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Estimating the future risk of a portfolio is one of the basic tasks of financial analysis.
Portfolio risk estimation iswidely applied, for examplein:

e Estimating VAR for management control of risk
e Designing portfolios to track an index benchmark
e Portfolio optimisation

The most basic approach is to use the observed, historical risk of a portfolio in the
past as an estimate the portfolio's risk in the future. But using historic risk as a direct
estimate of future risk is not valid in any of these applications, and leads to a
systematic and potentially disastrous underestimate of risk.

We will show that this underestimate is due to selection bias. Explaining the
mechanics of the problem allows us to suggest solutions -- and quantify what can
happen if the problem isignored. This article considers techniques that are applicable
to all asset classes. However for simplicity we only consider portfolios of simple
securities, not options.

An Introduction to Selection Bias

Selection bias can affect any type of statistical estimation, so let's discussit in a non-
technical environment, a golf tournament.

To estimate somebody's future average score on a course, we can have him play afew
rounds: his average score is then an unbiased estimate of hislikely scores on future
rounds. Unbiased means that estimates made in this way are not systematically either
too high or too low.

Suppose we organise a golf tournament in which 100 people play around. Is the score
of the tournament winner a reasonable estimate of his future scores? If the field
consists of players of similar abilities, then the winner is likely to be one of the better
players, but he will also have to be lucky on the day. The winner's scoreislikely to be
above his personal average, for if he had not been lucky, he would not have won. This
is selection bias. We have selected a player based on how good his scoreis, so his
score is abiased estimate of histypical scores.

The amount of selection biasis affected by:



e Thenumber of competitors
The more competitors, the luckier the winner will be. If the entire golfing
population of the world were to play in atournament, the professionals would, as
agroup, do well, but it would be unlikely that a professional would win. Having
so many competitors would ensure that some lucky unknown won the tournament
after playing the best round of hislife.

e Thelength of the competition
If the competitors' scores are calculated from many rounds of play, rather than just
one, each competitor's average score will be a more precise estimate of his ability,
so that the bias will be less. For example, if we wereto force al the world's
golfersto play, say, thirty rounds of golf instead of just one, then it islikely that
the winner of this tournament would be a top professional.

e Thedistribution of ability among the competitors
The narrower the range of players' true abilities, the more selection bias there will
be. There are two extreme cases. If all competitors have exactly the same level of
ability, then the difference of the winner's score from the average of all
competitorsis entirely selection bias. If, on the other hand, one competitor is
sufficiently better than the others to be almost sure of winning, then he does not
need to be lucky to win, and there will be no selection bias.

Selection Biasin Risk Estimation

We have shown that, when you select an individual on the basis of a score, it is not
safe to use the score he achieved as an estimate of future scores. In risk estimation,
exactly the same reasoning tells you that if you optimise a portfolio for minimum risk
(equivalent to selecting it from among all the other possible portfolios), your estimate
of itsrisk will be biased downwards. The portfolio will be riskier than you believe.

L ets examine this argument more closely. The analogy between golf and risk
estimation (aside from the damage done by areally wild swing) is that each possible
portfolio isa"golfer", and the portfolio's "tournament score" isits level of realised
risk on the historic data. To be picturesque, we may imagine running a tournament by
explicitly writing down alist of competing portfolios, and after each day of historic
data, incrementing the score of each portfolio by its squared return so that we build up
an estimate of its variance. The tournament ends when the historic datais used up,
and the winning portfolio is chosen to be the one with the smallest score -- that is, the
portfolio with the lowest historic volatility.

Asin the golf tournament, the risk of the winning portfolio will be an underestimate
of its future risk, because the winning portfolio must not only be low risk, but it also
needs to be "lucky" in the sense that it has alower than usual scorein the particular
historic data used. Just as in the golf tournament, the size of the estimation error will
depend on the number of possible portfolios implicitly entered for the tournament, the
amount of historic data used, and the spread of underlying risks among the portfolios.

The second part of this paper will discuss the magnitude of the possible errors, and the
steps that can be taken to avoid them, but first it is worth pointing out just how



widespread this problem is. The argument above applies only to optimised portfolios,
and most practitioners will be familiar with the problem in this context. Surely risk
estimation on unoptimised portfolios will be immune?

Portfolio Risk Control

Unfortunately, unoptimised portfolios are very, very rare. Few fund managers have
such faith in efficient markets that they pick stocks at random -- nor do we advocate
this. Real portfolios tend to have been selected with some purpose in mind. Frequent
examples are to "be conservative", to "avoid speculative stocks' or even just to "look
sensible”. All of these reasonable motivations involve some selection for low historic
risk, and consequently the historic risk of the resulting portfolio islikely to be an
under-estimate of its future risk.

Selection is present in aimost al portfolio construction, and the threat of selection bias
means that we should consider rather carefully how much selection is going on
because the stronger the selection, the stronger the resulting biasis likely to be. In
some cases, VAR models will be subjected to exceptionally strong selection by the
traders who operate within them.

Company-Level VAR Control

A (modestly) cynical view of management risk control isthat it exists to protect the
interests of the firm against the interests of individual traders. Their interests differ
when traders are remunerated with bonuses that are in effect call options on their book
profits. Under these circumstances, traders have an incentive to increase both their
expected return and their position risk, since the call is more valuable with higher
volatility. The management risk control system exists to ration the amount of risk that
each trader can take, so that they concentrate on the shared goal maximising expected
returns.

Unfortunately, the control system isonly as good asits risk estimates. Traders will
seek to maximise their expected return within their VAR limit, by putting large
amounts of capital into any trades for which estimated returns are high but VAR is
low. Individual traders' incentive to maximise personal return subject to risk can
subject the company's portfolio to intense optimisation that is not explicitly part of the
organisation's goals, but is an implicit result of the trader reward structure.

Implicit optimisation acts rather like a mechanical portfolio optimiser, but there are
several features of the process that make it a particularly dangerous form of portfolio
optimisation.

e Sinceitisimplicit rather than explicit it is hard to see in operation until alarge
loss is made. However, because the incentives are strong we can be rather
confident that it is a common occurrence.

e Mechanical optimisers seek only to maximise arisk-averse utility function.
Traders on the other hand have, through their call option, an incentive to be risk
seeking so theimplicit utility function may not be risk averse.



e |f any trades carry too low a VAR tariff, all the company's traders will tend to take
on exposure to them. Thiswill lead to the management nightmare of correlated
risks appearing across many nominally separate books. This has potentially dire
implications for the whole risk estimation process.

Never underestimate the abilities of your traders, or the damage an able trader can

inflict.

This provides a golden rule for managerial risk control systems:

Traders position limits should never be stated purely asalimit on VAR
estimated from historic risk.

In practice, organisations have lots of other controls as well. Simple constraints like
restricting the geographical range, or range of security which can be held in a book
make it much less likely that the same bets will appear in multiple books. The role of
experience and common senseis even greater. However, it isimportant to point out
that the current fashion for big, formal, all-embracing VAR systems would rapidly
lead to disaster if it was allowed to replace, rather than support, these existing
controls.

Even though these other controls act to limit the impact of the implicit optimisation,
its inevitable presence means that there is aways arisk that the company VAR
estimate will be too low unless steps are taken to alow for this effect.

Thisline of reasoning provides strong support for the Basel committee's
recommendation that any estimate of risk based on internal risk models must have a
substantial safety margin added. Past validation or backtesting of an internal risk
model cannot guarantee that the combination of selection bias and implicit
optimisation will not invalidateit in the future.

The Basel Committeeisright

Conclusion

So far we have shown that any practical estimate of future risk islikely to suffer from
selection bias. The conclusion -- that once amodel has been estimated, some
allowance has to be made for worse performance out of sample -- should be familiar
to every practitioner, but by making the reasoning explicit we can begin to quantify
the severity of the problem and provide a solution.

The similarity between mechanical portfolio optimisation and the implicit
optimisation carried out by traders suggests that, to be conservative, we should treat
every risk estimate as cautiously as if the portfolio had been optimised for minimum
risk.

For theworst case of selection bias, examine a fully optimised portfolio.

If a portfolio optimised using the risk-estimation system has out-of-sample volatility
similar to the predicted volatility, selection bias will not be a problem. If out-of



sample volatility is asubstantial factor higher, then selection bias may inflate
experienced volatility by up to this factor. This approach will be developed in the next
two articles.

To Follow:
We will use the approach of examining optimised portfolios to:

1) Show how selection bias depends on the three critical factors (amount of data,
number of aternatives, distribution of risks).

2) Construct three examples (two synthetic, one real-life) that demonstrate the real -
life severity of the problem.

3) Provide atest that can be applied to the covariance matrix associated with any
VAR model to show how vulnerableit isto selection bias.

4) Provide asimple and widely applicable method for limiting the potential damage.

5) lllustrate this technique with the three examples introduced earlier.



A Disaster Waiting to Happen: Modelling and Analysis

In the first article we introduced the concept of selection bias and showed that it is
liable to corrupt any practical estimate of future risk. The concept of implicit
optimisation was introduced to suggest that most real-life portfolios have been
optimised to some unknown degree, and that this poses a significant risk to all
enterprise-wide VAR models.

In this article we examine in a quantitative way portfolios that have been optimised
for minimum risk, which are the worst case. Rather than relying on extensive maths
we will construct three examples that can be duplicated in any statistical package or in
a spreadsheet so that the reader can test these ideas.

We will start with an artificial example, that of constructing a hedged long-short
portfolio of uncorrelated securities. This permits us to make some general statements
about how bias varies with number of stocks and length of data.

This example is chosen purely to make the model simple; it isvery far from being a
worst case. The same problems lurk, hidden, in al portfolios of all securities and
deviations from normality, missing data and autocorrelation all tend to exacerbate the
problem. The second example generalises the first by including known but different
volatilities, and the third example uses real data on currencies to show the problem in
asimple but realistic context.

In the final part of the article we will deal with methods that can be used to diagnose
and improve the situation with the emphasis on simple, practical steps rather than
theoretical derivation.

Modelling: computational experiments
A) Independent Assets

We have stated that the severity of selection bias increases with the number of
available choices (the degree of selection) and decreases with the amount of data. We
want to examine the strength of these effects. Is the problem serious with practical
amounts of data?

We generated artificial random returns data for various numbers of securities with the
same volatility and uncorrelated with each other. Such datais particularly easy to
generate, and we recommend the sceptical reader to try the following experiment.

One advantage of artificial dataisthat we can generate as much as we need, and can
examine many different sizes of problem. We chose to examine the range of 5 to 50
assets, with a number of observations ranging from 1 to 50 times the number of
assets. We can also calculate the theoretical volatility of any portfolio, and any
deviation from thiswill be due to the finite data available for estimation. To permit



comparison of portfolios with different numbers of assets, we normalise the sum-of-
sguares position sizes to give all portfolios equal long-term volatility of 5%.

For each set of data we construct the covariance matrix and invert thisto find the
portfolios with maximum and minimum volatilities. Figure 1 is generated by
replicating each case many times and plotting the average values for both maximum
and minimum risk portfolios.

Fig 1: Volatility Estimates as a Function of Datato Assets Ratio

12%

10%

——Max 5
—#—Max 10
Max 20
Max 50
—*—Min5
—e—Min 10
—+—Min 20
Min 50
= = Theoretical

8%

6%

4%

2%

0% T
10 10.0 100.0

In practice we are only concerned with low-risk portfolios, for which the error is
almost independent of the number of assets involved. This permits us to construct
Figure 2, which shows quartiles of the ratio of out-of-sample to in-sample volatility
for the minimum risk portfolio.

Fig 2: Volatility Underestimate for Optimised Portfolios due to Finite Data
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There are three key conclusions from these graphs:

1) Low risk isproportionally wor se estimated than high risk

Perhaps the most ironic result of the demonstration is that the bias on estimates of
lowest risk are much worse than on estimates of high risk It is unfortunate that it is
precisely these hard-to-estimate low-risk portfolios that are of most practical interest.

2) The amount of historic data needed is proportional to number of assets.

If you have ten times as many data points as you have assets, selection bias leadsto an
average volatility underestimate of about 30%, which is not unreasonable in
comparison the other uncertainties of the risk-control process. However, if you use
only twice as many, selection biaswill probably lead to out-of-sample volatility being
2.5to 3.5times aslarge as you estimate. This result has been found to hold for much
more genera artificial cases including those with a shared "Market" factor, and APT
structure, and we believe it to be agood general guide. It tends, however, to be
optimistic with long-tailed and heteroskedastic distributions, since relatively few of
the observations make any significant contribution to the covariance and the effective
number of data pointsis often far lower than the total number.

3) Sufficient historic datais often unavailablein practice.

At first sight, arequirement of 10 data points per asset does not appear too demanding
since daily datais widely available, but there are pitfallsin using high-frequency data.
These problems are really outside the scope of this article, but it is worth pointing out
that daily data on less-liquid securities often exhibit substantial non-trading, bid-ask
bounce and other short-term effects that lead to substantial errorsif daily volatilities
are extrapolated to longer time-scales using the familiar sgrt(t) assumption.

Introducing another rule of thumb, if you are interested in forecasting on a certain
time-scale (for example 1 year) there are limited benefits to using data that is spaced
more closely than 1/10 of this time-scale (since shorter term effects are likely
dominate and closer points cease to be independent), or greater than 10x this time-
scale (since non-stationarity becomes a problem and older points cease to be
relevant). If we were to take these guides as hard limits then we would be limited to
100 independent and relevant data points per security -- so we could safely estimate
risk for optimised portfolios containing at most 10 securities!

This conclusion is over-pessimistic, but it should serve as awarning that any practical
optimisation involving hundreds of securities cannot be assumed to be immune from
selection bias simply because several years of daily data are available.



B) Known Unequal Volatilities

The simple example above cannot demonstrate the effect of the distribution of
volatilities since by construction they are all equal. Figure 3 was created by
constructing a covariance matrix for 10 assets that shared a substantial market factor
with a 20% volatility, and residual volatilities evenly spaced between 6 and 10%.
These theoretical volatilities are shown as the asymptotes to the right of the graph. We
sampled finite data from the covariance matrix to estimate these values for various
numbers of data points, giving riseto the curves to the left.

Fig 3: Egtimates of Unequal Volatilities
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Note how well-estimated the market factor is; there are no other factors of similar
volatility so thereislittle selection bias -- in terms of our golf metaphor, it isthe sole
professional in an amateur competition. By contrast, the 10% volatility is significantly
overestimated and the 6% volatility is underestimated, though for 100 or more data
points these effects become minor.

C) Real-World Example

With real-world data we do not have the luxury of access to infinite amounts of data,
S0 we cannot create charts based on multiple replications. However we can show the
practical effects by looking at in- and out-of-sample performance. Almost any group
of financial assets could be used for thisillustration, but we will use 5 years of
monthly dollar returns for 50 currencies so that we have 1.2 historical points per asset.
Such a covariance matrix would be appropriate for forecasting long-term foreign
exchange risks, and illustrates the practical problems of getting enough data. Though
for most of these currencies we would be comfortable with aweekly sampling rate,
the problem of relevance is particularly severe given the occasiona dramatic shiftsin
exchange-rate regimes.



Currency Portfolio SD

Weight
FRENCH FRANCS .525 12.2%
NORWEGIAN KRONER .380 11.8%
MALTESE POUNDS -.347 10.7%
SINGAPORE DOLLARS 278 4.1%
SWISS FRANCS -.181 12.9%
GREEK DRACHMAS -.179 11.3%
COLUMBIAN PESOS .176 12.7%
KOREA (SOUTH) WON 176 4.1%
PAKISTANI RUPEES -.175 7.7%
SWEDISH KRONER -.154 13.4%
BELG/LUX.CONVERTIBLE -.144 12.5%
GERMAN MARKS -.135 12.3%
IRISH PUNTS 135 12.4%
SPANISH PESETAS 127 13.9%
ISRAELI SHEKELS -.120 9.1%

This table shows the 15 largest positions in the minimum-risk portfolio -- that is the
portfolio with lowest dollar volatility. Only relative weights matter, so for
convenience we have set the sum of squares position sizeto 1.0. For reference the
volatility of the currency over the in-sample period is aso shown. The portfolio is
visibly "Hedged" in some sense, and several obvious sources of risk are at low levels:

B Net US Dollar exposureisonly 0.146,

B Net European exposure is only -0.022,

B Thefive countries with volatility greater than 15% are amongst the

smallest 12 position sizes.

However the enormous positions in French Franc and Norwegian Kroner do not ook
low risk, even hedged with a basket of other European currencies. The concentration
of these positions makes the in-sample estimate of volatility, 0.26%, seem
ridiculously low.

Volatility for Lowest and Highest Risk Portfolios

Lowest Highest
In-sample 0.26% 51%
Out-of-sample 7.43% 52%

In fact 0.26% is a disastrous 25x underestimate out-of-sample. The chart shows the
12-month lagged volatility for the optimised portfolio with months 0-47 in-sample
and 60-97 fully out-of-sample. The unrepresentative nature of the in-sample period is
very clear.

Recall what this means in practice. If you estimate the risk of your current positions
using this historic matrix and your positions have been selected for low risk, then you
will underestimate the risk of the position by an unknown factor of up to 25. This
should worry you even if you believe that the degree of selection has been modest.



Fig 4: In- and Out-of-Sample Volatility
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For comparison, the chart also shows the volatility of the most risky portfolio on the
right-hand axis. Though it is always much riskier than the hedged portfolio, thein-
and out-of-sample periods have similar volatilities. Selection biasis aminor problem
for the most risky portfolio, with no significant difference between in- and out-of -
sample volatility.

Thisexample is small enough to replicate in a spreadsheet. Once data has been input,
spreadsheet functions can be used to construct the covariance matrix and optimise a
portfolio for minimum risk. The detail results will of course vary depending on your
choice of assets and time periods, but the general conclusions hold for amost any
similar group of assets.

Conclusion

These examples show that selection biasis asignificant problem in realistic optimised
portfolios. To avoid it when there are hundreds of assets in the optimisation, several
thousands of independent data points are required. High-frequency data must be used
with caution unless all assets are highly liquid, and old data is suspect due to changes
of regime.

It was argued in the first section of the article that most practical portfolios have been
subjected to some implicit optimisation. Since it is hard to estimate how extensive
optimisation has been, it is conservative to |ook at the worst case, that of complete
unconstrained optimisation. These examples suggest that selection bias will usualy be
asignificant threat in practice. The practical example in which the volatility of an
optimised portfolio is underestimated by twenty-five timesis severe, but not
unreasonabl e.

Fortunately, as well asindicating the severity of the problem the analysis of optimised
portfolios also suggests steps to improve the situation in practice. Thiswill be the
subject of the final section of thisarticle.



A Disaster Waiting to Happen: Prevention!

In the first part of this article we introduced the concept of selection bias and showed
that it isliable to corrupt any practical estimate of future risk. This was demonstrated
for optimised portfolios, and the concept of implicit optimisation was introduced to
show that most real-life portfolios are affected and that this poses a significant risk to
all enterprise-wide VAR models.

In the second part we examined both artificial and real-life examples to show that the
problem of selection bias can be serious in practice and to show how it varies with the
number of assets, length of dataand distribution of volatilities.

In this, the final part of the article we will use the results of parts 1 and 2 to suggest
methods that can be used to diagnose and improve the situation. Our approach isto
suggest arange of ssmple, practical steps rather than to give a unified theoretical
treatment. Thisis because the theory would have to deal with abstracted and idealised
cases, with the attendant risk that when it came to be applied the theoretical
assumptions would not hold. Risk control isadiscipline that demands conservatism
and robustness above all other considerations so we have a strong preference for
simple techniques.

Diagnosis. Examinethe Spectral Volatilities

Somewhere inside every risk-estimation process lurks a covariance matrix. It may be
estimated directly from historical data. It may be estimated via an exogenous factor
model asin one of the BARRA commercial packages, or viaan APT approach which
contains a limited number of unspecified factors. There are limitless variations on the
theme of estimation to handle financial data features such asilliquidity, non-
normality, heteroskedasticity, shocks and non-stationarity. The test of a good
estimation processisits ability to handle these features.

Rather than attempt to provide a compl ete estimation package, we are going to
describe how to check the extent to which the covariance matrix constructed by your
existing package is prone to selection bias. It isfar simpler to describe the test than to
construct the theoretical derivation, so we provide the method first:

Extract the minimum spectral value of the covariance matrix. This
isthevariance of the minimum risk portfolio associated with the
covariance matrix. If it islower than you consider plausible, you
have a problem.

Argument
Technically, spectral value decomposition is amatrix decomposition that splits an N-

by-N square matrix into two orthonormal N-by-N matrices and a diagonal weight
matrix. Most textbooks on linear algebra include some material on it, though



practitioners may prefer the more practical approach of Numerical Recipes.
Practically, it is the decomposition that powers Principal Component Analysis. It
finds the largest contribution to variance, which isthe first principal component, and
then proceeds to find successive components in decreasing order of importance until
all the variance of the matrix has been explained.

In the financial case, decomposing the covariance matrix in this way constructs N
orthogonal (or uncorrelated) portfolios of known variance. The sum of squares of the
asset sizesin each portfolio sum to 1.0. Because of the orthogonality it is easy to
decompose any portfolio into alinear combination of the portfolios (which we term
"Spectral Portfolios" from their association with the decomposition), and its variance
will be the same linear combination of the "Spectral Variances".

If you wish to understand the covariance structure, it is much easier to work with
these spectral portfolios than the matrix itself. For example, if you plot the highest-
variance portfolio you will usually seethat it is exposed to an obvious market factor,
while the low-variance portfolios are all hedged.

In fact, extracting the minimum spectral variance is exactly the same as optimising a
portfolio for minimum variance subject to the constraint that the sum of squares of the
positions sum to 1.0, and we have shown that examination of this optimised portfolio
permits us to estimate the potential severity of selection bias. The formalism of
Spectral Vaue Decomposition is, however, going to be essential for constructing a
cure.

Returning to our prescription above, if you extract the minimum spectral volatility,
thisisthe volatility of the minimum risk portfolio. Isit reasonable? To answer this
guestion it may be helpful to look at the portfolio associated with it and to ask what
volatility you would expect out-of-sample. This may sound like arather tricky
guestion, but in practice the answer does not have to be very accurate. In the currency
example we examined earlier, the volatility of 0.26% was clearly wrong. It is often
the case that the minimum spectral volatility is effectively zero for portfolios no one
would regard asrisk free. In this case the problem of selection biasis serious whether
the true volatility is 1% or 10%.

The method usually provides an appropriate diagnosis. It is possible to construct
examples that require some further analysis -- for example by including assets which
span avery wide range of volatilities, or which include arbitrage relationships -- but
the principle of decomposing and then asking whether you believe what you seeis
applicableto all cases. That just leaves the problem of what to do about it.

Cure: Fix the Spectral Volatilities

In fact, this method of diagnosis suggests the cure. The key step isto remove the
aspects of the covariance matrix that we consider implausible. Again, the method is
simpler to describe than to justify, so the treatment comes first.

Extract the spectral values of the covariance matrix. If any are
lower than you consider plausible, increase them to a plausible
level and then re-compose the covariance matrix.



Argument

Proof of optimality is tedious and requires assumptions, such as normal distributions,
which are not met in the most important cases. We prefer various forms of hand
waving to suggest that this approach is reasonable. For a start, it is obvious that a
covariance matrix edited in thisway will pass the diagnostic test given above. We
also argue that this modification will usually be inoffensive. If you compare risk
estimates using the edited matrix to those using the raw matrix, you will find very
minor differences for most portfolios; all portfolios will appear to have the same risk
as before, or more, but unless the "plausible value" you entered is almost as large as
the largest spectral values, the change in most risk estimates will be minor due to the
sum-of-squares addition of volatility. If the value you have entered is small compared
to other sources of variance then its overall contribution will be minor.

The few portfolios significantly affected are those that, before, had implausibly low
estimated volatilities. The procedure of editing the spectral variances, which we refer
to as "Plausibility Editing" guarantees that no spectral portfolios have implausible
volatilities. It can easily be shown that al their l[inear combinations must also be
plausible. Since estimates are now all guaranteed to be larger than the smallest
volatility you provided, there will be little to fear from optimisation, implicit or
otherwise.

Finally, consider some other, competing technique that achieves asimilar matrix
conditioning by a different method. If, after it has been applied, our decomposition
approach yields some spectral volatilities that you consider implausible, you should
apply our approach as well to remove them. Other methods may be superior in other
senses (such as building valuable priors into the matrix), but we are not aware of any
that have the robustness of our approach. Once you have done everything else, edit
the plausibility!

Thisisasimple yet highly effective cure for selection bias. The major advantage of
our approach isthat practitioners can use their market knowledge to set this number
without the need for any statistics. "What is the lowest volatility estimate you would
trust?' isaparticularly intuitive question to ask, and the spectral value decomposition
lets us build the answer directly into the covariance matrix.

Plausibility Editing in Practice

Applying this technique to the examples mentioned earlier illustrates the general
nature of the impact. Again, we would urge the sceptical reader to try out this
approach on his own data since the essence of this technique is its breadth of
application.



A) ldentical Independent Assets

In this artificial case we know that the minimum spectral volatility should be 5%.
However, in practice we would only have an estimate of the true level. Figure 5
illustrates the effect of imposing afloor of 2.5% on the spectral volatilities. As
expected, no portfolios now appear to have volatilities below 2.5%, so we have
removed the possibility of a dangerous volatility underestimate. Thereis no
significant inflation of estimated volatilities that are above 3%.

Fig 5: Impact of 2.5% Volatility Floor on Equal Volatilities
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B) Known Spectral Values

In the last section we imposed a floor that was half the theoretical value. In practical
cases we never know exact values, but the method is reassuringly robust to
imprecision in the estimate. For the second example we set the plausible floor equal to
5%, which isjust below the lowest of the theoretical spectra volatilities. Thereislittle
or no impact on volatility estimates above 6%, but no possibility of an estimate below
5%.



Fig 6: Impact of 5% Volatility Floor on Unequal Volatilities
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C) Real World Example

Here we have no theoretical value on which to base the floor, so we have to use other
methods. Resampling is our preferred statistical tool for this but because the only
requirement is plausibility we do not really need this sophistication. An argument that
puts us on the right general scaleis:

"Many currencies have avolatility around 10%, but the presence of correlated
trading blocs means we have access to only 4 such assets which are truly
independent. We do not wish to assume that the blocs are stable and so are
unwilling to take hedged positions within abloc, but we can diversify four
ways which suggest avolatility of 10% / sqrt(4) = 5%."

To the extent that you trust the stability of currency blocs you might prefer alower
floor, perhaps 2% or even 1%, alowing a greater role for hedging and consequently
accepting less security. However, the precise level of the floor is not critical.

Imposing the floor of 5% reduces the potential underestimate from 25x to 1.5x, which
reduces selection bias from threat to nuisance, and imposing afloor of 2% would
reduce selection bias to 4x. Recall what this meansin practice. If you base your VAR
system on the edited matrix then to whatever optimisation process it is exposed, or
however smart a bunch of traders abuse it, you expect out-of-sample volatility to be at
worst 1.5x the in-sample estimate rather than potentially 25x if you had used the
original matrix.



This example demonstrates that the method does not depend critically on the choice
of plausible floor. So long asthe valueisjust that -- plausible -- there will be a
dramatic improvement in performance in many real situations. If the floor is set too
high, the volatilities of well-hedged portfolios will be overestimated and the company
may take on less exposure than it could. If set too low, the power of hedging will be
overestimated and selection bias will be reduced but may remain a problem. Thereis
abroad range of values for which the gains are substantial.

Practical Considerations

Thisis apowerful technique. Such techniques carry a particular risk that they are seen
as apanacea and lead to insufficient attention being applied to other areas. We would
note that in addition to using this technique you should still:

e Prepare your matrix with care, incorporating al the prior information you possess.

e Simulate the end-to-end results and check against redlity.

e Ensurethat non-VAR position constraints are in place, and sufficiently binding to
provide an independent source of security.

e Waitch your traders like a hawk.

We would also like to point out that this method has an interesting and beneficial
interaction with position constraints. Many practitioners have observed that
optimisation of positions subject to constraints often leads to over-trading, and minor
changes to the expected returns or the covariance matrix leads to substantial trading,
even in the presence of realistic transaction costs. This behaviour can be shown to be
due to the presence of unrealistically small spectral volatilities, and disappearsif these
have been increased to plausible values. The end result is that constrained
optimisation combined with edited spectral volatilities does not lead to over-trading.

Conclusion

Risk control isacomplex field that has an endless capacity to hide problems, for
example in data collection, data quality and modelling. The only safe way to combat
this complexity is to make assumptions and models as explicit as possible so that they
can be examined. We have demonstrated this approach on one of the key components
of the risk-control problem, the covariance matrix of asset returns. Plausibility Editing
ensures that we are not building implausible assumptions into our estimates of risk.

This article pursues two key threads. Thefirst isthat selection biasis an insidious
problem that affects most practical risk estimation problems as aresult of portfolio
construction methods and implicit optimisation. Thisindicates that any matrix that
would be unsafe for use in an optimisation will also be unsafe, to some unknown
degree, when used for risk estimation.

The second thread provides a simple technigue that can be used to make any
covariance matrix safe for optimisation purposes. Thisis useful in its own right, but
combined with the first thread it takes on a very broad applicability. Plausibility
Editing should be applied to most covariance matrices used anywhere in the risk
estimation process.



