heaps, so we chose a more abstract property.

To conclude the section we define bounded states, and give a bounding prop-
erty for validity of formulae, which will be used in the translation presented in
the next section. Bounded stacks and heaps are defined as follows.

Definition 4 (SX). We write SX to denote the set of stacks such that s ∈ SX

iff dom(s) = X, where X ⊆ V ar.

Definition 5 (Hp). Given a size p ∈ N, we write Hp to denote the set of heaps
such that h ∈ Hp iff |dom(h)| ≤ p.

Proposition 2. Given a formula φ,

(∀(s, h). (s, h) |= φ) ⇐⇒ (∀(s, h) ∈ SX ×Hp. (s, h) |= φ
)

where X = FV (φ) and p = |φ| + |FV (φ)|.
Proof. The proposition follows immediately from Lemma 2 and Lemma 3 below.

400 C. Calcagno, P. Gardner, and M. Hague

Lemma 2. Given a stack s and a formula φ,

(∀h. (s, h) |= φ) ⇐⇒ (∀h ∈ H|φ|+|FV (φ)|. (s, h) |= φ
)

Proof. By Lemma 1 we know that,

(∀h. (s, h) |= φ) ⇐⇒ ((s, []) |= (¬φ) −∗ false)

By proposition 1, it follows that (s, []) |= (¬φ) −∗ false iff for all h1 such that,

– []#h1 and (s, h1) |= ¬φ, and
– |dom(h1)| ≤ max(|¬φ|, |false|) + |FV (¬φ) ∪ FV (false)|

we have that (s, [] ∗ h1) |= false. Which is equivalent to,

∀h1 ∈ H|φ|+|FV (φ)|. (s, h) |= φ

since []#h1, h1 = [] ∗ h1 and max(|¬φ|, |false|) + |FV (¬φ) ∪ FV (false)| = |φ| +
|FV (φ)|. Therefore,

(∀h. (s, h) |= φ) ⇐⇒ (∀h ∈ H|φ|+|FV (φ)|. (s, h) |= φ
)

as required.

Lemma 3. Given a formula φ,

(∀(s, h). (s, h) |= φ) ⇐⇒
(
∀s ∈ SFV (φ). ∀h. (s, h) |= φ

)
Proof. This is immediate from the semantics of Separation Logic since the values
of variables that are not in FV (φ) do not affect the truth of φ.

3 Translating Separation Logic to First-Order Logic

In this section we present a translation from Separation Logic to first-order logic.

3.1 Representing States as Vectors

We represent bounded stacks in SX and heaps in Hp as vectors of fixed length.
This will allow us to replace quantification over bounded states by ordinary
first-order quantification using a fixed number of variables.

Given a stack s ∈ SX, with {x1, . . . , xn} = X, we assume a fixed or-
dering on variables and define its representation vs(s) simply as the vector
(s(x1), . . . , s(xn)). Heaps in Hp are represented as vectors b of p triples of values.
The i-th triple (bi,1,bi,2,bi,3) potentially represents a heap cell. If bi,1 is a loca-
tion (not 0), then the cell is allocated and contains the pair of values (bi,2,bi,3).
If bi,1 = 0 then the i-th triple does not represent a heap cell. For example, H2

From Separation Logic to First-Order Logic 401

contains the singleton heap (1 �→ 2, 3), which can be represented by the vec-
tor ((1, 2, 3), (0, 6, 7)) or ((0, 8, 9), (1, 2, 3)). The values 6, 7, 8, 9 are unimportant
since they do not belong to an active cell.

Note that all heaps in Hp have several vector representations, because the
order of the heap cells, and the values of cells whose location is 0, are irrelevant.
Also, not all vectors represent a valid heap, since the same location could occur
more than once in the vector. We formalize the representation relation as a par-
tial function vhp from vectors to bounded heaps, defined in Table 2. A particular
vector b is in the domain of vhp iff it represents a well-formed heap.

Table 2. Definition of vhp(b)

vhp : (N × N × N)p ⇀ Hp

vhp(b) =
{

Undef if ∃i, j ∈ 1..p. i �= j ∧ bi,1 = bj,1 ∧ bi,1 �= 0 ∧ bj,1 �= 0
{(bi,1 �→ bi,2,bi,3)|bi,1 �= 0 ∧ i ∈ 1..p} otherwise

Lemma 4. For all p, vhp is surjective:

∀h ∈ Hp∃b. vhp(b) = h

3.2 Representing Heaps in First-Order Logic

In this section we show how to use first-order formulae to represent heaps, and
operations on heap representations corresponding to ∗ and −∗.

We have seen that heaps are represented as vectors of triples of values. We
now show how to represent assertions about heaps as first-order formulae from
the following grammar

A ::= E = E | false | A ⇒ A | ∀x.A

with free variables drawn from a vector B of triples of variables. We write ∀B′. A
as an abbreviation for ∀B′

1,1∀B′
1,2 · · · ∀B′

p,3. A when B′ is a vector of p triples
of variables, and similarly for ∃B′. A. We use the standard notation

∧
i∈1..n . A

for A[1/i] ∧ · · · ∧A[n/i], and similarly for
∨

i∈1..n . A. Given a vector of values b
and a formula A with free variables from a vector B, we write [B Z⇒ b] |= A
for the usual satisfaction relation of first-order logic, where [B Z⇒ b] is the
assignment of values to the variables.

We begin by defining the derived first-order formula heap(B) that imposes
restrictions on the values of the variables in B to ensure that they represent a
valid heap.

402 C. Calcagno, P. Gardner, and M. Hague

Definition 6. Given a vector of variables B,

heap(B) �
(∧

i∈1..|B|
j∈1..|B|

i �=j

(
Bi,1 = 0 ∨ Bj,1 = 0 ∨ Bi,1 �= Bj,1

))

The following lemma states that heap(B) holds for a vector of values b exactly
when b represents a heap, that is b will be in the domain of vh|b|.

Lemma 5. Given vectors B, b such that |B| = |b|,
b ∈ dom(vh|B|) ⇐⇒ [B Z⇒ b] |= heap(B)

Proof. Immediate from the definitions of heap(B) and vh|B|.

We present two operators on vectors for constructing and deconstructing rep-
resentations of heaps. These distinct operators are required because the spatial
connectives ∗ and −∗ manipulate the heap in different ways. First consider the
composition connective ∗, which splits the current heap into two disjoint sub-
heaps whose size and contents are limited by the original heap. We use the
formula B = B′ � B′′, defined below, to capture this property where the vector
of variables B represents the current heap, and the variables B′,B′′ represent
the two subheaps. Because we do not know exactly how the heap will be split,
the size of vectors B′ and B′′ must each equal the size of B, as in the worst case
splitting the current heap will result in the current heap on one side and the
empty heap on the other.

Definition 7 (Decomposition). For vectors of variables B,B′,B′′ such that
|B| = |B′| = |B′′|, define

B = B′ � B′′ �
∧

i∈1..|B|

⎛
⎜⎜⎝
(

B′
i,1 = Bi,1 ∧ B′′

i,1 = 0
∧B′

i,2 = Bi,2 ∧ B′
i,3 = Bi,3)

)

∨
(

B′
i,1 = 0 ∧ B′′

i,1 = Bi,1
∧B′′

i,2 = Bi,2 ∧ B′′
i,3 = Bi,3

)
⎞
⎟⎟⎠

The extension to vectors of values is as follows

b = b′ � b′′ iff [B Z⇒ b,B′ Z⇒ b′,B′′ Z⇒ b′′] |= B = B′ � B′′

The following lemma shows that if heap(B) holds then so does its decomposition.

Lemma 6. For all vectors B, B′, B′′, the following is valid

(B = B′ � B′′ ∧ heap(B)) ⇒ (heap(B′) ∧ heap(B′′))

Lemma 7 and Lemma 8 show that a splitting of heaps can be simulated by a
corresponding splitting of representations, and vice versa.

Lemma 7. For all p, b and h, h1, h2 ∈ Hp,

h = h1 ∗ h2 ∧ vhp(b) = h ⇒ ∃b′,b′′.
(

b = b′ � b′′∧
vhp(b′) = h1 ∧ vhp(b′′) = h2

)

From Separation Logic to First-Order Logic 403

Lemma 8. For all p, b,b′,b′′ and h ∈ Hp,

b = b′ � b′′ ∧ vhp(b) = h ⇒ h = vhp(b1) ∗ vhp(b′′)

The composition adjunct −∗ requires the addition of fresh heap cells to the
current heap. The heap formed by the addition of these new cells may exceed
the size that can be expressed by the current set of variables, which means
that new variables need to be used to represent the new cells. We introduce the
derived ‘append’ connective • to capture the addition of new heap cells.

Definition 8 (B′ • B′′). Given vectors B′ and B′′ we define B′ • B′′ as vector
concatenation: |B′ • B′′| = |B′| + |B′′| and for all i ∈ 1..|B′ • B′′|,

(B′ • B′′)i =
{

B′
i if i ∈ 1..|B′|

B′′
i if i ∈ (|B′| + 1)..|B′ • B′′|

The following lemma shows that if the result of appending two vectors represents
a valid heap, then each vector represents a valid heap.

Lemma 9. For all vectors B, B′, B′′ such that B = B′ • B′′, the following is
valid

heap(B) ⇒ heap(B′) ∧ heap(B′′)

The following lemma captures the relationship between the composition of heaps
and the appending of vectors.

Lemma 10. For all, p1, p2, b′,b′′ and h ∈ Hp1+p2 such that |b′| = p1 and
|b′′| = p2,

vhp1+p2(b
′ • b′′) = h ⇐⇒ h = vhp1(b

′) ∗ vhp2(b
′′)

3.3 The Translation

We now have all the ingredients necessary to present the translation, which is
defined in Table 3.

The translation tran(φ,B) produces a first-order formula with free variables
in φ,B. For simplicity of notation we assume that the variables in φ and B are
always disjoint (formally, we could use two syntactic categories). The translation
begins with an implication, which effectively ignores all variable assignments that
do not represent a heap. The bulk of the translation lies in tran′(φ,B).

The translations of (E1 = E2), false, (φ1 ⇒ φ2) and emp are fairly straight-
forward, but the translations of (E �→ E1, E2), (φ1 ∗ φ2) and (φ1 −∗ φ2) may
benefit from an explanation.

The translation of the cell formula E �→ E1, E2 states that only one of the
location variables Bi,1 has a value that is non-zero — that is, the heap repre-
sented by the values of the variables has one cell only. Also, the values of the
variables (Bi,1,Bi,2,Bi,3) match the values of the expressions E,E1 and E2.

The Composition case tran(φ1 ∗φ2,B) requires that we can split the current
heap (the values of the variables in B) into two parts, using B = B′ � B′′, such
that the parts satisfy φ1 and φ2 respectively.

404 C. Calcagno, P. Gardner, and M. Hague

Table 3. Definition of tran(φ,B)

tran(φ,B) � heap(B) ⇒ tran′(φ,B)

tran′(E1 = E2,B) � E1 = E2

tran′(false,B) � false
tran′(φ1 ⇒ φ2,B) � tran′(φ1,B) ⇒ tran′(φ2,B)

tran′(E �→ E1, E2,B) � ∨
i∈1..|B|

⎛
⎜⎝

Bi,1 �= 0 ∧ ∧
j∈1..|B|

i�=j

[
Bj,1 = 0

]
∧ Bi,1 = E
∧ Bi,2 = E1 ∧ Bi,3 = E2

⎞
⎟⎠

tran′(emp,B) � ∧
i∈1..|B| Bi,1 = 0

tran′(φ1 ∗ φ2,B) � ∃B′,B′′.

⎛
⎝B = B′ � B′′

∧ tran′(φ1,B′)
∧ tran′(φ2,B′′)

⎞
⎠

tran′(φ1 −∗ φ2,B) � ∀B′.

⎛
⎝ tran′(φ1,B′)

∧ heap(B • B′)
⇒ tran′(φ2,B • B′)

⎞
⎠

where
|B′| = max(|φ1|, |φ2|) + |FV (φ1) ∪ FV (φ2)|

Finally, the translation of φ1 −∗ φ2 quantifies over all heaps that satisfy φ1
by universally quantifying over a new collection of heap variables — enough
to represent all heaps up to the size required by Proposition 2. The formula
heap(B′ • B) ensures that the combination of the old and new vectors still
represent a heap, which implies that the new heap is disjoint from the current
heap. The translation asserts that if the new heap satisfies φ1 and it can be
composed with the current heap, then the composition of both heaps satisfies
φ2, as required by the semantics of −∗.

We now prove the correctness of the translation.
The free variables of the translated formula are the original stack variables

plus the variables used to represent the current heap.

Lemma 11. For any φ, B,

FV (tran(φ,B)) = FV (φ) ∪ FV (B)

We show that, on related states, satisfaction is preserved by the translation.

Theorem 1. For any φ, p, B, X, b where |B| = p, FV (φ) ⊆ X, (s, h) ∈
SX ×Hp and vhp(b) = h,

(s, h |= φ) ⇐⇒ [B Z⇒ b,X Z⇒ vs(s)] |= tran′(φ,B)

From Separation Logic to First-Order Logic 405

A consequence of the theorem above is that the formula resulting from the
translation cannot distinguish between two vectors representing the same heap.

Finally, we show that a formula is valid iff its translation is valid.

Theorem 2. For any φ, B, X such that |B| = |φ| + |FV (φ)| and FV (φ) ⊆ X,

(∀(s, h). (s, h) |= φ) ⇐⇒ ∀(b,v) [B Z⇒ b,X Z⇒ v] |= tran(φ,B)

3.4 Decision Procedure and Complexity

Our decision procedure for Propositional Separation Logic simply consists of
applying the translation followed by one of the existing decision procedures for
first-order logic. The validity problem for first-order logic (on an empty signa-
ture) is a classical PSPACE-complete problem. In [1] it was proved that validity
of Propositional Separation Logic is also PSPACE-complete.

Our translation into first-order logic generates a formula whose length is
O(n5) where n denotes the length1 of the Separation Logic formula. This can be
seen because, for each connective, the length of the vector (initially O(n)) may
increase by O(n) in the worst case (the −∗ connective). Therefore, the length
of the vector is always O(n2). The translation of E �→ E1, E2 and heap(B) are
O(v2), where v is the length of the vector. So, these formulae are O(n4). In
the worst case O(n) of these cases will occur, and therefore, the result of the
translation will be O(n5) in length.

This shows that the translation produces a limited increase in the length
of formulae, therefore our decision procedure runs in polynomial space and has
optimal theoretical complexity.

4 Conclusions and Future Work

In this paper we provided a translation from Propositional Separation Logic into
first-order logic with only the propositional connectives, equality and quantifica-
tion over the natural numbers. The translation has two main properties: a state
satisfies a formula iff the state’s vector encoding satisfies the translation, and a
formula is valid iff its translation is valid. This translation shows that Separation
Logic can be expressed in a classical logic that has no notion of a heap or spatial
connectives. It also provides a new decision procedure that can utilise existing
tools for first-order logic.

A natural direction for future work is implementing and evaluating the new
decision procedure. In [8], we implemented the decision procedure for Tree
Logic which inspired the work presented here. Using several optimisations, we
found that the decision procedure was viable. We hope that, utilising possi-
ble optimisations, an implementation of this work may show similar results.

1 We use ‘length’ with the usual meaning: the number of connectives in the formula,
not the size of Definition 3.

406 C. Calcagno, P. Gardner, and M. Hague

For example, we may reduce the number of existentially quantified variables
when translating φ1 ∗ φ2 by only quantifying one set of variables (B′) and cal-
culating the second (B′′) in situ through the use of expressions rather than
variables.

We may also wish to consider different fragments of Separation Logic or ex-
tensions of the fragment studied in this paper. For example, if we change the
target logic of the translation to Presburger Arithmetic, we gain addition of
natural numbers. This would allow us to augment the quantifier-free fragment
of Separation Logic with arithmetic on stack variables. However, allowing arith-
metic on the heap may invalidate the size argument on which Proposition 1 and
Proposition 2 are based. Another extension is allowing quantification of variables
(∃x. φ). The presence of full existential quantifiers also invalidates the size ar-
gument of Proposition 1 and Proposition 2. However, it is likely that restricted
(e.g. guarded) forms of quantification admit a size argument. In those cases, the
translation can be extended by mapping existentials to existentials, since the
proofs extend trivially. We may also attempt to extend our results to the more
practically motivated fragment of Separation Logic in [3], which was designed
for reasoning about linked lists. That fragment presents a different technical
challenge to the one presented here: there is no −∗ but there is an inductive
definition for linked lists. We expect our techniques to prove useful also in that
setting.

A new related area of research into Spatial Logics [5, 9, 10, 11] is ‘trees with
pointers’, which add location identifiers and cross-references to Tree Logic [12].
A practical example of this model is XML cross-references. This model combines
Tree Logic and Separation Logic because the tree structures have locations on
nodes, and pointers as data. Preliminary work on decision procedures for this
model has identified several subtleties. First, a notion of size must be identified.
A likely candidate is the maximum number of locations required at any level of
the tree and the maximum depth of the tree. Secondly, a succinct method for
ensuring that all locations are unique is required. At a single level of the tree
this task is exactly the same as for Separation Logic. However, as the decision
procedure divides the tree into independent sub-trees, enforcing the uniqueness
of locations becomes a more difficult task.

Finally, we would like to study decidability properties of Context Logic [13].
This new logic uses contexts or ‘trees with holes’ to allow reasoning about smaller
sub-trees within larger arbitrary trees. Context logic has been used to provide
a Hoare logic for reasoning about tree updates, where the portion of tree left
untouched by the update has the shape of a tree context. A decision procedure for
this logic presents a further challenge to the ‘trees with pointers’ model because
it would require a different notion of size.

Acknowledgments. We would like to thank the anonymous referees for their
comments. This work was partially supported by EPSRC.

From Separation Logic to First-Order Logic 407

References

1. Calcagno, C., Yang, H., O’Hearn, P.: Computability and complexity results for a
spatial assertion language for data structures. In: Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS’01), Springer (2001) 108–119
volume 2245 of Lecture Notes in Computer Science.

2. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, IEEE (2002) 55–74

3. Berdine, J., Calcagno, C., O’Hearn, P.: A decidable fragment of separation
logic. In: Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’04), Springer (2004) to appear.

4. Zilio, S.D., Lugiez, D., Meyssonnier, C.: A logic you can count on. In: Proceedings
of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, ACM Press (2004) 135–146

5. Cardelli, L., Gordon, A.D.: Anytime, anywhere: Modal logics for mobile ambients.
In: 27th Symposium on Principles of Programming Languages (POPL’00), ACM
(2000) 365–377

6. Lozes, E.: Separation logic preserves the expressive power of classical logic. As
published at:
http://www.diku.dk/topps/space2004/space final/etienne.pdf (2004)

7. Lozes, E.: Elimination of spatial connectives in static spatial logics. To Appear in
TCS (2004)

8. Hague, M.: Static checkers for tree structures and heaps. Master’s
thesis, Imperial College London, Department of Computing (2004) http://
www.doc.ic.ac.uk/˜ajf/Teaching/Projects/Distinguished04/MatthewHague.pdf.

9. Cardelli, L., Caires, L.: A spatial logic for concurrency (part I). Journal of Infor-
mation and Computation 186(2) (2003)

10. Cardelli, L., Caires, L.: A spatial logic for concurrency (part II). To Appear in
Theoretical Computer Science (2004)

11. Cardelli, L., Gardner, P., Ghelli, G.: A spatial logic for querying graphs. Proceed-
ings of ICALP’02 (2002)

12. Cardelli, L., Gardner, P., Ghelli., G.: Querying trees with pointers. Unpublished
Notes, 2003; talk at APPSEM 2001 (2003)

13. Calcagno, C., Gardner, P., Zarfaty, U.: Context logic and tree update. To appear
in POPL (2005)

A Appendix: Selected Proofs

A.1 Proof of Theorem 1 from Section 3.3

Theorem 1 states that for any φ, p, B, X, b where |B| = p, FV (φ) ⊆ X,
(s, h) ∈ SX ×Hp and vhp(b) = h,

(s, h |= φ) ⇐⇒ [B Z⇒ b,X Z⇒ vs(s)] |= tran′(φ,B)

Proof. The proof is by induction over φ. We only consider some interesting cases.

408 C. Calcagno, P. Gardner, and M. Hague

Case φ = (φ1 ∗ φ2).
⇒: Assume (s, h) |= φ1 ∗ φ2. Therefore h = h1 ∗ h2 and (s, h1) |= φ1 and
(s, h2) |= φ2. Therefore, by Lemma 7 there exist b1,b2 such that,

b = b1 � b2 ∧ vhp(b1) = h1 ∧ vhp(b2) = h2

By induction and since vhp(b1) = h1 and vhp(b2) = h2,[
B Z⇒ b1,X Z⇒ vs(s)

] |= tran′(φ1,B)

and [
B Z⇒ b2,X Z⇒ vs(s)

] |= tran′(φ2,B)

Therefore,

[B Z⇒ b,X Z⇒ vs(s)] |= ∃B1,B2.

⎛
⎝B = B1 � B2

∧ tran′(φ1,B1)
∧ tran′(φ2,B2)

⎞
⎠

And so,
[B Z⇒ b,X Z⇒ vs(s)] |= tran′(φ,B)

⇐: Assume,

[B Z⇒ b,X Z⇒ vs(s)] |= ∃B1,B2.

⎛
⎝B = B1 � B2

∧ tran′(φ1,B1)
∧ tran′(φ2,B2)

⎞
⎠

Therefore, there exists b1,b2 such that b = b1 � b2,

[B Z⇒ b1,X Z⇒ vs(s)] |= tran′(φ1,B)

and
[B Z⇒ b2,X Z⇒ vs(s)] |= tran′(φ2,B)

By Lemma 8, letting h1 = vhp(b1) and h2 = vhp(b2), we know h = h1 ∗ h2
and by induction (s, h1) |= φ1 and (s, h2) |= φ2. Therefore (s, h) |= (φ1 ∗φ2),
that is, (s, h) |= φ.

Case φ = (φ1 −∗ φ2).
⇒: Assume (s, h) |= (φ1 −∗ φ2). Therefore, for all h1 such that (s, h1) |= φ1
and h#h1, (s, h ∗ h1) |= φ2.
We now assume b′ such that,

[B Z⇒ b,B′ Z⇒ b′,X Z⇒ vs(s)] |= tran′(φ1,B′) ∧ heap(B • B′)

By Lemma 9 we know [B′ Z⇒ b′] |= heap(B′) and so b′ ∈ dom(vh|B′|) by
Lemma 5. Let vh|B′|(b′) = h1, we know by induction that (s, h1) |= φ1. By
Lemma 5 vhp+|B′|(b•b′) is defined. Therefore by Lemma 10 h∗h1 = vhp(b)∗
vh|B′|(b′) = vhp+|B′|(b • b′). By assumption s, h ∗ h1 |= φ2. Consequently,
by induction we have,

[B Z⇒ b,B′ Z⇒ b,X Z⇒ vs(s)] |= tran′(φ2,B • B′)

From Separation Logic to First-Order Logic 409

Therefore,

[B Z⇒ b,X Z⇒ vs(s)] |= ∀B′.

⎛
⎝ tran′(φ1,B′)

∧ heap(B • B′)
⇒ tran′(φ2,B • B′)

⎞
⎠

and
[B Z⇒ b,X Z⇒ vs(s)] |= tran′(φ,B)

⇐: Assume,

[B Z⇒ b,X Z⇒ vs(s)] |= ∀B′.

⎛
⎝ tran′(φ1,B′)

∧ heap(B • B′)
⇒ tran′(φ2,B • B′)

⎞
⎠

where |B′| = max(|φ1|, |φ2|) + |FV (φ1) ∪ FV (φ2)|.
By Proposition 1 (s, h) |= (φ1 −∗ φ2) iff for all h1 ∈ Hq such that q =
max(|φ1|, |φ2|) + |FV (φ1) ∪ FV (φ2)|, h#h1 and (s, h1) |= φ1 we have s, h ∗
h1 |= φ2. So assume we have h1 ∈ Hq such that h#h1 and (s, h1) |= φ1.
By Lemma 4 there exists b′ such that vhq(b′) = h1. Since h#h1 we know
that h ∗ h1 ∈ Hp+q. By Lemma 10 we know h ∗ h1 = vhp(b) ∗ vhq(b′) =
vhp+q(b •b′), and so, by Lemma 5 [B Z⇒ b,B′ Z⇒ b′] |= heap(B •B′). By
induction we know

[B′ Z⇒ b′,X Z⇒ vs(s)] |= tran′(φ1,B′)

It follows then that

[B Z⇒ b,B′ Z⇒ b′,X Z⇒ vs(s)] |= tran′(φ2,B • B′)

And by induction (s, h ∗ h1) |= φ2 as required.

	Introduction
	Propositional Separation Logic
	Translating Separation Logic to First-Order Logic
	Representing States as Vectors
	Representing Heaps in First-Order Logic
	The Translation
	Decision Procedure and Complexity

	Conclusions and Future Work
	Appendix: Selected Proofs
	Proof of Theorem 1 from Section 3.3

