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Abstract

In this paper we discuss methods for general-
izing over relational data. Our approach is to
learn distributed representations for the con-
cepts that coincide with their semantic fea-
tures and then to use these representations
to make inferences. We present Linear Re-
lational Embedding (LRE), a method that
learns a mapping from the concepts into a
feature-space by imposing the constraint that
relations in this feature-space are modeled by
linear operations. We then show that this lin-
earity constrains the type of relations that
LRE can represent. Finally, we introduce
Non-Linear Relational Embedding (NLRE),
and show that it can represent any relation.
Results of NLRE on a small but diÆcult
problem show that generalization is much
better than the one obtained using backprop-
agation.

1. Introduction

Let us imagine a situation in which we have a set of
concepts and a set of relations among these concepts,
and our data consists of few instances of these relations
that hold among the concepts. We want to be able
to infer other instances of these relations. For exam-
ple, if the concepts are the people in a certain family,
the relations are kinship relations, and we are given
the facts "Alberto has-father Pietro" and "Pietro has-
brother Giovanni", we would like to be able to infer
"Alberto has-uncle Giovanni". Our ultimate aim is to
be able to take a large set of facts about a domain and
to be able to infer other \common-sense" facts without
having any prior knowledge about the domain.

Recently we have introduced a method called Linear
Relational Embedding (LRE) (Paccanaro & Hinton,

2001) for solving this kind of problems. The approach
is grounded in the observation that real world rela-
tions do not associate concepts in a random fashion,
but rather concepts relate to each other depending on
\what" they are, i.e. according to their semantic fea-
tures. For example, the relation ``has-mother'' re-
lates a person to another which must have the features
of being one generation older than that person and fe-

male. This gives us a starting point to try to solve our
problem: if concepts relate to each other according to
their features, then if we could obtain a representa-
tion of each concept in terms of its features, together
with the correct rules for how such features interact, it
should possible to infer how concepts relate. Our ap-
proach to solving this problem is therefore to assume
the existence of structure in the world and to learn a
set of features for each concept together with the rules
on how such features interact. We then use a rep-
resentation of the concepts in terms of these learned
features to infer new instances of the relations.

These ideas can be traced back to a paper by Hinton
(1981), one of the �rst attempts to represent relational
data in a connectionist network using distributed rep-
resentations. Hinton chose the distributed represen-
tation of each concept to be the set of the semantic
features of that concept, and showed that a system
can exploit such distributed representations to pro-
vide automatic generalization. However he used hand-
coded representations and did not provide a satisfac-
tory method for learning them from the data. Few
methods for devising such pattern for relational data
have been proposed, but are either limited in the type
of relations that they can represent, or cannot gen-
eralize very well (see for example Hinton, 1986; Mi-
ikkulainen & Dyer, 1989). In the next sections we
shall present methods that learn distributed represen-
tations for concepts and relations that coincide with
their semantic features and we shall see that they pro-
vide excellent generalization performance.



2. Linear Relational Embedding

Let us begin considering the case in which all the re-
lations are binary. Our data then consists of triplets
(concept1; relation; concept2), and the problem we are
trying to solve is to infer missing triplets when we are
given only few of them. Inferring a triplet is equivalent
to complete it, that is to provide one of its elements
given the other two. In the following we shall train
systems that provide the third element, given the �rst
two.

LRE learns a distributed representation for the con-
cepts and the relations by embedding the concepts in
a space where the relations between them are linear
transformations of their distributed representations.
In other words, it represents each concept as a learned
vector in a Euclidean space and each relationship be-
tween the two concepts as a learned matrix that maps
the �rst concept into an approximation to the second
concept.

To get a avour for this approach, we start with a
very simple task in which the data consists of concepts
which are integers in the set D = [0 : : :9] and relations
are the following modulo 10 operations among integers
L = f+1;�1; +2;�2;+3;�3;+4;�4;+0g. Our data
will consist of triplets of the kind (num1; op; num2)
where num1; num2 2 D, op 2 L, and num2 is the re-
sult of applying operation op to number num1; for ex-
ample, for f(1;+1; 2); (4;+3; 7); (9;+3; 2); � � �g. There
are 90 triplets for this problem. We would like to have
a system that, when trained on some of these triplets,
say half of them, is able to infer the other ones. As
we anticipated earlier, LRE represents concepts as n-
dimensional vectors, relations as (n�n) matrices, and
the operation of applying a relation to a concept (to
obtain another concept) as a matrix-vector multipli-
cation. If we think for a moment, we realize that so-
lutions of this form do exist for this problem, since it
is easy to hand-code one for n = 2. In fact the num-
bers can be represented by vectors having unit length
and disposed as in �gure 1a, while the relations can be
represented by rotation matrices R(�), where the rota-
tion angle � is a multiple of 2�=10 (�rst row of table 1).
The result of applying, for example, operation +3 to
number 4, is then obtained by multiplying the corre-
sponding matrix and vector, which amounts to rotat-
ing the vector located at 144 degrees by 108 degrees,
thus obtaining a vector at 252 degrees, which repre-
sents number 7. LRE is able to �nd a solution that is
equivalent to this hand-coded one, which is shown in
�gure 1b and in the second row of table 1. LRE learns
this solution by training on only half of the triplets
randomly chosen from the complete data set and once

it has learned this way of representing the concepts and
relationships it can complete all the triplets correctly.

There are 2 di�erent phases of learning in LRE. First
we learn a distributed representation for the concepts
and the relations. In order to use these distributed rep-
resentations to infer new triplets, we then need to em-
bed these representations into a probabilistic model.
In the second phase of the learning we learn the pa-
rameters of this probabilistic model.

2.1. Learning the distributed representations

Let us assume that our data consists of C such
triplets containing N distinct concepts and M bi-
nary relations. We shall call this set of triplets C;
V = fv1; : : : ;vNg will denote the set of n-dimensional
vectors corresponding to the N concepts, and R =
fR1; : : : ; RMg the set of (n� n) matrices correspond-
ing to theM relations. Often we shall need to indicate
the vectors and the matrix which correspond to the
concepts and the relation in a certain triplet c. In this
case we shall denote the vector corresponding to the
�rst concept with a, the vector corresponding to the
second concept with b and the matrix corresponding
to the relation with R. We shall therefore write the
triplet c as (ac; Rc;bc) where ac;bc 2 V and Rc 2 R.

The operation that relates a pair (ac; Rc) to a vector
bc is the matrix-vector multiplication, Rc � ac, which
produces an approximation to bc. If for every triplet
(ac; Rc;bc) we think of Rc � ac as a noisy version of
one of the concept vectors, then one way to learn an
embedding is to maximize the probability that it is a
noisy version of the correct completion, bc. We imag-
ine that a concept has an average location in the space,
but that each \observation" of the concept is a noisy
realization of this average location. Assuming that
the noise is Gaussian with a variance of 1=2 on each
dimension and that all concepts are equally probable,
the posterior probability that Rc � ac matches concept
bc given that it must match one of the known concepts
is:

P (bcjRc � ac) =
e�kR

c�ac�bck2

X

vi2V

e�kR
c�ac�vik

2
(1)

The probability of getting the right completion for
each triplet in the data set is:

CY

c=1

e�jjR
c�ac�bcjj2

X

vi2V

e�jjR
c�ac�vijj

2
(2)

A discriminative goodness function D, that corre-
sponds to the log probability of getting the right com-
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Figure 1. Left: vectors of the hand-coded solution for the Number Problem with n = 2. Right: vectors of a solution
found by LRE. Only 45 triplets, chosen at random from the 90 possible triplets were used for training. During testing,
the system was able to correctly complete all the triplets for this problem.

Table 1. Angles, expressed in degrees, of the rotation matrices of the solutions to the Number Problem with n = 2,
corresponding to the vectors in �gure 1. The small errors of the LRE solution are due to the fact that only 45 triplets
were used during training.

OPERATION -4 -3 -2 -1 +0 +1 +2 +3 +4

Hand-coded Solution -144 -108 -72 -36 0 36 72 108 144

LRE Solution -143.95 -107.97 -72.02 36.04 0.00 36.04 72.02 107.97 143.95

pletion, summed over all training triplets is therefore:

D =

CX

c=1

log
e�jjR

c�ac�bcjj2

X

vi2V

e�jjR
c�ac�vijj

2
(3)

If one-to-many relations are present in our data, then
the goodness function D needs to be slightly modi�ed
and becomes:

D =

CX

c=1

1

kc
log

e�kR
c�ac�bck2

X

vi2V

e�kR
c�ac�vik

2
(4)

where kc is the number of triplets in C having the �rst
two terms equal to the ones of c, but di�ering in the
third term1.

1We would like our system to assign equal probability
to each of the correct completions. The discrete proba-
bility distribution that we want to approximate is there-

fore: Px = 1

d

P
d

i=1
Æ(bi � x) where Æ is the discrete

delta function and x ranges over the vectors in V. Our
system implements the discrete probability distribution:
Qx = 1

Z
exp(�kR � a� xk2) where Z is the normalization

factor. The 1=kc factor in eq.3 ensures that we are mini-
mizing the Kullback-Leibler divergence between P and Q.

The distributed representations learned by maximizing
D with respect to all the vector and matrix compo-
nents provide good generalization (Paccanaro & Hin-
ton, 2000). However, when we learn an embedding by
maximizingD, we are not making use of exactly the in-
formation that we have in the triplets. For each triplet
c, we are making the vector representing the correct
completion bc more probable than any other concept
vector given Rc �ac, while the triplet states that Rc �ac

must be equal to bc. The numerator of D does exactly
this, but we also have the denominator, which is neces-
sary in order to stay away from the trivial 0 solution2.
We noticed however that the denominator is critical
at the beginning of the learning, but as the vectors
and matrices di�erentiate we could gradually lift this
burden, allowing

PC

c=1 kR
c � ac � bck2 to become the

real goal of the learning. To do this we modify the dis-
criminative function to include a parameter �, which

2The obvious approach to �nd an embedding would be
to minimize the sum of squared distances between Rc � ac

and b
c over all the triplets, with respect to all the vector

and matrix components. Unfortunately this minimization
(almost) always causes all of the vectors and matrices to
collapse to the trivial 0 solution.



is annealed from 1 to 0 during learning3:

G =

CX

c=1

1

kc
log

e�kR
c�ac�bck2

[
X

vi2V

e�kR
c�ac�vik

2

]�
(5)

During learning this function G (for Goodness) is max-
imized with respect to all the vector and matrix com-
ponents.

2.2. Learning the probabilistic model

Once we have obtained the distributed representations
for the concepts and the relations by maximizingG, we
need a principled way to use these representations to
solve our generalization problem, that is to complete
a given triplet. This is made diÆcult by the fact that
for most datasets there exist triplets which cannot be
completed using the available data, for which the cor-
rect completion should be \don't know"; the system
needs a way to indicate when a triplet does not admit
a completion.

Therefore, after having found distributed representa-
tions for the concepts by maximizing G, in order to
use these representations to infer new triplets we em-
bed them into a probabilistic model. The probabilistic
model will have, for each relation, a mixture of N iden-
tical spherical Gaussians each centered on a concept
vector and a Uniform distribution. The Uniform dis-
tribution will take care of the "don't know" answers
and will be competing with all the other Gaussians,
each representing a vector constituting a concept in
our data set. For each relation the Gaussians have
di�erent variances and the Uniform distribution a dif-
ferent height. The parameters of this probabilistic
model are, for each relation R, the variances of the
spherical Gaussians �R and the relative density un-
der the Uniform distribution, which we shall write as

exp(�
r2R
2�2

R

). These parameters are learned using a vali-

dation set, which will be the union of a set of complete-
able triplets P and a set of uncomplete-able ones N;
that is P = fap; Rp;bpgPp=1 and N = faq ; Rq;?gQq=1
where ? indicates the fact that the result of applying
relation Rq to aq does not belong to V .

We learn a value for �R and rR, by maximizing the
following discriminative goodness function F over the

3For one-to-many relations we must not decrease the
value of � all the way to 0, because this would cause some
concept vectors to become coincident. This is because the
only way to make Rc � ac equal to kc di�erent vectors, is
by collapsing them onto a unique vector.

validation set4:

F =

QX

q=1

log
U

U +
X

vi2V

exp(�
kRq � aq � vik

2

2�2R
)

+

PX

p=1

1

kp
� log

exp(�kRp�ap�bpk2

2�2
R

)

U +
X

vi2V

exp(�
kRp � ap � vik

2

2�2R
)

(6)

where U = exp(�r2R=2�
2
R) and, as before, kp is the

number of triplets in P having the �rst two elements
equal to the ones of p, but di�ering in the third one.
Thus for each triplet in P we maximize the probability
that the vector Rp � ap is generated from the Gaussian
centered on bp, while for each triplet in N, we maxi-
mize the probability that the vector Rq �aq is generated
from the Uniform distribution.

Having learned these parameters, in order to complete
any triplet (R; a; ?) we compute the probability dis-
tribution over each of the Gaussians and the Uniform
distribution given R � a. The system then chooses a
concept vector or the "don't know" answer according
to those probabilities, as the completion to the triplet.

2.3. Details of the learning procedure

We learn the distributed representations for the con-
cepts and the relations by maximizing G with respect
to all the vector and matrix components. These are
initialized to small random values. One architectural
decision to be made is the choice of the dimensionality
of the concept vectors. We normally choose this value
empirically, and we have found that the generalization
performance of the solutions does not critically depend
on choosing a speci�c dimensionality. Also the anneal-
ing schedule for the � parameter does not appear to
be a critical factor and we normally got good solu-
tions for a wide variety of settings. In our experiments,
when maximizing G all the vector and matrix compo-
nents were updated simultaneously at each iteration.
One e�ective method of performing the optimization
is conjugate gradient.

When learning the probabilistic model for the concepts
and the \don't know" answer, we use a simple steepest
descent, with a very small step size, and no momen-
tum. We learn both the �R and the rR in the log do-
main, to make sure that neither of these measures will
become negative. The validation set used to learn the
parameters of the probabilistic model does not need

4During this phase, only the �R and rR parameters are
learned. All the vectors and matrix components are kept
�xed, as found at the end of the maximization of G.



to be large: we normally use sets containing just few
complete-able and uncomplete-able triplets per rela-
tion. With LRE the most diÆcult part of the learning
is to learn the distributed representations for the con-
cepts; once this is done, we just need to adjust the
few parameters of the probabilistic model, and a small
validation set is suÆcient for this purpose.

All the experiments presented in the following section
were repeated several times, starting from di�erent
initial conditions and randomly splitting training and
test data. In general the various solutions found by the
algorithm given these di�erent conditions were equiv-
alent in terms of generalization performance. Both
phases of learning are very fast: the algorithms usually
converged within a few hundred iterations, and rarely
got stuck in poor local minima. This took few min-
utes for the largest problems which we shall present in
the next sections when running our Matlab code on a
1.6Ghz Intel Pentium 4.

3. LRE Results

One problem on which LRE has been tested is
the Family Tree Problem (Hinton, 1986). In this
problem, the data consists of people and rela-
tions among people belonging to two families, one
Italian and one English (Figure 2, left). Us-
ing the relations ffather, mother, husband, wife,

son, daughter, uncle, aunt, brother, sister,

nephew, nieceg there are 112 triplets of the kind
(person1; relation; person2). Figure 2 (right) shows
the distributed representations for the people obtained
after training with LRE using all the 112 triplets. No-
tice how the Italians are linearly separable from the
English people and symmetric to them; the second and
third components of the vectors are almost perfect fea-
tures of generation and nationality respectively.

In a di�erent experiment, after learning a distributed
representation for the entities in the data by maxi-
mizing G using 88 triplets, we learned the parame-
ters of the probabilistic model by maximizing F over
a validation set constituted by 12 complete-able and
12 uncomplete-able triplets. The resulting system was
able to correctly complete all the 288 possible triplets
(R; a; ?). Figure 3 shows the distribution of the prob-
abilities when completing one complete-able and one
uncomplete-able triplet in the test set. The general-
ization achieved is much better than that obtained by
any other method on the same problem. The neural
networks of Hinton (1986) and O'Reilly (1996) typi-
cally made one or two errors when 4 triplets were held
out during training; Quinlan's FOIL (Quinlan, 1990)
could generalize almost perfectly when 4 triplets were

omitted from the training set.

LRE seems to scale up well to problems of bigger size.
We have used it on the Large Family Tree Problem,
a much bigger version of the Family Tree Problem,
where the family tree is a branch of the real family
tree of the author containing 49 people over 5 gener-
ations. Using the same set of 12 relations used in the
Family Tree Problem, there is a total of 644 complete-
able triplets. After learning using a training set of 524
complete-able triplets, and a validation set constituted
by 30 complete-able and 30 uncomplete-able triplets,
the system is able to complete correctly almost all the
possible triplets. When many completions are correct,
a high probability is always assigned to each one of
them. Only in few cases is a non-negligible probabil-
ity assigned to some wrong completions.

Hierarchical Linear Relational Embedding (HLRE)
(Paccanaro & Hinton, 2001) is an extension of LRE
that can be used e�ectively to �nd distributed repre-
sentations for hierarchical structures. The generaliza-
tion performance obtained by HLRE is much better
than the one obtained using RAAMs (Pollack, 1990)
on similar problems.

3.1. Adding new concepts and relations

An important question is how easily we can add new
information to a solution that LRE has learned for
a certain set of tuples. In other words, let us imagine
that we have already found distributed representations
for the concepts and the relations in a certain data set.
How easily can LRE adapt these representations in
order to incorporate new tuples involving new concepts
or new relations?

We carried out a series of experiments in which �rst
we learned an embedding using a set of triplets con-
taining a certain set of concepts. Then, we added one
or more triplets involving a new concept, and checked
how well LRE was able to modify the existing solu-
tion to include the new concept. The author's father
appears in 14 triplets of the Large Family Tree Prob-
lem described above. We created a reduced data set
for that problem, by excluding those triplets. The dis-
tributed representation obtained in 8D training on the
remaining 630 triplets is shown in Figure 4(top). No-
tice how the system has clearly recognized the divi-
sion between males and females, and the generation
each person belongs to. Several features are partially
identi�able with some of the vector components: for
example the 7th component (row) is positive for the
second generation females who had children, and neg-
ative for the other ones; the 5th component is neg-
ative for the third generation females who belong to
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(right) triplet written above each diagram. The complete-able triplet has two correct completions but neither of the
triplets had been used for training. Black bars from 1 to 24 are the probabilities of the people ordered according to the
numbering in Figure 2. The last gray bar on the right, is the probability of the \don't know" answer.

one branch of the tree, and positive for those belong-
ing to the other branch; the exact reverse happens for
the last component of the males belonging to the 4th
generation. It was then suÆcient to add the triplet
(Alberto; father; Pietro) and continue training the
system for only 80 iterations to obtain the solution
shown in Figure 4(bottom). This solution can com-
plete correctly each of the 644 triplets of the Large
Family Tree Problem.

We also looked at how well LRE manages to in-
corporate new relations into an existing solution.
We created a reduced data set of the Family Tree
Problem containing 11 relations fhusband, wife,

mother, son, daughter, brother,

sister, nephew, niece, uncle, auntg, thus omit-
ting the relation father. After using this reduced set
to train a solution with LRE, we added to the data set
few triplets involving the father relation, and contin-

ued the learning. Adding just 4 triplets LRE was able
to learn the father relation and to adapt the exist-
ing solution in about 50 iterations. The new solution
could complete all the 112 triplets of the Family Tree
Problem.

An interesting question is how LRE can adapt a so-
lution to include new sets of data involving the same
relations, but a di�erent group of concepts which are
not related to the ones previously learned. To do this
we tried to learn the English family �rst, and then
to add the Italian family. The results are excellent.
After having learned a solution for the 56 triplets re-
lating the English people, less than 100 iterations were
always suÆcient to learn a distributed representation
for all the Italian people, which satis�ed all the 112
triplets of the Family Tree Problem. Figure 5(left)
shows the solution obtained training LRE using the
English family only, while 5(right) shows how the solu-
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Figure 4. Top: Hinton diagrams of the vectors obtained af-
ter learning the Large Family Tree Problem using the 630
triplets that did not contain the author's father. Each col-
umn represents a person. The twelfth column, that should
have been occupied by the author's father, is �lled with
zeros (and therefore appears empty). The �rst 22 vectors
represent the males and the others the females in the family
tree. The numbers denote the generation of the tree they
belong to. Bottom: the solution found after 80 iterations
starting from solution shown above, after having added the
triplet (Alberto; father; Pietro) to the data set.

tion was adapted to include the Italian family. Notice
how the English family almost did not change while
training the Italian family, and that the resulting Ital-
ian family is just a rotation of the English family with
respect to the origin.

When we tried to learn many families at once, starting
from the solution found previously for the English fam-
ily alone, less than 100 iterations were always suÆcient
for LRE to adapt the solution to include isomorphic
Italian, French and German families simultaneously.
Again, each of these families was a rotated and scaled
version of the English family previously learned.

Finally we tried to learn a distributed representation
for the Italian family starting from the solution found
for the English family alone, but using only few of
the 56 triplets available for the Italians. As few as
18 triplets proved to be suÆcient in order to learn a
representation for the Italian family that was able to
correctly complete all the 112 triplets in the family tree
data set. Again, learning was extremely fast, requiring
less than 100 iterations.

3.2. Comparing LRE with FOIL

A di�erent approach to try to solve the problem of
generalizing over relational data is the symbolic one.
For example, FOIL (Quinlan, 1990) assumes that rela-
tional information can be represented as a set of predi-
cates and learns a de�nition of each predicate in terms
of the other predicates and itself. This is particularly

interesting when the data contain a set of basic pred-
icates: FOIL is then able to learn predicates that can
be expressed as a combination of the basic ones. The
de�nitions which are learned are very similar to Horn
clauses and will then hold for any other set of data.

The approach taken by LRE is quite di�erent, since it
learns a distributed representation for both relations
and concepts for a given, speci�c training set. Rela-
tions are now seen as functions rather than predicates:
the result of applying a relation to a concept is another
concept. Relations are represented as linear mappings
between concepts in some vector space. The idea be-
hind the scenes is that the distributed representation
should make explicit the semantic features implicit in
the data: each concept is a combination of semantic
features, and relations compute an approximation to
the features of one concept from the features of an-
other.

Let us see how FOIL and LRE compare in terms of
learning and generalization performance. FOIL can
learn the de�nition of a predicate only when it is pos-
sible to de�ne that predicate in terms of the predicates
available. Thus, if in the family tree example the data
contains only the predicates: parent, child and spouse,
FOIL could not possibly learn a de�nition for mother

since the predicates available do not carry information
about the sex of a person, which is fundamental in or-
der to de�ne mother. This is irrelevant to LRE, which
is able to learn a predicate, no matter what the other
predicates are.

As regards generalization performance, given a set of
data, LRE is able to learn a representation that pro-
vides perfect generalization on that set of data with
many more missing triplets than FOIL: as we men-
tioned earlier, the generalization results of LRE pre-
sented here on the Family Tree Problem are better
than the 78 out of 80 when testing on 4 triplets ob-
tained by Quinlan (1990) for the same problem. On
the other hand, the de�nitions for the predicates which
are found by FOIL have the advantage to be general,
not speci�c to the set of data from which they are
learned. Thus it is e�ortless to use them on new data,
while LRE needs a little additional learning for the
new concept vectors, as we have seen earlier in this
section.

It would be interesting to be able to combine the high
generalization capabilities of LRE together with the
advantages provided by logical de�nitions of the pred-
icates. One way to achieve this is to couple LRE with
FOIL. First we can use the LRE solution to increase
the set of available data. To do this, for every concept
vector a and every relation R we compute the discrete
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Figure 5. Left: the solution obtained training LRE with the English family alone. Right: the solution obtained after
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probability distribution of each of the concept vectors
and the Uniform distribution given R � a according to
our probabilistic model. Then, for each concept vec-
tor k to which the system assigns a suÆciently high
probability, the triplet (a; R;k) could be added the to
the data set. Therefore we would end up with a bigger
data set of triplets. At this point we could use FOIL
to extract logical rules from these triplets. According
to the results presented here, using this method we
would be able to extract logical rules for the Family
Tree Problem from a data set from which 28 triplets
are missing, instead of the 4 triplets over which FOIL
is able to generalize: the LRE \pre-processing" would
come up with all the 112 triplets, and from these FOIL
could extract all the Prolog rules. Thus using this
method we would obtain the correct logical de�nitions
of the predicates starting from only 88 triplets | thus
generalizing 7 times better than if we used FOIL alone.

4. Representational capabilities and

limitations of LRE

It is possible to prove that, as long as we consider only
binary relations, given a suÆcient number of dimen-
sions, there always exists an LRE-type of solution that
satis�es any set of triplets (Paccanaro, 2002). This
means that, no matter how many concepts we have
in our data set, and how many binary relations be-
tween these concepts hold simultaneously, there will
always exist a mapping from the concepts into a space
where these binary relations are linear transformations
| although the space might need to be very high-
dimensional.

The extension to higher arity relations, however, is
not straightforward. In this case, our data consists
of (m+1)-tuples, of the kind fconcept1, concept2, � � �,
conceptm�1, Relation, conceptmg, and the problem we
are trying to solve is again to infer the missing tuples
when we are given only few of them, that is to com-
plete the last element of the (m + 1)-tuples given the
m previous ones. We could extend LRE in order to
handle m-arity relations by simply concatenating the
�rst (m�1) concept vectors in each tuple into a single
vector and then maximizing G as before. However, the
fact that the transformations between distributed rep-
resentations are constrained to be linear, carries with
it a fundamental limitation when we try to learn rela-
tions of arity higher than 2. To see this, we can think
of the solutions that LRE �nds as a set of one-layer
neural networks of linear units, one network for each
relation in our problem; during learning we learn both
the weights of these networks, and the input and out-
put codes, with the constraint that such codes must
be shared by all the networks. Linear neural networks
can only represent and learn functions which are lin-
early separable in the input variables. This limitation
transfers to LRE which will only be able to learn a
distributed representation for a small class of relations
with arity greater than 2. Let us look at some classical
examples. We can think of the Boolean functions as
two-to-one (ternary) relations, where the Boolean val-
ues [0; 1] are the concepts. LRE can �nd a solution for
the AND function (see Figure 6, left). However, LRE
cannot learn the XOR problem, which would require
two disjoint regions with a high probability of obtain-
ing concept 1. As it happens for one layer perceptrons,
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LRE can only capture the pairwise correlation between
input and output variables: it will not be able to learn
relations for which such correlation is 0 while all the
information is of higher order.

5. Non-Linear Relational Embedding

The standard way to overcome the limitation of one-
layer networks, is to add a hidden layer of non-linear
units. In a similar way we can obtain a non-linear
version of LRE, which we have called Non-Linear Re-
lational Embedding (NLRE). For each relation we in-
troduce an extra layer of hidden units with a bias, h,
and an extra set of weights, S (see Figure 7 (left)). The
hidden units will have a non-linear activation function
| we have used the sigmoid function. Equation 5 be-
comes:

G =

CX

c=1

1

kc
log

e�kS
c��(Rc�Ac+hc)�bck2

[
X

vi2V

e�kS
c��(Rc�Ac+hc)�vik

2

]�
(7)

where Ac denotes the vector resulting from concate-
nating vectors a1; � � � ; am�1 representing the �rst (m�
1) concepts in tuple c, and � indicates the sigmoid
function. During learning we maximize G with respect
to the matrices, Rc, Sc, the biases of the hidden units,
hc and the distributed representation of the concepts,
while annealing �. As for LRE, after optimizing G we
can learn the parameters of a probabilistic model, �R
and rR, by maximizing:
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where:

Gq

(A;R;vi)
= exp(�kSq � �(Rq �Aq + hq)� vik

2=2�2R)

Gp

(A;R;vi)
= exp(�kSp � �(Rp �Ap + hp)� vik

2=2�2R)

NLRE contains LRE as a special case, and with a suf-
�cient number of hidden units is able to represent any
relation. Figure 6(right) shows a solution to the XOR
problem found using NLRE.

We can see NLRE as a variation of the backpropaga-
tion algorithm that allows the neural network to learn
the weights and the biases of the units as well as a dis-
tributed representation of the input and output vec-
tors. This can lead to a much better generalization
performance since the system will choose to represents
the inputs and the outputs using those features that
are relevant to the problem.

To show this, we can use NLRE to solve the Family
Tree Problem, this time thinking of each person and
each kinship relation as a concept, and having only
one \relation" that maps a pair (person1; kinship-
relation) onto the third person of the triplet. Training
using only 100 triplets, NLRE is able to �nd a solution
that can complete all the 112 triplets in the data set
using vectors in 3D. Figure 7 (right) shows the vec-
tors representing each of the persons and the kinship
relations. It is important to realize that this NLRE ar-
chitecture is equivalent to the backpropagation archi-
tecture used by Hinton (1986) to solve the same prob-
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lem. However, NLRE can generalize 3 times better:
this is due to the fact that NLRE learns a distributed
representation of the input and output vectors.

The training of NLRE is in general more involved than
the training of LRE since the model has many more
parameters. Moreover, while for LRE the user has
just to choose the size of the distributed representa-
tion of the concepts, with NLRE the user has also to
choose the size of the hidden layer of the relations, and
eventually a weight decay parameter. However, in the
experiments that we have carried out, convergence was
usually quite fast, and the system seldom got trapped
in poor local minima. As for LRE, we can build a hi-
erarchical version of NLRE that can learn distributed
representations for structured data (Paccanaro, 2002).

6. Discussion

In this paper we have discussed methods for general-
izing over relational data. The approach has been to
learn proper distributed representations for concepts
and relations that coincide with their semantic fea-
tures and then to use these representations to make
inferences.

Linear Relational Embedding learns a mapping from
the concepts into a feature-space by imposing the con-
straint that relations in this feature-space are modeled
by linear operations. LRE shows excellent general-
ization performance. The results on the Family Tree
Problem are far better than those obtained by any pre-

viously published method. Results on other problems
are similar.

We have discussed the representational capabilities of
LRE, and particularly we have shown that extending
LRE to relations of arity greater than 2 is limited in
the type of relations that it can represent.

We have introduced NLRE, a method that �nds dis-
tributed representations for the concepts allowing the
relations to be non-linear transformations in feature-
space. We can see NLRE as a variation of the back-
propagation algorithm that allows the neural network
to learn a distributed representation of the input and
output vectors as well as the weights and the biases
of the units. As � approaches 0, NLRE becomes the
classical backpropagation algorithm (with the di�er-
ence that the representations for the input and out-
put vectors are also learned) with sum-of-squares error
function | however, nothing prevents us from using a
di�erent error function.

We believe that NLRE is a powerful method, that
could be quite e�ective for all those tasks in which
input and output vectors belong to certain prede�ned
classes. Often this kind of problem is solved using an
MLP trained with backpropagation, after the user has
chosen a vector codi�cation for the inputs and the out-
puts elements in the training pairs | a typical choice
being the one-out-of-n codi�cation. If instead of hav-
ing the user choose such codes, we learn appropriate
distributed representations for the input and output
elements (together with the weights of the network),



this can lead to much better generalization. In fact the
system will be performing a clever, automatic kind of
feature extraction, in which it chooses to represents
the inputs and the outputs using those features that
are relevant to the problem. The results on the Fam-
ily Tree Problem show that generalization using NLRE
can be much better than those achieved by just learn-
ing the weights of the MLPs.

Moreover, since the system will �nd a distributed rep-
resentation according to the relations binding input
and output elements, it will assign similar represen-
tations to elements which are semantically similar ac-
cording to those relations. And for many problems
we can assume that the non-linear mapping between
inputs and outputs will be a smooth function of their
feature values, and a small change in the input element
features should induce small changes in the output el-
ement features. Therefore, although the size of the
training set will be limited, learning the input-output
weights on a particular training case will improve the
performance of a combinatorial number of other cases,
not contained in the training set. This point has re-
cently been made very clear by a most interesting work
by Bengio et al.(2000). In this paper the authors pro-
pose an approach for learning the conditional proba-
bility of the next work given few previous words which
learns a distributed representation of the words in the
text.
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