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Abstract
Ground Tree Rewrite Systems with State are known to have an
undecidable control state reachability problem. Taking inspiration
from the recent introduction of scope-bounded multi-stack push-
down systems, we define Senescent Ground Tree Rewrite Systems.
These are a restriction of ground tree rewrite systems with state
such that nodes of the tree may no longer be rewritten after hav-
ing witnessed an a priori fixed number of control state changes.
As well as generalising scope-bounded multi-stack pushdown sys-
tems, we show — via reductions to and from reset Petri-nets — that
these systems have an Ackermann-complete control state reacha-
bility problem. However, reachability of a regular set of trees re-
mains undecidable.

Categories and Subject Descriptors Theory of computation [For-
mal languages and automata theory]: Rewrite systems

General Terms Theory

Keywords Ground tree rewrite systems, ground term rewrite sys-
tems, automata, concurrency, scope-bounding, bounded-context
switches, under-approximation, reachability, petri-nets, reset petri-
nets, Ackermann-hard, pushdown systems

1. Introduction
The study of reachability problems for infinite state systems, such
as Turing machines, has often used strings to represent system
states. In seminal work, Büchi showed the decidability of reach-
ability for pushdown systems [36]. A state (or configuration) of a
pushdown system is represented by a control state (from a finite
set) and a stack over a given finite alphabet. In this case, the stack
is a word and one stack is obtained from another by replacing a
prefix w of the stack with another word w′. In fact, the reachability
problem is in P-time [9, 17].

Pushdown systems can accurately model the control-flow of
first-order programs [22] and as such they have been well-studied
as an automata-theoretic approach to software model checking
(E.g. [9, 16, 17, 37]). Many scalable model checkers for pushdown
systems have been implemented, and these tools (e.g. Bebop [7]
and Moped [42]) are an essential back-end component of celebrated
model checkers such as SLAM [6].

A natural and well-studied generalisation of these ideas is to
use a tree representation of system states. This approach was first
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considered by Brainerd, who, generalising Büchi’s result, showed
decidability of reachability for Ground Tree Rewrite Systems1

(GTRS) [11]. In these systems, each transition replaces a com-
plete subtree of the state with another. Thus, these systems gener-
alise pushdown systems and allow the analysis of tree manipulating
programs. As in the pushdown case, reachability is solvable in P-
time [28].

Unfortunately, these tree generalisations of pushdown automata
do not allow a control state in their configurations. Instead, the
pushdown system’s control state must be encoded as the leaf of
the tree. This is for good reason: when a control state external to
the tree is permitted, reachability is immediately undecidable. This
is because one can easily simulate a two-stack pushdown system
with a tree that contains a branch for each stack. It is well known
that a two-stack pushdown system can simulate a Turing machine,
and thus reachability is undecidable.

However, due to the increasing importance of concurrent sys-
tems — where each thread requires its own stack — there has
been renewed interest in identifying classes of multi-stack push-
down systems for which reachability becomes decidable. A suc-
cessful notion in this regard is that of context-bounding. This un-
derapproximates a concurrent system by bounding the number of
context switches that may occur [38]. It is based on the observation
that most real-world bugs require only a small number of thread
interactions [35]. By considering only context-bounded runs of a
multi-stack pushdown system, the reachability problem becomes
NP-complete.

In recent work [43], Lin (formerly known as To) observed that a
GTRS modelling a context-bounded multi-stack pushdown system
has an underlying control state graph that is 1-weak. A 1-weak
automaton is an automaton whose control state graph contains no
cycles except for self-loops [30]. Intuitively, the control state is
only used to manage context-switches, and hence a 1-weak control
state graph suffices. Moreover, the reachability problem for GTRS
with control states is decidable with such a control state graph [43].
Indeed, the problem remains NP-complete [27].

As well context-bounding there are many more relaxed re-
strictions on multi-stack pushdown behaviours for which reach-
ability also remains decidable. Of particular interest is scope-
bounding [24]. In this setting, we fix a bound k and insist that
an item may only be removed from the stack if it was pushed at
most k context switches earlier. Thus, an arbitrary number of con-
text switches may occur, and the underlying control state graph
is no longer 1-weak. In this case, by relaxing the restriction on the
control state behaviours, the complexity of reachability is increased
from NP to PSPACE.

In this work we study how to generalise scope-bounding to
GTRS with control states. We obtain a model of computation rem-
iniscent of a tree growing in nature: it begins with a green shoot,
which may grow and change. As this shoot ages, it becomes hard-
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ened and forms the trunk of the tree. From this trunk, new green
shoots grow, and — via leaves that may fall and grow again — re-
main changeable. If a shoot lives long enough, it hardens and forms
a new (fixed) branch of the tree.

Thus, we define senescent ground tree rewrite systems. The
passage of time is marked by changes to the control state. If a node
remains unchanged for a fixed number k of changes, it becomes
unchangeable – that is, part of a hardened branch of the tree.

These systems naturally generalise scope-bounded pushdown
systems and also allow additional features such as dynamic thread
creation (by creating a new branch of the tree). To our knowledge,
they also provide the most precise under-approximation of GTRS
with control states currently known to have a decidable control state
reachability problem, and thus may be used in the analysis of tree-
manipulating programs.

We show, via inter-reductions with reset Petri-nets, that the con-
trol state reachability problem for senescent GTRS is Ackermann-
complete while the reachability of a regular set of trees is undecid-
able. This increase in modelling power is in sharp contrast to the
analogous restrictions for pushdown systems, where the increase is
much more modest.

An extended version of this work appears on arXiv.org [21].

2. Related Work
Abdulla et al. [1] define a regular model checking algorithm for
tree automatic structures where the transition relation is given by
a regular tree transducer. They give a reachability algorithm that
is complete when there is a fixed bound k on the number of times
a node is changed during a run. This has flavours of the systems
we define here. However, in our model, a node may be changed an
arbitrary number of times. In fact, we impose a limit on the extent
to which a node may remain unchanged. It is not clear how the two
models compare, and such a comparison is an interesting avenue of
future work.

Atig et al. [5] consider a model of multi-stack pushdown sys-
tems with dynamic thread creation. Decidability of the reachability
problem is obtained by allowing each thread to be active at most
k times during a run. As we show in Section 6.1, we can consider
each thread to be a branch of the tree, and context switches cor-
respond to control state changes. However, while in Atig et al.’s
model a thread may be active for any k context switches (as long
as it’s inactive for the others), in our model a thread will begin to
suffer restrictions after the k next context switches (though may
be active for an arbitrary number). Perhaps counter-intuitively, our
restriction actually increases expressivity: Atig et al. show inter-
reducibility between reachability in their model and Petri-net cov-
erability, while in our model the more severe restriction allows us
to inter-reduce with coverability of reset Petri-nets.

The scope-bounded restriction has recently been relaxed for
multi-stack pushdown systems by La Torre and Napoli [25]. In
their setting, a character that is popped from a particular stack may
must have been pushed within k active contexts of that stack. In
particular, this allows for an unbounded number of context switches
to occur between a push and a pop, as long as the stack involved is
only active in up to k of those contexts. However, it is unclear what
such a relaxation would mean in the context of senescent GTRS.

GTRS have been well studied as generators of graphs (e.g. [28])
and have decidable verification problems for repeated reachabil-
ity [28], first-order logic [15], confluence [14], &c. However, LTL
and CTL model checking are undecidable [10, 19, 28]. They have
intimate connections (e.g. [19, 28]) with the Process Rewrite Sys-
tems Hierarchy [31].

There are several differing restrictions to multi-stack pushdown
systems with decidable verification problems. Amongst these are
phase-bounded [44] and ordered [12] (corrected in [4]) pushdown

systems. There are also generic frameworks — based on bounded
tree- [29] or split-width [13] — that give decidability for all com-
munication architectures that can be defined within them.

3. Preliminaries
We write N to denote the set of natural numbers and N+ to denote
the set of strictly positive natural numbers. Given a word language
L ⊆ Σ∗ for some alphabet Σ and a word w ∈ Σ∗, let w · L =
{ww′ | w′ ∈ L}. For a given set S, let |S| denote the cardinality
of the set.

In the cases when the dimension is clear, we will write 0⃗ to
denote the tuple (0, . . . , 0) and i⃗ to denote the tuple (n1, . . . , nm)
where all nj = 0 for all j ̸= i and ni = 1.

We denote by Fω both the Ackermann function and the class
of problems solvable in Fω-time. Following Schmitz [39], we have
the class Fω of problems computable in Ackermannian time, which
is closed under primitive-recursive reductions.

3.1 Trees and Automata
3.1.1 Regular Automata and Parikh Images
A regular automaton is a tuple A = (Q,Γ,∆, q0,F) where Q is a
finite set of states, Γ is a finite output alphabet, ∆ ⊆ Q×Γ×Q is
a transition relation, q0 ∈ Q is an initial state and F ⊆ Q is a set
of final states.

We write q
a−→ q′ to denote a transition (q, a, q′) ∈ ∆. A run

from q1 ∈ Q over a word w = a1 . . . ah is a sequence

q1
a1−→ · · · ah−−→ qh+1 .

A run is accepting whenever qh+1 ∈ F . The language L(A) of A
is the set of words w ∈ Γ∗ such that there is an accepting run of A
over w from q0.

For a word w ∈ Γ∗ for some alphabet Γ, we define |w|γ to be
the number of occurrences of γ in w. Given a fixed linear ordering
γ1, . . . , γm over Γ = {γ1, . . . , γm} and a word w ∈ Γ∗, we define
PARIKH(w) =

(
|w|γ1

, . . . , |w|γm

)
. Given a language L ⊆ Γ∗,

we define PARIKH(L) = {PARIKH(w) | w ∈ L}. Finally, given a
regular automaton A, we define PARIKH(A) = PARIKH(L(A)).

3.1.2 Trees
A ranked alphabet is a finite set of characters Σ together with a rank
function rank : Σ 7→ N. A tree domain D ⊂ N∗

+ is a nonempty
finite subset of N∗

+ that is both prefix-closed and younger-sibling-
closed. That is, if ni ∈ D, then we also have n ∈ D and, for all
1 ≤ j ≤ i, nj ∈ D (respectively). A tree over a ranked alphabet
Σ is a pair T = (D,λ) where D is a tree domain and λ : D 7→ Σ
such that for all n ∈ D, if λ(n) = a and rank(a) = m then n
has exactly m children (i.e. nm ∈ D and n(m + 1) /∈ D). Let
TREES(Σ) denote the set of trees over Σ.

Given a node n and trees T1, . . . , Tm, we will often write
n(T1, . . . , Tm) to denote the tree with root node n and left-to-right
child sub-trees T1, . . . , Tm. When n is labelled a, we may also
write a(T1, . . . , Tm) to denote the same tree. We will often simply
write a to denote the tree with a single node labelled a. Finally, let
E denote the empty tree.

3.1.3 Context Trees
A context tree over the alphabet Σ with a set of context variables
x1, . . . , xm is a tree C = (D,λ) over Σ⊎{x1, . . . , xm} such that
for each 1 ≤ i ≤ m we have rank(xi) = 0 and there exists a
unique context node ni such that λ(ni) = xi. We will denote such
a tree C[x1, . . . , xm].

Given trees Ti = (Di, λi) for each 1 ≤ i ≤ m, we denote by
C[T1, . . . , Tm] the tree T ′ obtained by filling each variable xi with
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the tree Ti. That is, T ′ = (D′, λ′) where

D′ = D ∪ n1 ·D1 ∪ · · · ∪ nm ·Dm

and

λ′(n) =

{
λ(n) n ∈ D ∧ ∀i.n ̸= ni

λi(n
′) n = nin

′ .

3.1.4 Tree Automata
A bottom-up nondeterministic tree automaton (NTA) over a ranked
alphabet Σ is a tuple T = (Q,∆,F) where Q is a finite set of
states, F ⊆ Q is a set of final (accepting) states, and ∆ is a finite set
of rules of the form (q1, . . . , qm)

a−→ q where q1, . . . , qm, q ∈ Q,
a ∈ Σ and rank(a) = m. A run of T on a tree T = (D,λ) is a
mapping ρ : D 7→ Q such that for all n ∈ D labelled λ(n) = a
with rank(a) = m we have

(ρ(n1), . . . , ρ(nm))
a−→ ρ(n) .

It is accepting if ρ(ε) ∈ F . The language defined by a tree
automaton T over alphabet Σ is a set L(T ) ⊆ TREES(Σ) over
which there exists an accepting run of T . A set of trees L is regular
iff there is a tree automaton T such that L(T ) = L.

For a tree T , let TT be an NTA accepting only T . For example,
Ta(b) is the automaton accepting only the tree a(b), and Ta accepts
only the tree containing a single node labelled a. Note, we do not
use natural numbers as tree labels, hence T1, T2, . . . may range over
all NTAs.

3.2 Reset Petri-Nets
We give a simplified presentation of reset Petri-nets as counter
machines with increment, decrement and reset operations. This is
easily equivalent to the standard definition [3].

Given a set X = {x1, . . . , xm} of counter variables, we define
the set OPX of counter operations to be

{incr(x), decr(x), res(x) | x ∈ X } .

DEFINITION 3.1 (Reset Petri Nets). A reset Petri net is a tuple
N = (Q,X,∆) where Q is a finite set of control states, X is
a finite set of counter variables, and ∆ ⊆ Q × 2OPX × Q is a
transition relation.

A configuration of a reset Petri net is a pair (q, π) where q ∈ Q
is a control state and π : X → N is a marking assigning values to
counter variables. We will write π0 for the marking assigning zero
to all counters. We write

p −→̃
o

p′

to denote a rule (p, õ, p′) ∈ ∆ and omit the set notation when õ is
a singleton. There is a transition (p, π) −→ (p′, π′) whenever we
have p −→̃

o
p′ ∈ ∆ and there are markings π1, π2 such that

• we have

π1(x) =

{
π(x)− 1 if decr(x) ∈ õ and π1(x) > 0

π(x) if decr(x) /∈ õ

• and we have π2(x) =

{
0 if res(x) ∈ õ

π1(x) if res(x) /∈ õ

• and we have π′(x) =

{
π2(x) + 1 if incr(x) ∈ õ

π2(x) if incr(x) /∈ õ

Note, operations are applied in the order decr(x), res(x), incr(x),
and if x is 0, attempting to apply decr(x) causes the Petri net to
become stuck. We write (q, π) −→∗ (q′, π′) for a run

(q, π) −→ · · · −→
(
q′, π′)

of N .
Given two markings π and π′, we say π covers π′, written

π′ ≤ π whenever, for all x we have π′(x) ≤ π(x).

DEFINITION 3.2 (Coverability Problem). Given a reset Petri-net
N , and configurations (q, π) and (q′, π′) the coverability problem
is to decide whether there exists a run (q, π) −→∗ (q′, π′′) of N
such that π′ ≤ π′′.

Coverability for reset Petri nets is decidable via the Karp-Miller
algorithm [23] whose complexity is bounded by Fω [32]. In fact,
the problem is Fω-complete [40, 41]. In contrast, the reachability
problem is undecidable [3].

DEFINITION 3.3 (Reachability Problem). Given a reset Petri-net
N , and configurations (q, π) and (q′, π′) the reachability problem
asks if there is a run (q, π) −→∗ (q′, π′) of N .

3.3 Ground Tree Rewrite Systems with State
We consider a generalisation of GTRS where regular automata ap-
pear in the rewrite rules. Hence, a single rule may correspond to an
infinite number of rules containing concrete trees. Such an exten-
sion is common (e.g. [14, 27, 28]). Note, our lower bound results
only use tree automata that accept a singleton set of trees, and thus
we do not increase our lower bounds due to this generalisation. See
Section 5 for an example of senescent GTRSs, which is a restriction
of sGTRSs.

3.3.1 Basic Model
A Ground Tree Rewrite System with State maintains a tree over
a given alphabet Σ and a control state from a finite set. Each
transition may update the control state and rewrite a part of the tree.
Rewriting a tree involves matching a sub-tree of the current tree
and replacing it with a new tree. Note, that since we are considering
ranked trees, a sub-tree cannot be erased by a rewrite rule, since this
would make the tree inconsistent w.r.t the ranks of the tree labels.

DEFINITION 3.4 (GTRSs with State). A ground tree rewrite sys-
tem with state (sGTRS) is a tuple G = (P,Σ,R) where P is a
finite set of control states, Σ is a finite ranked alphabet, and R is a
finite set of rules of the form (p1, T1) −→ (p2, T2) where p1, p2 ∈ P
and T1, T2 are NTAs over Σ such that E /∈ L(T1) ∪ L(T2).

A configuration of a sGTRS is a pair (p, T ) ∈ P × TREES(Σ).
We have a transition (p1, T1) → (p2, T2) whenever there is a rule
(p1, T1) −→ (p2, T2) ∈ R such that T1 = C[T ′

1] for some context
C and tree T ′

1 ∈ L(T1) and T2 = C[T ′
2] for some tree T ′

2 ∈ L(T2).
A run of an sGTRS is a sequence

(p1, T1) → · · · → (ph, Th)

such that for all 1 ≤ i < h we have (pi, Ti) → (pi+1, Ti+1) is a
transition of G. We write (p, T ) →∗ (p′, T ′) whenever there is a
run from (p, T ) to (p′, T ′).

We are interested in both the control state reachability problem
and the regular reachability problem.

DEFINITION 3.5 (Control State Reachability Problem). Given an
sGTRS G, an initial configuration (psrc, Tsrc) of G and a tar-
get control state psnk, the control state reachability problem asks
whether there is a run (psrc, Tsrc) →∗ (psnk, T ) of G for some
tree T .

DEFINITION 3.6 (Regular Reachability Problem). For an sGTRS
G, an initial configuration (psrc, Tsrc) of G, a target control state
psnk, and tree automaton T , the regular reachability problem is to
decide whether there exists a run (psrc, Tsrc) →∗ (psnk, T ) for
some T ∈ L(T ).



3.3.2 Output Symbols
As part of the proofs, we are interested in sGTRSs whose transi-
tions are labelled with output symbols. Hence, runs of an sGTRS
produce words over the output alphabet.

DEFINITION 3.7 (GTRSs with State and Outputs). A ground tree
rewrite system with state and outputs is a tuple G = (P,Σ,Γ,R)
where P is a finite set of control states, Σ is a finite ranked alpha-
bet, Γ is a finite alphabet of output symbols, and R is a finite set of
rules of the form (p1, T1)

γ−→ (p2, T2) where p1, p2 ∈ P , γ ∈ Γ,
and T1, T2 are NTAs over Σ such that E /∈ L(T1) ∪ L(T2).

We have a transition (p1, T1)
γ−→ (p2, T2) whenever there is a

rule (p1, T1)
γ−→ (p2, T2) ∈ R such that T1 = C[T ′

1] for some
context C and tree T ′

1 ∈ L(T1) and T2 = C[T ′
2] for some tree

T ′
2 ∈ L(T2). A run over γ1 . . . γh−1 is a sequence

(p1, T1)
γ1−→ · · ·

γh−1−−−→ (ph, Th)

such that for all 1 ≤ i < h we have (pi, Ti)
γi−→ (pi+1, Ti+1) is a

transition of G. We write (p, T )
γ1...γh−−−−→ (p′, T ′) whenever there is

a run from (p, T ) to (p′, T ′) over γ1 . . . γh. Let ε denote the empty
output symbol.

3.3.3 Weakly Extended Ground Tree Rewrite Systems
The control state and regular reachability problems for sGTRS
are known to be undecidable [10, 19]. The problems become NP-
complete for weakly-synchronised sGTRS [27], where the underly-
ing control state graph (where there is an edge between p1 and p2
whenever there is a transition (p1, T1) −→ (p2, T2)) may only have
cycles of length 1 (i.e. self-loops).

More formally, we define the underlying control graph of
a sGTRS G = (P,Σ,Γ,R) as a tuple (P,∆) where ∆ ={
(p, p′)

∣∣∣ (p, T )
γ−→ (p′, T ′) ∈ R

}
. Note, the underlying control

graph of a sGTRS without output symbols can be defined by simply
omitting Γ and γ.

DEFINITION 3.8 (Weakly Extended GTRS [27]). An sGTRS (with
or without output symbols) is weakly extended if its underlying
control graph (P,∆) is such that all paths

(p1, p2) (p2, p3) . . . (ph−2, ph−1) (ph−1, ph) ∈ ∆∗

with p1 = ph satisfy pi = p1 for all 1 ≤ i ≤ h.

A key result of Lin is that the Parikh image of a weakly extended
sGTRS with output symbols can be represented by an existential
Presburger formula that is constructible in polynomial time. We
can then build a semilinear set (via Pottier [34] then Haase [20] or
Piskac [33]) of a bounded size. From this we can acquire a regular
automaton representing the possible outputs of weakly extended
sGTRSs, which will be used later in our decidability proofs. More
details appear in the arXiv article [21]. In the following lemma, fix
an arbitrary linear ordering over the output alphabet of G.

LEMMA 3.1 (Parikh Image of Weakly Extended sGTRS). Given
a weakly extended sGTRS G with outputs Γ, control states p1
and p2 and tree automata T1 and T2, we can construct a regu-
lar automaton A with outputs Γ such that we have some trees
T1 ∈ L(T1) and T2 ∈ L(T2) and a run

(p1, T1)
γ1...γh−−−−→ (p2, T2)

with PARIKH(γ1 . . . γh) = v⃗ iff v⃗ ∈ PARIKH(A). Moreover, the
size of A is at most triply exponential in the size of G.

p

a 2

b 1 c 1

d 0

p′

a 3

b 2 a 0

b 0 c 0

(a) A transition changing the control state.

p

a 2

b 1 c 1

d 0

p

a 2

b 1 a 0

b 0 c 0

(b) A transition that does not change the control state.

Figure 1: Transitions of a senescent GTRS.

4. Senescent Ground Tree Rewrite Systems with
State

We generalise weakly-synchronised sGTRS to define senescent
ground tree rewrite systems, incorporating ideas from scope-
bounded multi-stack pushdown systems [24]. Intuitively, when the
control state changes, the nodes in the tree “age” by one timestep.
When the nodes reach a certain (fixed) age they may no longer be
changed by any future transitions. We give an informal example
of this process below, and give a formal definition in the following
sections. A full example is given in section 5

Figure 1 shows two transitions of a senescent GTRS. A configu-
ration is written as its control state (p or p′) with the tree appearing
below. The label of each node appears in the centre of the node,
while the ages of each node appears to the right. The parts of the
tree rewritten by the transition appear inside the dotted lines. Fig-
ure 1a shows a transition where the control state is changed. This
change causes the nodes that are not rewritten to increase their age
by 1. The rewritten nodes are given the age 0. Figure 1b shows a
transition that does not change the control state. Notice that, in this
case, the nodes that are not rewritten maintain the same age.

4.1 Model Definition
Given a run

(p1, T1) → · · · → (ph, Th)

of an sGTRS, let C1, . . . , Ch−1 be the sequence of tree contexts
used in the transitions from which the run was constructed. That is,
for all 1 ≤ i < h, we have Ti = Ci

[
T out
i

]
and Ti+1 = Ci

[
T in
i+1

]
where (pi, Ti) −→ (pi+1, T ′

i ) was the rewrite rule used in the
transition and T out

i ∈ L(Ti), T in
i+1 ∈ L(T ′

i ) were the trees that
were used in the tree update.

For a given position (pi, Ti) in the run and a given node n in
the domain of Ti, the birthdate of the node is the largest 1 ≤ j ≤ i
such that n is in the domain of Cj

[
T in
j

]
and n is in the domain

of Cj [x] only if its label is x. The age of a node is the cardinality
of the set {i′ | j ≤ i′ < i ∧ pi′ ̸= pi′+1 }. That is, the age is the
number of times the control state changed between the jth and
the ith configurations in the run. This is illustrated in Figure 1,
described above.

A lifespan restricted run with a lifespan of k is a run such
that each transition

(
pi, Ci

[
T out
i

])
→

(
pi+1, Ci

[
T in
i+1

])
has the

property that all nodes n in T out
i have an age of at most k. That is,



more precisely, that all nodes n in the domain of Ci

[
T out
i

]
but only

in the domain of Ci[x] if the label is x have an age of at most k. For
example, the transitions in Figure 1 require a lifespan ≥ 1 since the
oldest node that is rewritten by the transitions has age 1.

DEFINITION 4.1 (Senescent Ground Tree Rewrite Systems). We
define a senescent ground tree rewrite system with lifespan k to
be an sGTRS G = (P,Σ,R) where runs are lifespan restricted
with a lifespan of k.

We will study the control state reachability problem and the
regular reachability problem for senescent GTRS. These problems
are defined analogously to the same problems for sGTRS (with
the condition that runs are lifespan restricted). For completeness,
we include the precise definition in the arXiv article [21]. We will
show in Theorem 7.1 that the control state reachability problem is
Fω-complete, and in Theorem 6.3 that the regular reachability is
undecidable.

One might expect that decidability of control state reachability
would imply decidability of regular reachability, by, e.g., encoding
the tree automaton into the senescent GTRS. However, one cannot
enforce conditions on the final tree (e.g. that all leaf nodes are
labelled by initial states of the tree automaton) when only the final
control state can be specified.

5. Example
We give a brief example of a simplistic network where large tasks
may be sent to a (powerful) processing unit. By abuse of notation,
let (p1, T1) −→ (p2, T2) for control states p1, p2 and trees T1, T2

denote a rule (p1, T1) −→ (p2, T2) where L(T1) = {T1} and
L(T2) = {T2}.

The initial control state will be w indicating the processing
unit is waiting. The initial tree will be •(i, p) where i represents a
process and p the powerful processing unit and • is just an internal
node. The following rules allow a process to either fork, or send
a job to the processing unit (via the control state) and finish (by
changing its label to j).

(w, i) −→ (w, •(i, i)) and (w, i) −→ (t, j)

The processing unit can pick up the task t, setting the control state
to b to indicate the unit is busy, and then finish the task with the
rules

(t, p) −→ (b, t) and (b, t) −→ (w, p) .

Finally, a provision is made for processes to fork a local thread to
do their processing if the powerful CPU is busy. The second rule
joins the local thread after the processing is done.

(b, i) −→ (b, •(j, t)) and (b, •(j, t)) −→ (b, j)

A simple correctness condition would be that the control state does
not indicate that the powerful CPU is waiting while it is still pro-
cessing. This is then a regular reachability property: can we reach
a configuration with control state w and a tree belonging to the
regular set of trees of the form •(∗, t) (where ∗ is any tree). Unfor-
tunately, the above system fails this criterion via the run shown in
Figure 2. In this run, the changed parts of the tree are highlighted.
An erroneous state is reachable because the programmer did not
differentiate between a local task and a task running on the power-
ful CPU. Hence the local task at the bottom of the tree is able to set
the control state to idle. Note, since the oldest node rewritten by a
rule has age 2, a lifespan of 2 would be required for this run.

In this case, it is also possible to use control state reachability to
detect if an error has occurred. To do so, we need to alter the initial
tree slightly to •(i, x(p)) where x is a marker node allowing us to
identify the powerful CPU node. Then, we can use a rule

(w, x(t)) −→ (e, x(t))

to allow the final configuration in Figure 2 (with the additional
marker node) to reach the “error” control state e.

6. Modelling Power of Senescent GTRSs
We show in this section that senescent GTRSs at least capture
scope-bounded multi-stack pushdown systems. We also show, to
obtain our lower bounds, that we can encode coverability and
reachability of a reset Petri net, via reductions to control state and
regular reachability respectively.

6.1 Scope-Bounded Pushdown Systems
Senescent GTRS can naturally model scope-bounded multi-stack
pushdown systems, which were first introduced by La Torre and
Napoli [24] and shown to have a PSPACE-complete reachability
problem. We first describe scope-bounded pushdown systems be-
fore comparing them with senescent GTRS. For spaces reasons, the
discussion here will be informal with formal definitions appearing
in the arXiv article [21].

6.1.1 Model
A multi-stack pushdown system consists of, at any one moment,
a control state and a fixed number z of stacks over an alphabet
Σ. A transition can change the control state and may optionally
update one of the stacks, either by pushing a character onto a stack
or popping a character from it.

Scope-bounded pushdown systems restrict the behaviour of a
multi-stack pushdown system. Runs are organised into rounds,
where each round consists of z phases, and, during the ith phase,
stack operations may only occur on the ith stack. This can be
thought of as several threads running on a round robin scheduler.
The scope-bound k is a restriction on which characters may be
removed from a stack: a character may only be removed if it was
pushed within the previous k rounds. The control state reachability
problem then asks, whether, from a given initial configuration, a
target control state be reached.

6.1.2 Reduction to Senescent GTRS
The reduction to senescent GTRS is a straightforward extension
of the standard method for encoding a pushdown system with
an sGTRS with a single control state, which was generalised to
context-bounded multi-stack pushdown systems by Lin [27].

Without loss of generality, we will assume a stack symbol ⊥
that is the bottom-of-stack symbol. It is neither pushed onto, nor
popped from the stack. It will also be the initial stack character
in the control state reachability problem. Furthermore, by abuse of
notation, for a stack w = a1 . . . am (with a1 being the top of the
stack) we write w(T ) for the tree am(· · · a1(T )).

A configuration of a single-stack pushdown system (p, w) can
be encoded as a tree containing a single path. Consider the tree
w(p). Since the rules of the pushdown system only depend on
and change the control state and the top of the stack, they can be
encoded as tree rewriting operations. For example, the push rule
(p, p′, a) can be modelled by matching the subtree p and replacing
it with a(p′).

To extend this to multi-stack pushdown systems with z stacks,
we maintain a tree whose root is a node with z children, where each
child encodes a stack. The pushdown system’s control state acts as
a kind of “token” to indicate which stack is currently active in the
round. That is, it will appear as a leaf of the branch containing the
currently active stack. To model the scheduler moving execution to
the next stack, the control state of the senescent GTRS will be used
to transfer the pushdown system’s control state to the leaf of the
next active branch. Thus, a k-scope-bounded multi-stack pushdown
system will be modelled by a senescent GTRS with a lifespan of
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Figure 2: A bad run of the example GTRS.

k · z. This is natural since a round of a scope bounded pushdown
system contains z communications, and hence k rounds contain k·z
communications.

For example, a run where control changes from the first to
second stack during the final transition

(p1, aw1, w2) −→ (p2, w1, w2) −→ (p3, w1, bw2)

can be modelled by the following run of a senescent GTRS where
indicates we are agnostic about the GTRS control state, and 2i

indicates that stack i is not active.

( , w1(a(p1)), w2(22)) → ( , w1(p2), w2(22)) →
((p2, 2), w1(21), w2(22)) → ( , w1(21), w2(p2))

→ ( , w1(21), w2(b(p3)))

The GTRS control state (p2, 2) indicates that stack 2 should be-
come active with control state p2. To check control state reachabil-
ity, we can move the current pushdown control state to the control
state of the GTRS at any time.

THEOREM 6.1 (Scope-Bounded to Senescent GTRS). The con-
trol state reachability problem for scope-bounded multi-stack push-
down systems can be reduced to the control state reachability prob-
lem for senescent GTRS.

We could extend scope-bounded pushdown systems to add dy-
namic thread creation by keeping a leaf node labelled ∗ which will
be rewritten to •(a(p), ∗) when a new thread with stack a and con-
trol state p is created. Note, • is just an internal tree node, and we
always have one leaf node labelled ∗.

6.2 Reset Petri-Nets
We show that the coverability and reachability problems for reset
Petri-nets can be reduced to the control state and regular reacha-
bility problems for senescent GTRS respectively. We give informal
reductions here and full details in the arXiv article [21].

The idea is that the control state of the reset Petri-net can be
directly encoded by the control state of the senescent GTRS and
to keep track of the marking for each counter x, we maintain a
tree with π(x) leaf nodes labelled x. Decrementing a counter is
then a case of rewriting a leaf x to an “inactive” label %, while
incrementing the counter requires adding a new leaf labelled x.
To avoid leaf nodes becoming fossilised, we allow all leaves to
rewrite to themselves in (almost) every control state. We can reset
a counter x by forcing the GTRS to change control states k times
without allowing any leaves labelled x to refresh; thus, all x nodes
become fossilised and the counter is effectively set to zero. Since
the control state is encoded directly, is it easy to check control state
reachability.

THEOREM 6.2 (Coverability to Control State Reachability). The
coverability problem for reset Petri-nets can be reduced to the con-
trol state reachability problem for senescent GTRS.

Using a slight extension of the coverability reduction, we can
show that the reachability problem reduces to the regular reacha-
bility problem for GTRS. Naively, since leaf nodes store the value
of the counters, we could simply test reachability with respect to a
tree automaton T that accepts trees where the number of leaf nodes
labelled by each counter matches the target marking of the counter.
However, this does not work since the reset actions are encoded by
forcing leaf nodes to become fossilised. Hence, the number of leaf
nodes labelled by a counter will not match the actual marking of
the counter.

To overcome this problem we make two modifications. First,
when a counter is being reset, we give all leaves labelled by that
counter the opportunity to rewrite themselves to %. Furthermore,
when we have reached the target control state, we have the pos-
sibility to make a non-deterministic guess that the target marking
has also been reached. At this point we let all active leaves labelled
by a counter x to rewrite themselves to x. We then define the tar-
get tree automaton T to accept trees where the number of leaves
labelled x matches the target marking value of the counter, and,
moreover, there are no leaves labelled by a counter x. The second
condition ensures that no node labelled x became fossilised while
labelled x (in particular, during a reset, all nodes rewrote them-
selves to %). Similarly, after guessing that the target configuration
had been reached, all nodes labelled x changed to x, thus ensuring
that the tree accurately represents the true counter values.

THEOREM 6.3 (Reachability to Regular Reachability). One can
reduce the reachability problem for reset Petri-nets to the regu-
lar reachability problem for senescent GTRS, and thus regular
reachability is undecidable.

7. Reachability Analysis of Senescent GTRSs
We show, using ideas from [26], that the control state reachability
problem for senescent GTRSs is decidable and is Fω-complete. For
the following section, fix a senescent GTRS G = (P,Σ,R) with
lifespan k. Furthermore, fix an ordering r1, . . . , rℓ on the rules in
R. Thus, we will use each rule r ∈ R as an index (that is, we use r
instead of i when r = ri). Notice that ℓ denotes the number of rules
in G. Without loss of generality, we assume that all tree automata
in the rules R of G accept at least one tree (rules not satisfying this
condition can be discarded since they cannot be applied).

THEOREM 7.1 (Ackermann-Completeness of Reachability). It is
the case that the control state reachability problem for senescent
GTRS is Fω-complete.

Proof. Fω-hardness follows from Theorem 6.2 (Coverability to
Control State Reachability) and the Fω-hardness of the coverability
problem for reset Petri-nets [40, 41]. The upper bound is obtained
in the following sections. In outline, given a senescent GTRS G we
obtain from Definition 7.4 a reset Petri-net NG triply-exponential
in the size of G. From Lemma 7.1 we can decide the control state
reachability problem for G via a coverability problem over NG.



Since Fω is closed under all primitive-recursive reductions, we
have our upper bound. □

7.1 Independent Sub-Tree Interfaces
Our algorithm will non-deterministically construct a representation
of a run of G witnessing the reachability property. A key idea is
that, during the guessed run, certain sub-trees may operate inde-
pendently of one another.

That is, suppose we have a tree consisting of a root node n
with a left sub-tree T1 and a right sub-tree T2. If, during the run,
the complete tree rooted at n is never matched by the LHS of a
rewrite rule, then T1 and T2 develop independently: any rewrite
rule applied during the run either matches a sub-tree of T1 or a sub-
tree of T2, but never both. Thus, the interaction between T1 and T2

is only via the changes to the control state.
When a rewrite rule r is applied, rewriting a sub-tree T1 to T2,

there are two possibilities: either T2 develops independently of the
rest of the tree for the remainder of the run, or T2 appears as a
strict sub-tree of a later rule application. In the former case, but not
the latter, a new independent sub-tree has been generated. When
T2 is independent we say that an independent sub-tree has been
generated via rule r.

Adapting the thread interfaces introduced by La Torre and Par-
lato in their analysis of scope-bounded multi-stack pushdown sys-
tems [26], we define a notion of independent sub-tree interfaces,
which we will refer to simply as interfaces.

DEFINITION 7.1 (Independent Sub-Tree Interfaces). We define an
independent sub-tree interface α to be a sequence (p1, b1, η⃗1) . . .
(pm, bm, η⃗m) of triples in P × {0, 1} × Nℓ with m ≤ k.

An interface α describes the external effect of the evolution of
a sub-tree over up to k control state changes. A sequence

α = (p1, b1, η⃗1) , . . . , (pm, bm, η⃗m)

describes the sequence of control state changes p1, . . . , pm wit-
nessed by the sub-tree before it becomes fossilised. The compo-
nent bi indicates whether the subtree made the control state change
(via the application of a rewrite rule modifying both the tree and
the control state) or whether the control state change is supposed to
have been made by an external independent sub-tree.

The final component η⃗i = (ηr1
i , . . . , η

rℓ
i ) indicates how many

new independent sub-trees are generated during the lifespan of
the sub-tree. That is, during the run described by α, we have ηr

i

independent sub-trees generated using rule r after the control state
has been changed to pi but before the change to control state pi+1.
Note, if a rule both changes the control state and generates a new
independent sub-tree, we say the sub-tree is generated after the
control state changed.

7.2 Examples of Independent Sub-Tree Interfaces
In the following, by abuse of notation, let (p1, T1) −→ (p2, T2)
for control states p1, p2 and trees T1, T2 denote a rule (p1, T1) −→
(p2, T2) where L(T1) = {T1} and L(T2) = {T2}. Also, recall 0⃗
is the tuple (0, . . . , 0) and i⃗ is the tuple where all components are
0 except the ith, which is 1.

Consider a senescent GTRS with rules {r1, . . . , r5} where

r1 = (p1, T0) −→ (p2, n(T1, T2)) ,
r2 = (p2, T1) −→

(
p2, T

1
1

)
, r3 = (p2, T2) −→

(
p3, T

1
2

)
,

r4 =
(
p3, T

1
2

)
−→

(
p4, T

2
2

)
, r5 =

(
p4, T

1
1

)
−→

(
p5, T

2
1

)
.

Now consider the run formed from r1, . . . , r5 in sequence,

(p1, T0) → (p2, n(T1, T2)) →
(
p2, n

(
T 1
1 , T2

))
→(

p3, n
(
T 1
1 , T

1
2

))
→

(
p4, n

(
T 1
1 , T

2
2

))
→

(
p5, n

(
T 2
1 , T

2
2

))
.

Below we present several alternative decompositions of the
above run into interfaces. In the first, we take a lifespan of 5. In
this case, we may simply have the decomposition

(p1, 0, 0⃗), (p2, 1, 0⃗), (p3, 1, 0⃗), (p4, 1, 0⃗), (p5, 1, 0⃗)

indicating that no new independent sub-trees are considered to have
been generated, and thus, all control state changes are effected by
the evolution of the original tree. Note that b1 = 0 since the control
state was initially p1.

However, the above run can also be decomposed if the lifespan
is set to 4. One such decomposition can be obtained by consid-
ering the application of the rule r1 to generate n(T1, T2), where
n(T1, T2) is a new independent sub-tree. Using

a
to denote an in-

dependent sub-tree that has been generated, we can decompose the
run into two runs

(p1, T0) →
(
p2,

i)
and the run of the generated independent sub-tree

(p2, n(T1, T2)) →
(
p2, n

(
T 1
1 , T2

))
→

(
p3, n

(
T 1
1 , T

1
2

))
→

(
p4, n

(
T 1
1 , T

2
2

))
→

(
p5, n

(
T 2
1 , T

2
2

))
.

These two runs give rise to two independent sub-tree interfaces that
can be combined to represent the original run.

(p1, 0, 0⃗), (p2, 1, 1⃗)

(p2, 0, 0⃗), (p3, 1, 0⃗), (p4, 1, 0⃗), (p5, 1, 0⃗)

The upper interface comes from the first part of the decomposed
run, and the lower interface represents the second part. Note, the
lifespan of 4 is respected and 1⃗ indicates that an independent sub-
tree has been generated as the RHS of r1.

Finally, we observe that the evolution of T 1
1 and T 1

2 are inde-
pendent. Hence, we could be more eager in our generation of inde-
pendent sub-trees. That is, we can decompose the original run into
the following runs.

(p1, T0) → (p2,
a
) , and

(p2, n(T1, T2)) → (p2, n(
a
, T2)) → (p3, n(

a
,
a
))

where the evolution of T 1
1 is given by(

p2, T
1
1

)
→

(
p3, T

1
1

)
→

(
p4, T

1
1

)
→

(
p5, T

2
1

)
and the evolution of T 1

2 by(
p3, T

1
2

)
→

(
p4, T

2
2

)
→

(
p5, T

2
2

)
.

Note, the control state change to p5 was effected by the evolution
of T 1

1 and the change to p4 by the evolution of T 1
2 . The respective

interfaces for the above runs are

(p1, 0, 0⃗), (p2, 1, 1⃗)

(p2, 0, 2⃗), (p3, 1, 4⃗)

(p2, 0, 0⃗), (p3, 0, 0⃗), (p4, 0, 0⃗), (p5, 1, 0⃗)

(p3, 0, 0⃗), (p4, 1, 0⃗), (p5, 0, 0⃗) .

Each column represents a single control state change. It is impor-
tant that in each column there is exactly one independent sub-tree
for which bi = 1. That is, each control state change is performed
by exactly one independent sub-tree.

7.3 Representing Interfaces
In this section we show that interfaces α can be generated as the
Parikh image of regular automata. For each rule

(p, T ) −→ (p1, T1) ∈ R
and sequence (p1, b1) , . . . , (pm, bm) with m ≤ k we will build a
regular automaton A over the alphabet

ΓI = {(r, i) | r ∈ R ∧ 1 ≤ i ≤ m} .



By abuse of notation, for a run over w ∈ Γ∗
I , we define

PARIKH(w) = (η⃗1, . . . , η⃗m)

where for all 1 ≤ i ≤ m we have η⃗i = (ηr1
i , . . . , ηrℓ) and ηr

i =
|w|(r,i). This naturally generalises to PARIKH(A). In particular, we
build A such that, if (η⃗1, . . . , η⃗m) is an element of PARIKH(A)
then there is an independent sub-tree interface

(p1, b1, η⃗1) , . . . , (pm, bm, η⃗m)

of a run beginning with a tree T ∈ L(T1).
We obtain the above regular automaton as follows. First, from

G, r ∈ R and (p1, b1) , . . . , (pm, bm) we build a weakly extended
sGTRS GI that simulates a run of G from a subtree appearing on
the RHS of r, passing precisely the control states p1, . . . , pm and
only effecting a control state change with a rule in G if bi = 1 (else
GI guesses the control state change). The output of this sGTRS
gives us information on the independent sub-trees created during
the run. Then, using Lemma 3.1 (Parikh Image of Weakly Extended
sGTRS) we obtain a regular automaton as required.

In the definition below, we use 3 to be the starting label of GI ,
and the first type of rule is the rule generating a (independent sub-
)tree that could have been created by rule r. The second type of
rules simply simulate the rules of G that do not change the control
state. The next two types of rules take care of the cases where either
the control state change is effected by the independent sub-tree
under consideration (bi = 1), or whether the control state change
is effected by another (independent) part of the tree (bi = 0).
The final two types of rules take care of the generation of new
independent sub-trees. That is, when applying a rule of G, instead
of the new tree appearing in the current tree, a place-holder tree
(accepted by Ta) is created. Note, since

a
is a new label, the place-

holder sub-tree cannot be rewritten during the remainder a run of
GI .

DEFINITION 7.2 (GI ). Given a senescent GTRS G = (P,Σ,R)
with lifespan k, an r ∈ R and sequence (p1, b1) , . . . , (pm, bm)
with m ≤ k we construct a weakly extended sGTRS GI =
(PI ,ΣI ,ΓI ,RI) where, letting T be the tree automaton on the
RHS of r,

PI = {(p1, b1, 1) , . . . , (pm, bm,m)}

ΣI =Σ ⊎
{i

,3}
ΓI = {(r, i) | r ∈ R ∧ 1 ≤ i ≤ m}

and RI is the smallest set containing

• ((p1, b1, 1), T3) ε−→ ((p1, b1, 1), T ), and
• ((pi, bi, i), T1)

ε−→ ((pi, bi, i), T2) when 1 ≤ i ≤ m and
(pi, T1) −→ (pi, T2) ∈ R, and

• ((pi, bi, i), T1)
ε−→ ((pi+1, 1, i+ 1), T2) when 1 ≤ i < m,

bi+1 = 1 and (pi, T1) −→ (pi+1, T2) ∈ R, and
• ((pi, bi, i), Ta)

ε−→ ((pi+1, 0, i+ 1), Ta) when 1 ≤ i < m,
bi+1 = 0 and a ∈ ΣI and a has arity 0, and

• ((pi, bi, i), T1)
(r,i)−−−→

(
(pi, bi, i), Ta)

when 1 ≤ i ≤ m and
r = (pi, T1) −→ (pi, T2) ∈ R, and

• ((pi, bi, i), T1)
(r,i+1)−−−−→

(
(pi+1, 1, i+ 1), Ta)

when 1 ≤ i <
m, bi+1 = 1 and r = (pi, T1) −→ (pi+1, T2) ∈ R,

and both
a

and 3 have arity 0.

Using GI we build a regular representation of the independent
sub-trees generated during a run with a given interface.

DEFINITION 7.3 (AI ). Given a senescent GTRS G = (P,Σ,R)
with lifespan k, an r ∈ R and sequence (p1, b1) , . . . , (pm, bm)

with m ≤ k we construct GI as above, and then via Lemma 3.1
(Parikh Image of Weakly Extended sGTRS) a regular automaton
AI such that there is a run

((p1, b1, 1), T1)
w−→ ((pm, bm,m), T2)

where T1 ∈ L(T3) and T2 is any tree if and only if PARIKH(w) ∈
PARIKH(AI).

7.4 Reduction to Reset Petri-Nets
7.4.1 Interface Summaries
We reduce the control state reachability problem for senescent
GTRSs to the coverability problem for reset Petri nets. To do so,
we construct a reset Petri net whose control states hold a sequence
(p1, b1) . . . (pm, bm) where m ≤ k. It will also have a set of
counters

XG = {xr
i | 1 ≤ i ≤ m} .

Let π : XG → N be a valuation of the counters. We will refer
to a tuple

((p1, b1) , . . . , (pm, bm), π)

as an interface summary. Such a summary will summarise the
combination of a number of interfaces. Each pi indicates that the
ith next control state is pi (with p1 being the current control state),
and bi will indicate whether an independent sub-tree has already
been generated to account for the control state change. The value
of each counter xr

i indicates how many independent sub-trees are
generated using rule r between the ith and (i + 1)th control state
by the combination of the thread interfaces in the summary.

There are two operations we perform on the interface summary:
addition and resolution.

Addition Addition refers to the addition of a thread interface to a
given summary. Suppose we have a summary

((p1, b1) , . . . , (pm, bm), π)

where π gives the valuation of the counters. Now suppose we want
to add to the summary the effect of an independent sub-tree with
interface (

p′1, b
′
1, η⃗1

)
. . .

(
p′m′ , b′m′ , η⃗m′

)
.

We require (p1, b1) . . . (pm, bm) and (p′1, b
′
1) . . . (p

′
m′ , b′m′) to be

compatible. There are two conditions for this.

1. They must agree on their control states. That is, for all 1 ≤ i ≤
min(m,m′) we have pi = p′i.

2. At most one independent sub-tree can effect a control state
change. That is, for all 1 ≤ i ≤ min(m,m′) we do not have
bi = b′i = 1.

We first define the addition only over the states and bits, i.e.

(p1, b1) , . . . , (pm, bm) ++
(
p′1, b

′
1

)
. . .

(
p′m′ , b′m′

)
when the two are compatible to be, when m ≤ m′,(

p1, b
′′
1

)
. . .

(
pm, b′′m

) (
p′m+1, b

′
m+1

)
. . .

(
p′m′ , b′m′

)
and when m > m′,(

p1, b
′′
1

)
. . .

(
pm′ , b′′m′

)
(pm′+1, bm′+1) . . . (pm, bm)

where b′′i = 1 if bi = 1 or b′i = 1, and otherwise b′′i = 0.
Then, the addition,

(β, π) ++
(
p′1, b

′
1, η⃗1

)
. . .

(
p′m′ , b′m′ , η⃗m′

)
when the two are compatible is (β′, π′) where

β′ = β ++
(
p′1, b

′
1

)
. . .

(
p′m′ , bm′

)



and for all r and i,

π′(xr
i ) =

{
π(xr

i ) + ηr
i i ≤ m′

π(xr
i ) i > m′ .

That is, we add the sub-trees generated to the appropriate counters
of the Petri net.

Resolution Addition of interfaces to the summary handles the
evolution of new independent sub-trees generated on the run be-
tween the current control state p1 and the next p2. Once all such
trees have been accounted for, we can perform resolution. That is,
we remove the completed first round from the summary. That this
can only be done if b2 = 1, that is, some independent sub-tree has
taken responsibility for the change to the next control state p2. We
thus define

RES(((p1, b1) , (p2, b2) , . . . , (pm, bm), π))
= ((p2, b2) , . . . , (pm, bm), π′)

when b2 = 1 and where

π′(xr
i ) =

{
π(xr

i+1) 1 ≤ i < m

0 i = m .

7.4.2 Reduction to Coverability
We define a reset Petri-net that has a positive solution to the cov-
erability problem iff the control state reachability problem for the
given senescent GTRS G is also positive.

For technical convenience, we assume r1 = (psrc, T1) −→
(psrc, T2) where T1 accepts no trees and T2 accepts only the initial
tree Tsrc. The assumption of such a rule does not allow more runs
of G since T1 matches no trees.

Initial Configuration The Petri-net begins in a configuration
((psrc, 1), πsrc) where

πsrc(x
r
i ) =

{
1 if i = 1 and r = r1
0 otherwise .

This means that the Petri net is simulating a configuration of the
senescent GTRS where the control state is psrc and the only inde-
pendent sub-tree that can be generated is Tsrc.

Addition of New Interfaces The Petri net can simulate execution
as follows. It will non-deterministically guess the independent sub-
tree interface of the initial tree during a satisfying run of the reach-
ability problem. It will do this by subtracting 1 from the variable
xr1
1 then guessing a sequence (p1, b1) . . . (pm, bm). Since there

are only a finite number of possibilities for such a sequence, the
guess can be made in the control state. To fully guess an interface,
however, the Petri net must also guess the values of η⃗i for each
1 ≤ i ≤ m. To do this it will simulate (in its control state) the
automaton A generated by Definition 7.3 (AI ), but, instead of out-
putting a symbol (r, i), it will increment the counter xr

i .
In the manner described above, the Petri net can update its

control state and counter values to perform an addition

((p1, b1) , . . . , (pm, bm), π) ++
(
p′1, b

′
1, η⃗1

)
. . .

(
p′m′ , b′m′ , η⃗m′

)
for the interface summary it is currently storing in its control state
and counters, and a guessed new interface generated from some
available independent sub-tree.

Resolving The Current Interface Summary Given a configura-
tion

((p1, b1) , . . . , (pm, bm), π)

the Petri net can non-deterministically decide whether to add an-
other interface to the summary, or (if b2 = 1) to perform a resolu-
tion step.

To perform resolution the Petri net first updates the control state
to obtain the sequence (p2, b2) , . . . , (pm, bm) (that is, deletes the
first tuple), and then updates its marking to

π′(xr
i ) =

{
π(xr

i+1) 1 ≤ i < m

0 i = m .

It does this incrementally from i = 1 to i = m. For each given i,
the first step is to use reset transitions to zero each counter xr

i . Then,
when i < m, it performs a loop for each counter, decrementing
xr
i+1 and incrementing xr

i . It repeats this loop a non-deterministic
number of times before moving to the next counter. Note that this is
not a faithful implementation of the resolution operation since the
Petri net cannot ensure that it transfers xr

i+1 to xr
i in its entirety,

merely that xr
i ≤ xr

i+1. However, “forgetting” the existence of
independent sub-trees merely restricts the number of runs and does
not add new behaviours. Hence such an inaccuracy is benign (since
it is still possible to transfer all sub-trees). The reset operation is
used to ensure that no leakage occurs between each i.

Formal Definition We give the formal definition of the reset
Petri net NG that simulates G with respect to the control state
reachability problem. For each β = (p1, b1) . . . (pm, bm) with
1 ≤ m ≤ k and rule r ∈ R, let

Ar
β =

(
Qr

β ,ΓI ,∆
r
β , q

r
β ,

{
fr
β

})
be the regular automaton obtained via Definition 7.3 (AI ) and
without loss of generality assume Ar

β has the unique initial state qrβ
and final state fr

β . We assume for all r and β that Ar
β have disjoint

state sets.

DEFINITION 7.4 (NG). Given the senescent GTRS G (with nota-
tion and assumptions as described in this section), we define the
reset Petri net NG = (QG, XG,∆G) where XG is defined above
and

S = {(p1, b1) . . . (pm, bm) ∈ (P × {0, 1})m | 1 ≤ m ≤ k }

QG = S ∪
{
(β, q) ∈ S ×Qr

β′ | β′ ∈ S ∧ r ∈ R
}

∪{�β
i | β ∈ S ∧ 1 ≤ i ≤ k

}
and ∆G = ∆ADD ∪∆RES where ∆ADD is the set{

β −−−−−−→
decr(xr

1)

(
β1, q

r
β2

) ∣∣∣∣ r ∈ R ∧ β, β1, β2 ∈ S ∧
β1 = β ++ β2

}
∪{

(β, q) −−−−−−→
incr(xr

i )
(β, q′)

∣∣∣∣∣ β ∈ S ∧ ∃r′, β′ s.t.

q
(r,i)−−−→ q′ ∈ ∆r′

β′

}
∪{(

β, fr
β′
)
−→
∅

β | r ∈ R ∧ β, β′ ∈ S
}

and ∆RES is the setβ −→̃
o

�β′

1

∣∣∣∣∣∣
β, β′ ∈ S ∧ β = (p1, b1)β

′ ∧
β′ = (p2, b2) . . . (pm, bm) ∧

b2 = 1 ∧ õ = {res(xr
1) | r ∈ R}

 ∪{
�β

i −−−−−−−−−−−−−−−→
{decr(xr

i+1),incr(xr
i )}

�β
i | β ∈ S ∧ 1 ≤ i < k

}
∪{

�β
i −→̃

o
�β

i+1

∣∣∣∣ β ∈ S ∧ 1 ≤ i < k ∧
õ = {res(xr

i+1) | r ∈ R}

}
∪{

�β
k −→

∅
β | β ∈ S

}
.

Note that the size of NG is dominated by the size of the regular
automata Ar

β . Thus, the size of NG is triply exponential in the size
of G. The following (correctness) lemma is proved in the arXiv
article [21].



LEMMA 7.1 (Correctness of Reduction). For a given senescent
GTRS G with lifespan k, control states psrc and psnk, and tree
Tsrc, there is a lifespan restricted run (psrc, Tsrc) → · · · →
(psnk, T ) for some T of G iff there is a run ((psrc, 1), πsrc) −→∗

((psnk, 1), π) of NG for some π0 ≤ π.

8. Conclusion
We introduced a sub-class of ground tree rewrite systems with state
inspired by scope-bounded pushdown systems. We showed that
control state reachability is inter-reducible with coverability of re-
set Petri-nets, and is thus Fω-complete. This is a surprising increase
in complexity compared to scope-bounded pushdown systems, for
which reachability is PSPACE-complete. Thus, we obtain a natural
model that captures a rich class of behaviours while maintaining de-
cidability. Moreover, since extending the control state reachability
problem to the regular reachability problem results in undecidabil-
ity, we know we are close to the limits of decidability.

For future work, we would like to encode additional classes
of multi-stack pushdown systems (e.g. ordered, phased-bounded,
relaxed notions of scope-bounding, dynamic thread creation) into
senescent GTRS, which may lead to generalisations of our model.
Furthermore, tools such as FAST [8] and TREX [2] show that high
(even undecidable) complexities do not preclude successful model
checkers. We would like to study practical verification algorithms,
which may use the aforementioned tools as components.
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