Properly coloured Hamiltonian paths in edge-coloured complete graphs

J. Bang-Jensen^{*} G. Gutin[†] A. Yeo^{\ddagger}

Abstract

We consider edge-coloured complete graphs. A path or cycle Q is called properly coloured (PC) if any two adjacent edges of Q differ in colour. Our note is inspired by the following conjecture by B. Bollobás and P. Erdős (1976) : if G is an edge-coloured complete graph on n vertices in which the maximum monochromatic degree of every vertex is less than $\lfloor n/2 \rfloor$, then G contains a PC Hamiltonian cycle. We prove that if an edge-coloured complete graph contains a PC 2-factor then it has a PC Hamiltonian path. R. Häggkvist (1996) announced that every edge-coloured complete graph satisfying Bollobás-Erdős condition contains a PC 2-factor. These two results imply that every edge-coloured complete graph satisfying Bollobás-Erdős condition has a PC Hamiltonian path.

1 Introduction

Properly coloured Hamiltonian paths and cycles in edge-coloured graphs have applications in genetics (cf. [7, 8, 9]) and social sciences (cf. [6]) besides a number of applications in graph theory and algorithms. A path or cycle Q is called *properly coloured* (abbreviated to PC) if any two adjacent edges of Q differ in colour.

In our note, we consider edge-coloured complete graphs. We use the notation K_n^c to denote a complete graph on n vertices, each edge of which is coloured by a colour from the set $\{1, 2, \ldots, c\}$. Our note is inspired by the following conjecture due to B.

^{*}Dept of Maths and Computer Science, Odense University, Odense DK-5230, Denmark

[†]Dept Maths and Stats, Brunel University, Uxbridge, Middlesex, UB8 3PH, U.K.

[‡]Dept of Maths and Computer Science, Odense University, Odense DK-5230, Denmark

Bollobás and P. Erdős [4]: if $\Delta(K_n^c) < \lfloor n/2 \rfloor$ then K_n^c contains a PC Hamiltonian cycle. Here $\Delta(K_n^c)$ is the maximum number of edges of the same colour adjacent to a vertex of K_n^c .

B. Bollobás and P. Erdős [4] managed to prove that $\Delta(K_n^c) < n/69$ implies the existence of a properly coloured Hamiltonian cycle in K_n^c . This result was improved by C.C. Chen and D.E. Daykin [5] to $\Delta(K_n^c) < n/17$ and by J. Shearer [11] to $\Delta(K_n^c) < n/7$. Recently, N. Alon and G. Gutin [1] proved that for every $\epsilon > 0$ there exists an $n_0(\epsilon)$ so that for each $n > n_0(\epsilon)$, K_n^c satisfying $\Delta(K_n^c) \le (1 - \frac{1}{\sqrt{2}} - \epsilon)n$ has a PC Hamiltonian cycle.

In our note the following result is shown:

Theorem 1.1 If K_n^c contains a properly coloured 2-factor, then it has a properly coloured Hamiltonian path.

Another sufficient condition for K_n^c to contain a PC Hamiltonian path was found by O. Barr [3]: every K_n^c without monochromatic triangles has a PC Hamiltonian path. The following necessary and sufficient conditions for the existence of a PC Hamiltonian path in K_n^c were conjectured in the survey paper [2].

Conjecture 1.2 A K_n^c has a PC Hamiltonian path if and only if K_n^c contains a collection F consisting of a PC path P and a number of cycles $C_1, ..., C_t$ $(t \ge 0)$, each PC, such that the members of F are pairwise vertex disjoint and $V(P \cup C_1 \cup ... \cup C_t) = V(K_n^c)$.

Theorem 1.1 provides some support to the conjecture. In [2], the conjecture was verified for the case of two colours (c = 2). The proof in [2] is indirect and uses the corresponding result on Hamiltonian directed paths in bipartite tournaments. For the sake of completeness, we give a short direct proof of the case c = 2 of Conjecture 1.2 in the next section.

R. Häggkvist [10] announced a non-trivial proof of the fact that every edgecoloured complete graph satisfying Bollobás-Erdős condition contains a PC 2-factor. Theorem 1.1 and Häggkvist's result imply that every edge-coloured complete graph satisfying Bollobás-Erdős condition has a PC Hamiltonian path.

For a set of vertices W of K_n^c and a vertex x not in W, we denote by xW the set of edges between x and W, i.e. $xW = \{xy : y \in W\}$; if all the edges of xW are of the same colour k, then $\chi(xW)$ denotes the colour k.

2 Proofs

Proof of Theorem 1.1:

Let $C_1, C_2, ..., C_t$ be the cycles of a PC 2-factor F in K_n^c . Let F be chosen so that, among all PC 2-factors of K_n^c , the number of cycles t is minimum. We say that C_i dominates C_j $(i \neq j)$ if, for every edge xy of C_i , there exists an edge between xand C_j and an edge between y and C_j whose colours differ from the colour of xy. Construct a digraph D as follows. The vertices of D are 1, 2, ..., t and an arc (i, j)is in D $(1 \leq i \neq j \leq t)$ if and only if C_i dominates C_j .

First we show that D is semicomplete, i.e. every pair of vertices of D are adjacent. Suppose this is not so, i.e. there exist vertices i and j which are not adjacent. This means that neither C_i dominates C_j nor C_j dominates C_i . Thus C_i has an edge xysuch that $\chi(xV(C_j)) = \chi(xy)$ and C_j has an edge uv such that $\chi(uV(C_i)) = \chi(uv)$. It follows that $\chi(xy) = \chi(xu) = \chi(uv) = \chi(xv) = \chi(uy)$. Therefore, we can merge the two cycles to obtain a new properly coloured one as follows: delete xy and uv, and append xv and yu. However, this is a contradiction to t being minimum. Thus, D is indeed semicomplete.

Since D is semicomplete, it follows from the well-known Redei theorem that D has a Hamiltonian directed path: $(i_1, i_2, ..., i_t)$. Without loss of generality we may assume that $i_k = k$ for every k = 1, 2, ..., t. In other words, C_i dominates C_{i+1} for every $1 \le i \le t-1$.

Let $C_i = z_1^i z_2^i \dots z_{m_i}^i z_1^i$ $(i = 1, 2, \dots, t)$. As C_1 dominates C_2 , without loss of generality, we may assume the labelings of the vertices in C_1 and C_2 are such that $\chi(z_{m_1}^1 z_1^1) \neq \chi(z_1^1 z_2^2)$. Since the edges $z_1^2 z_2^2$ and $z_2^2 z_3^2$ have different colours, without loss of generality we may assume that $\chi(z_2^1 z_3^2) \neq \chi(z_1^1 z_2^2)$. Analogously, for every $i = 1, 2, \dots, t - 1$, we may assume that $\chi(z_{m_i}^i z_1^i) \neq \chi(z_1^i z_2^{i+1}) \neq \chi(z_2^{i+1} z_3^{i+1})$. Now we obtain the following PC Hamiltonian path:

$$z_{2}^{1} z_{3}^{1} \dots z_{m_{1}}^{1} z_{1}^{1} z_{2}^{2} z_{3}^{2} \dots z_{m_{2}}^{2} z_{1}^{2} \dots z_{2}^{t} z_{3}^{t} \dots z_{m_{t}}^{t} z_{1}^{t}.$$

Proof of Conjecture 1.2 for the case c = 2:

It is easy to see that to prove our claim it suffices to show that if K_n^2 has a PC path P and a PC cycle C such that $V(P) \cap V(C) = \emptyset$ and $V(P \cup C) = V(K_n^2)$, then K_n^2 contains a PC Hamiltonian path.

Assume that K_n^2 has no PC Hamiltonian path.

Let $P = x_1 x_2 \dots x_k$ and $C = y_1 y_2 \dots y_m y_1$. If there exists $i \in \{1, 2, \dots, m\}$ such that $\chi(x_1 x_2) \neq \chi(x_1 y_i)$, then at least one of the following two Hamiltonian paths is properly coloured: $y_{i+1}y_{i+2}\dots y_m y_1\dots y_i x_1 x_2\dots x_k$; $y_{i-1}y_{i-2}\dots y_1 y_m y_{m-1}\dots y_i x_1\dots x_k$. Thus, we conclude that $\chi(x_1 x_2) = \chi(x_1 V(C))$. Analogously, we can prove that $\chi(x_k V(C)) = \chi(x_{k-1} x_k)$.

Suppose that we have proved that $\chi(x_{j-1}x_j) = \chi(x_{j-1}V(C))$ for some $j \in \{2, ..., k-1\}$. Then $\chi(x_jx_{j+1}) = \chi(x_jV(C))$ holds. Indeed, assume that there is $i \in \{1, ..., k\}$ such that $\chi(x_jx_{j+1}) \neq \chi(x_jy_i)$. As c = 2, we may assume without loss of generality that $\chi(x_{j-1}x_j) = \chi(y_{i-1}y_i) = 1$. Again, since c = 2, we obtain that $\chi(x_jy_i) = \chi(x_{j-1}y_{i-1}) = 1$. Thus, $x_1...x_{j-1}y_{i-1}y_{i-2}...y_1y_m...y_ix_jx_{j+1}...x_k$ is a PC Hamiltonian path in K_n^2 ; a contradiction.

Now, by induction, we conclude that $\chi(x_{k-1}x_k) = \chi(x_{k-1}V(C))$. Recall that $\chi(x_kV(C)) = \chi(x_{k-1}x_k)$. Without loss of generality, assume that $\chi(y_1y_2) = \chi(x_{k-1}x_k)$. Hence, $x_ky_2y_3...y_my_1x_{k-1}x_{k-2}...x_1$ is a PC Hamiltonian path in K_n^2 ; a contradiction.

3 Acknowledgment

We would like to thank Roland Häggkvist for interesting and stimulating discussions on the topic of the paper.

References

- [1] N. Alon and G. Gutin, Properly colored Hamilton cycles in edge colored complete graphs. To apppear in *Random Structures and Algorithms*.
- [2] J. Bang-Jensen and G. Gutin, Alternating cycles and paths in edge-coloured multigraphs: a survey. *Discrete Math.* 165-166 (1997) 39-60.
- [3] O. Barr, Properly coloured Hamiltonian paths in edge-coloured complete graphs without monochromatic triangles. To appear in *Ars Combinatoria*.
- [4] B. Bollobás and P. Erdős, Alternating Hamiltonian cycles. Israel J. Math. 23 (1976) 126-131.
- [5] C.C. Chen and D.E. Daykin, Graphs with Hamiltonian cycles having adjacent lines different colors. J. Combin. Th. Ser. B 21 (1976) 135-139.

- [6] W.S. Chow, Y. Manoussakis, O. Megalakaki, M. Spyratos and Z. Tuza, Paths through fixed vertices in edge-colored graphs. Preprint U. de Paris-Sud, Orsay, L.R.I., no. 836, 1993.
- [7] D. Dorninger, On permutations of chromosomes, in: Contributions to General Algebra, Vol. 5 (Verlag Hölder-Pichler-Tempsky, Wien, and Teubner-Verlag, Stuttgart, 1987) 95-103.
- [8] D. Dorninger, Hamiltonian circuits determining the order of chromosomes. Disc. Appl. Math., 50 (1994) 159-168.
- [9] D. Dorninger and W. Timischl, Geometrical constraints on Bennett's predictions of chromosome order. *Heredity*, 58 (1987) 321-325.
- [10] R. Häggkvist, A talk at Intern. Colloquium on Combinatorics and Graph Theory at Balatonlelle, Hungary, July 15-19, 1996.
- [11] J. Shearer, A property of the colored complete graph. Discrete Math. 25 (1979) 175-178.