PhD Dissertation

Document Classification Models based on Bayesian networks Alfonso E. Romero

April 27, 2010

Advisors: Luis M. de Campos, and Juan M. Fernández-Luna Department of Computer Science and A.I. University of Granada

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

A brief overview: the problem I

We shall solve problems in document categorization...

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

A brief overview: the problem II

... in particular, automatic document categorization...

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

A brief overview: the problem III

... concretely, supervised document categorization.

тс

Notation Representation Particularities Evaluation

Bayesian networks

- Definition Storage problems Canonical models
- OR Gate Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

A brief overview: the methods I

Which learning method shall we use?

Neural networks Support Vector Machines k-NNmethods **Bavesian networks** and probabilistic methods Decision trees Evolutive algorithms

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

A brief overview: the methods II

The answer:

Neural networks Support Vector Machines k- $\mathcal{N}\mathcal{N}$ methods **Bayesian networks** and probabilistic methods Decision trees Evolutive algorithms

TC

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

A brief overview: the methods III

But, why?

- Strong theoretical foundation (probability theory).
- Models for (uncertain) knowledge representation.
- Great success in related tasks (IR).
- Our background at the group UTAI.

TC

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Outline

1 Text Categorization

- 2 Bayesian networks
- 3 An OR Gate-Based Text Classifier
- Automatic Indexing From a Thesaurus Using Bayesian Networks
- Structured Document Categorization Using Bayesian Networks

6 Final Remarks

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Outline

- ⇒ Text Categorization
- 2 Bayesian networks
- 3 An OR Gate-Based Text Classifier
- Automatic Indexing From a Thesaurus Using Bayesian Networks
- Structured Document Categorization Using Bayesian Networks

6 Final Remarks

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Supervised Text Categorization I

Provided

- **1** Set of **labeled** documents \mathcal{D}_{Tr} (training).
- **2** C, set of categories/labels.

The goal is to build a model f (**classifier**) capable of predicting categories (of C) of documents in D.

Different kinds of labeling:

- $f: \mathcal{D} \to \{c, \overline{c}\}$ (binary).
- $f: \mathcal{D} \to \{c_1, c_2, \dots, c_n\}$ (multiclass).
- $f: \mathcal{D} \times \mathcal{C} \rightarrow \{0, 1\}$ (multilabel).

A multilabel problem reduces to |C| binary problems $C = \{c, \overline{c}\}$. We often change the codomain from $\{0, 1\}$ (hard classification) to [0, 1] (soft classification).

TC

- Notation Representation Particularities
- Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Supervised Text Categorization II

Document representation:

As in Information Retrieval

Stopwords removal + stemming + Vector representation (Frequency, binary or tf-idf).

From (preprocessed) document to vector

term \Leftrightarrow dimension

Example (beginning of John Milton's "Lost Paradise"):

Of Mans First Disobedience, and the Fruit Of that Forbidden Tree, whose mortal tast Brought Death into the World, and all our woe, With loss of Eden, till one greater Man... Of Mans First Disobedience, and the Fruit Of that Forbidden Tree, whose mortal tast Brought Death into the World, and all our woe, With loss of Eden, till one greater Man...

2	1	1	1	1	1	1	1	1	1	1	1	1	1
man	obedience	fruit	forbid	tree	mortal	tast	bring	death	world	woe	loss	eden	great

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Supervised Text Categorization III What are the particularities of the problem?

It differs from a "classic" Machine Learning problem in:

- High dimensionality (easily > 10000).
- Very unbalanced datasets.
- |C| ≫ 0.
- Sometimes, there is a hierarchy in the set C.
- Sometimes, explicit relationships among documents are given.

тс

Notation Representation Particularities

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Supervised Text Categorization IV Evaluation

How to measure the correctness of **documents** assigned to set of categories?

- Binary/multiclass:
 - Hard categorization *Precision:* $\frac{TP}{TP+FP}$ and *Recall:* $\frac{TP}{TP+FN}$, F₁: $\frac{2PR}{P+R}$.
 - Soft categorization Precision/Recall BEP.
- Multilabel: micro and macro averages.
- Also, average precision on the 11 std. recall points (category ranking).
- Standard corpora: Reuters, Ohsumed, 20 NG...

тс

- Notation Representation Particularities
- Evaluation

Bayesian networks

- Definition Storage problems Canonical models
- **OR Gate**
- Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Outline

1 Text Categorization

⇒ Bayesian networks

3 An OR Gate-Based Text Classifier

- Automatic Indexing From a Thesaurus Using Bayesian Networks
- 5 Structured Document Categorization Using Bayesian Networks

6 Final Remarks

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Bayesian networks I

Definition and characteristics

A set of **random variables** X_1, \ldots, X_N in a DAG, verifying $P(X_1, \ldots, X_n) = \prod_{i=1}^n P(X_i | Pa(X_i)) \Rightarrow$ the graph represents independences.

Causal interpretation.

Learning and inference methods available.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition

Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Bayesian networks III Estimation and storage problems

The problem

- One value for each configuration of the parents.
- General case: exponential number of parameters on the number of parents.

The solution

- 1 Few parents per node (not realistic in text).
- Write the probability of a node as a deterministic function of the configuration (canonical model). Set of parameters with linear size on the number of parents.

тс

Notation Representation Particularities Evaluation

Bayesian networks

- Definition Storage problems
- Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Bayesian networks: canonical models Components and examples of canonical models

- $\mathbf{X} = \{X_i\}$: parents (causes), *Y*: child (effect).
- X_i in $\{x_i, \overline{x_i}\}$, Y_i in $\{y_i, \overline{y_i}\}$ (occurrence or not).
- 1 Noisy-OR gate model: $p(y|\mathbf{X}) = 1 - \prod_{X_i \in B(\mathbf{X})} (1 - w_{OB}(X_i, Y)).$
- **2** Additive model: $p(y|\mathbf{X}) = \sum_{X_i \in R(\mathbf{x})} w_{add}(X_i, Y)$.

TC

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems

Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Outline

1 Text Categorization

- 2 Bayesian networks
- ⇒ An OR Gate-Based Text Classifier
- Automatic Indexing From a Thesaurus Using Bayesian Networks
- Structured Document Categorization Using Bayesian Networks

6 Final Remarks

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

An OR Gate-Based Text Classifier Why using OR gates?

- The OR gate is a **simple** model (and fast for inference).
- It has gained great success in knowledge representation.
- Discriminative classifier (models directly p(c_i|d_j)) (NB generative).
- Seems natural the term are causes and category the effect.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

An OR Gate-Based Text Classifier

The model

Equations for the OR gate classifier

Probability distributions:

$$p_i(c_i|pa(C_i)) = 1 - \prod_{T_k \in R(pa(C_i))} (1 - w(T_k, C_i)),$$

 $p_i(\overline{c}_i|pa(C_i)) = 1 - p_i(c_i|pa(C_i)).$

Inference:

$$p_i(c_i|d_j) = 1 - \prod_{T_k \in Pa(C_i)} (1 - w(T_k, C_i) p(t_k|d_j))$$

= 1 - \prod 1 - \prod 1 - \prod 1 - w(T_k, C_i)).

Model **characterized** by the $w(T_k, C_i)$ formula.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models

Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

An OR Gate-Based Text Classifier Weight estimation formulae

Weight $w(T_k, C_i)$ means $\hat{p}_i(c_i|t_k, \bar{t}_h \forall T_h \in Pa(C_i), T_h \neq T_k).$

- **1** ML: $w(T_k, C_i)$ as $\hat{p}(c_i|t_k)$, $w(T_k, C_i) = \frac{N_{ik}+1}{N_{\bullet k}+2}$ (using Laplace).
- 2 TI: assuming term independence, given the category, w(T_k, C_i) = N_{ik} ∏_{h≠k} ∏_{h≠k} (N_i•-N_i)N/(N-N_•).

Notation: *N* number of words in the training documents. $N_{\bullet k}$ times that term t_k appears in training documents $(N_{\bullet k} = \sum_{c_i} N_{ik}), N_{i\bullet}$ is the total number of words in documents of class $c_i (N_{i\bullet} = \sum_{t_k} N_{ik}), M$ vocabulary size.

TC

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models

Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

An OR Gate-Based Text Classifier Pruning independent terms

- The model can be improved **pruning terms** which are **independent with the category**.
- We run an independence test for each pair term/category, at a certain confidence level. Only terms which pass it are kept.
- The size of the parent set is highly reduced, but classification is often improved.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models

Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

An OR Gate-Based Text Classifier Experiments I: Experimental setting

- We compare a Multinomial NB, a Rocchio, OR TI, OR ML, and both OR with pruning at levels {0.9, 0.99, 0.999}.
- We made experiments on Ohsumed-23, Reuters and 20 NG.
- Soft categorization, evaluated with macro/micro BEP, 11 avg std prec, and macro/micro F₁@{1,3,5}.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

An OR Gate-Based Text Classifier Experiments II: Experimental setting

Results (# of wins on 9 measures):

- Reuters: OR-TI-0.999 (7), OR-TI (1), OR-ML-0.999 (1).
- **Ohsumed:** OR-TI-0.999 (8), OR-ML-0.99 (1).
- 20 NG: OR-TI (2), OR-ML (2), OR-TI-0.999 (1), NB (4).

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

An OR Gate-Based Text Classifier

Conclusions

- A new text categorization model, based on noisy OR gates.
- Simple and computationally affordable.
- Results improves Naïve Bayes noticeably.

Future work

- Use more advanced noisy OR models (leaky).
- Use another canonical models.
- Explore another alternatives for term pruning.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Outline

1 Text Categorization

- 2 Bayesian networks
- 3 An OR Gate-Based Text Classifier
- ⇒ Automatic Indexing From a Thesaurus Using Bayesian Networks
- Structured Document Categorization Using Bayesian Networks

6 Final Remarks

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Automatic Indexing From a Thesaurus Using Bayesian Networks: Thesauri I

Definitions

A thesaurus

A list of terms representing *concepts*, grouped those with the same meaning, with *hierarchical relationships* among them.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions

Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Automatic Indexing From a Thesaurus Using Bayesian Networks: Thesauri II

Indexing with a thesauri

- **Problem:** associating descriptors (keywords) to documents (scientific, medical, legal,...).
- Manually: expensive and time consuming work (due to *thousand of descriptors!* [EUROVOC > 6000]). Besides:
 - How many descriptors should we assign?
 - Which descriptor should assign in the hierarchy?

We propose an automatic solution

- **1** TC problem (categories \equiv descriptors).
- 2 Makes use of the meta-information of the thesaurus.
- Onsupervised and supervised case.
- 4 Based on BNs.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions

Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Automatic Indexing From a Thesaurus Using Bayesian Networks: Unsupervised case I From the thesaurus...

TC

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions

Unsupervised model

Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model

Experiments Remarks

Automatic Indexing From a Thesaurus Using Bayesian Networks: Unsupervised case II

... to the Bayesian network.

- **Binary variables** (relevant/not relevant), for each *term*, *descriptor* and *non descriptor*.
- Problem: information of different nature mixed in descriptor nodes!

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions

Unsupervised model

Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Automatic Indexing From a Thesaurus Using Bayesian Networks: Unsupervised case III Introducing concept and virtual nodes

- New concept nodes, C.
- New Hierarchy nodes, *H_C*.
- New Equivalence nodes, *E_C*.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions

Unsupervised model

Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Automatic Indexing From a Thesaurus Using Bayesian Networks: Unsupervised case IV Probability distributions

We already have the structure, but we have to **specify** the distributions on each node. Many parents \Rightarrow canonical models.

- *D* and *ND* nodes (SUM): $p(d^+|pa(D)) = \sum_{T \in R(pa(D))} w(T, D).$
- H_C nodes (SUM): $p(h_c^+|pa(H_C)) = \sum_{C' \in R(pa(H_C))} w(C', H_C).$
- E_C nodes (OR): $p(e_c^+|pa(E_C)) = 1 - \prod_{D \in R(pa(E_C))} (1 - w(D, C)).$
- C nodes (OR):

$$p(c^{+}|\{e_{c},h_{c}\}) = \begin{cases} 1 - (1 - w(E_{C},C))(1 - w(H_{C},C)) & \text{if } e_{c} = e_{c}^{+}, h_{c} = h_{c}^{+} \\ w(E_{C},C) & \text{if } e_{c} = e_{c}^{-}, h_{c} = h_{c}^{-} \\ w(H_{C},C) & \text{if } e_{c} = e_{c}^{-}, h_{c} = h_{c}^{+} \\ 0 & \text{if } e_{c} = e_{c}^{-}, h_{c} = h_{c}^{-} \end{cases}$$

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions

Unsupervised model

Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Automatic Indexing From a Thesaurus Using Bayesian Networks: Unsupervised case V Inference

Classification is seen as inference.

- Given a document *d*, we set the term variables
 T ∈ *d* to *t*⁺, *t*⁻ otherwise.
- Exact propagation is carried out:
 - First, to descriptor nodes.
 - Then, to *E_C* nodes.
 - Following a **topological order**, probabilities $p(h_c^+|pa(H_c))$ are computed after their parents $p(c^+|pa(C))$ are set.
- Final $p(c^+|pa(C)), \forall C$ values are **returned**.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions

Unsupervised model

Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Automatic Indexing From a Thesaurus Using Bayesian Networks: Supervised model I Changes from the unsupervised case

- Concept also receives information from labeled documents in the training set.
- We add a training node T_C as new parent of the concept one. The node is an OR gate ML classifier.
- Distributions of *C* nodes are **modified consequently**.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Automatic Indexing From a Thesaurus Using Bayesian Networks: Supervised model II Graphically: unsupervised

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Automatic Indexing From a Thesaurus Using Bayesian Networks: Supervised model II Graphically: supervised

TC

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Automatic Indexing From a Thesaurus Using Bayesian Networks: Experiments I Description of the collection

- Database from the Andalusian Parliament at Spain, containing **7933 parliamentary resolutions**.
- Classified on the **Eurovoc** thesaurus (**5080** categories).
- From 1 to 14 descriptors assigned (average 3.8).
- Each initiative 1 to 3 lines of text.

Experimentation

- **1** Unsupervised: our model Vs. VSM and HVSM.
- 2 Supervised: our model Vs. SVM, Rocchio and NB. Micro-macro BEP, F1@5, AV Prec.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Automatic Indexing From a Thesaurus Using Bayesian Networks: Experiments II Unsupervised experiments

Models	Micro BEP	Macr BEP	Av. prec.	Micro F1@5	Macro F1@5
BN, 0.8, 0	0.26244	0.20394	0.29967	0.30811	0.17661
BN, 0.9, 0	0.28241	0.20234	0.30700	0.31419	0.18419
BN, 0.8, 0.8	0.26068	0.21208	0.30500	0.30845	0.17521
BN, 0.9, 0.9	0.26881	0.20903	0.31321	0.31473	0.18433
BN, 0.9, 1.0	0.26636	0.20880	0.31261	0.31381	0.18265
BN, 1.0, 1.0	0.25584	0.20768	0.27870	0.30963	0.18865
VSM	0.15127	0.18772	0.18061	0.20839	0.17016
HVSM	0.13326	0.17579	0.17151	0.20052	0.14587

TC

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model

Experiments Remarks

Automatic Indexing From a Thesaurus Using Bayesian Networks: Experiments III Supervised experiments

Models	Micro BEP	Macr BEP	Av. prec.	Micro F1@5	Macro F1@5
Naïve Bayes	0.42924	0.17787	0.61840	0.50050	0.20322
Rocchio	0.34158	0.35796	0.43516	0.40527	0.33980
OR gate	0.40338	0.44855	0.56236	0.41367	0.24629
SVM	0.63972	0.47890	0.69695	0.57268	0.40841
SBN 0.0, 0.9	0.54825	0.43361	0.66834	0.54066	0.33414
SBN 0.0, 0.8	0.55191	0.43388	0.67149	0.54294	0.33781
SBN 0.0, 0.5	0.55617	0.43269	0.67571	0.54578	0.34088
SBN 0.0, 0.1	0.55735	0.43282	0.67761	0.54652	0.34228
SBN 0.9, 0.0	0.55294	0.47207	0.65998	0.56940	0.36761
SBN 0.8, 0.0	0.57936	0.47820	0.68185	0.58163	0.38589
SBN 0.5, 0.0	0.58372	0.48497	0.70176	0.57875	0.38009
SBN 0.1, 0.0	0.56229	0.46171	0.68715	0.55390	0.35123
SBN 0.8, 0.1	0.57887	0.47809	0.68187	0.58144	0.38610
SBN 0.5, 0.1	0.58343	0.48487	0.70197	0.57887	0.38146
SBN 0.5, 0.5	0.58285	0.48716	0.70096	0.57859	0.37868
SBN 0.8, 0.8	0.56801	0.47946	0.67358	0.57508	0.37300
SBN 0.9, 0.9	0.53963	0.47200	0.64957	0.56278	0.35742
SBN 1.0, 1.0	0.49084	0.45875	0.59042	0.53235	0.32173

TC

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Automatic Indexing From a Thesaurus Using Bayesian Networks: Experiments IV Supervised experiments: Micro Recall for incremental number of categories

TC

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Automatic Indexing From a Thesaurus Using Bayesian Networks: Experiments V Supervised experiments: Micro F_1 at five computed for incremental percentage of training data

TC

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Automatic Indexing From a Thesaurus Using Bayesian Networks

Conclusions

- A BN-based model for document classification indexed from a thesaurus.
- Very good results in unsupervised (300% VSM results).
- Outstanding results in supervised (above SVM).

Future work

- Consider associative relationships.
- Take context into account.
- Test on other thesauri (MeSH, Agrovoc), build testing corpora.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Outline

1 Text Categorization

- 2 Bayesian networks
- 3 An OR Gate-Based Text Classifier
- Automatic Indexing From a Thesaurus Using Bayesian Networks
- ⇒ Structured Document Categorization Using Bayesian Networks

6 Final Remarks

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Structured Document Categorization Using Bayesian Networks

What is structure in document collections?

- Internal structure (inside each document): XML ("structured") documents .
- External structure (outside documents, graph in the collection): linked-based collections.

Outline of this part:

- 1 Contributions in *Structured TC* (XML).
- 2 A model for *link-based document categorization* (multiclass).
- A model for *link-based document categorization* (multilabel).

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents

Transformations Experiments Link-based categorization Multiclass model

Experiments

Multilabel model Experiments

Remarks

Structured Document Categorization Using Bayesian Networks I Structured Documents

TC

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

- Structured documents
- Transformations Experiments
- Link-based categorization
- Multiclass model
- Experiments
- Multilabel model Experiments

Remarks

Structured Document Categorization Using Bayesian Networks II Transformations I

Structured TC: same as "plain" TC, corpora of structured documents.

Our approach

Convert with transformations structured documents to plain documents, and test plain classifiers on them.

TC

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents

Transformations

Experiments Link-based categorization Multiclass model Experiments Multilabel model

Multilabel mode Experiments

Remarks

Structured Document Categorization Using Bayesian Networks III

Transformations II

```
<book>
 <title>El ingenioso hidalgo Don Quijote
de la Mancha</title>
 <author>Miguel de Cervantes Saavedra
 </author><contents>
   <chapter>Uno</chapter>
    <text>En un lugar de La Mancha de
    cuyo nombre no quiero acordarme...
 </text> </contents>
</book>
```

Figure: "Quijote", XML Fragment used for examples, with header removed.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents

Transformatio

Experiments Link-based categorization Multiclass model Experiments

Multilabel model Experiments

Remarks

Structured Document Categorization Using Bayesian Networks III Transformations III

El ingenioso hidalgo Don Quijote de la Mancha Miguel de Cervantes Saavedra Uno En un lugar de La Mancha de cuyo nombre no quiero acordarme...

Figure: "Quijote", with "only text" approach.

тс

Notation Representation Particularities Evaluation

Bayesian networks

- Definition Storage problems Canonical models
- **OR Gate**
- Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents

Transformations

- Experiments Link-based categorization Multiclass model
- Experiments Multilabel model
- Experiments

Remarks

Structured Document Categorization Using Bayesian Networks III Transformations IV

title_El title_ingenioso title_hidalgo title_Don title_Quijote title_de title_la title_Mancha author_Miguel author_de author_Cervantes author_Saavedra chapter_Uno text_En text_un text_lugar text_de text_La text_Mancha text_de text_cuyo text_nombre text_no text_quiero text_acordarme...

Figure: "Quijote", with "tagging_1".

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents

Transformatio

Experiments Link-based categorization Multiclass model Experiments

Multilabel model Experiments

Remarks

Structured Document Categorization Using Bayesian Networks III Transformations V

Our contribution

title: 1, author: 0, chapter: 0, text: 2

El ingenioso hidalgo Don Quijote de la Mancha En En un un lugar lugar de de La La Mancha Mancha de de cuyo cuyo nombre nombre no no quiero quiero acordarme acordarme...

Figure: "Quijote", with "replication" method, using values proposed before.

TC

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents

Transformatio

Experiments Link-based categorization Multiclass model Experiments

Multilabel model Experiments

Remarks

Structured Document Categorization Using Bayesian Networks III Experimentation

- Experiments on the INEX 2007 XML dataset.
- 96611 documents, 21 categories, 50% training/test split.
- Replication improves macro measures on Naïve Bayes a lot.
- Other transformations are **not useful here**.

Method	Reduction	Selection?	μBEP	MBEP	μ F1	MF1
Naïve Bayes	Only text	no	0.76160	0.58608	0.78139	0.64324
Naïve Bayes	Only text	\geq 2 docs.	0.72269	0.67379	0.77576	0.69309
Naïve Bayes	Only text	\geq 3 docs.	0.69753	0.67467	0.76191	0.68856
Naïve Bayes	Repl. (id=2)	None	0.76005	0.64491	0.78233	0.66635
Naïve Bayes	Repl. (id=2)	\geq 2 docs.	0.71270	0.68386	0.61321	0.73780
Naïve Bayes	Repl. (id=2)	\geq 3 docs.	0.70916	0.68793	0.73270	0.65697
Naïve Bayes	Repl. (id=3)	None	0.75809	0.67327	0.77622	0.67101
Naïve Bayes	Repl. (id=4)	None	0.75921	0.69176	0.76968	0.67013
Naïve Bayes	Repl. (id=5)	None	0.75976	0.70045	0.76216	0.66412
Naïve Bayes	Repl. (id=8)	None	0.74406	0.69865	0.72728	0.61602
Naïve Bayes	Repl. (id=11)	None	0.72722	0.67965	0.71422	0.60451

TC

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Exceriments

Remarks

Structured Document Categorization Using Bayesian Networks III

Conclusions

- Several XML transformation (one original).
- Good results with "replication" + NB.

Future work

- More extensive experimentation.
- New transformations.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations

Experimen

Link-based categorization Multiclass model Experiments

Multilabel model Experiments

Remarks

Structured Document Categorization Using Bayesian Networks IV

Linked-document categorization

A set of documents with a **graph structure** among them. The goal is to label a document using both its **content** and the **graph structure** (labels of the neighbors?).

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Structured Document Categorization Using Bayesian Networks IV

Linked-document categorization

Typically, scatterplots like this:

Encyclopedia regularity (a document of category C_i tends to links documents on the same category).

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Structured Document Categorization Using Bayesian Networks IV link-based categorization: multiclass I

Document d_0 , linked to documents d_1, \ldots, d_m .

Random variables $C_0, C_1, ..., C_m$, in $\{c_0, c_1, ..., c_n\}$.

Variables e_i , **evidence** of the classification (content) of document d_i .

Given the **true class** of the document to classify (**independences**):

- the categories of the linked documents are independent among each other, and
- 2 the evidence about this category due to the document content is independent of the original category of the document we want to classify.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model

Experiments Multilabel model Experiments

Remarks

Structured Document Categorization Using Bayesian Networks IV

Linked-document categorization: multiclass II

TC

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

- Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments
- Multilabel model Experiments

Remarks

Structured Document Categorization Using Bayesian Networks IV Linked-document categorization: multiclass III

With some computation:

$$p(C_0 = c_0|e) \propto p(C_0 = c_0|e_0) \prod_{i=1}^m \left(\sum_{c_j = \{c_0, \dots, c_n\}} p\left(C_i = c_j|C_0 = c_0\right) \frac{p(C_i = c_j|e_i)}{p(C_i = c_j)} \right)$$

Where:

- p(C₀ = c₀|e) final evidence that the document belongs to C₀.
- p(C_i = c_j|e_i) obtained with a "local" (content) classifier (NB).
- p(C_i = c_i) (prior) and p(C_i = c_i|C₀ = c₀) (probability a document of C_i links another of C₀), obtained from training data.

TC

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments

Multilabel model Experiments

Remarks

Structured Document Categorization Using Bayesian Networks IV

Linked-document categorization: multiclass IV

Experiments: INEX 2008 corpus:

- A classical *Naïve Bayes algorithm* on the flat text documents obtained **0.67674** of recall.
- Our proposal using the previous Naïve Bayes as the base classifier obtained 0.6787 of recall (using outlinks).
- Our model (inlinks): 0.67894 of recall.
- Our model (neighbours): 0.68273 of recall.

The model works better in a "ideal environment" (knowing the labels of all neighbors).

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model

Experiments

Multilabel model Experiments

Remarks

Structured Document Categorization Using Bayesian Networks IV Linked-document categorization: multiclass V

Conclusions

- A new model for classification of multiclass linked documents, based on BNs.
- Good performance in an ideal environment.

Future work

 Use a base classifier (probabilistic) with a better performance (Logistic? SVM with probabilistic outputs?).

TC

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model

Experiments

Multilabel model Experiments

Remarks

Structured Document Categorization Using Bayesian Networks V

Linked-document categorization: multilabel I

- Previous model was not flexible. Structure of BN imposed.
- We learn the interactions among categories from data, no fixed structure, but any which is learnt from the set of categories.
- Variables: categories *C_i* (one for category), categories of incoming links *E_j* (one for category) and terms *T_k* (many).
- We will search for $p(c_i | e_j, d_j)$.
- Main assumption:

 $p(d_j, e_j | c_i) = p(d_j | c_i) p(e_j | c_i).$

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments

Multilabel model

Experiments

Remarks

Structured Document Categorization Using Bayesian Networks V Linked-document categorization: multilabel II

With a few computations:

 $p(c_i|d_j, e_j) = \frac{p(c_i|d_j) p(c_i|e_j) / p(c_i)}{p(c_i|d_j) p(c_i|e_j) / p(c_i) + p(\overline{c}_i|d_j) p(\overline{c}_i|e_j) / p(\overline{c}_i)}$

- *p*(*c_i*|*d_j*): output of a probabilistic classifier. Any probabilistic classifier.
- p(c_i|e_j): probability of being of C_i considering the set of the categories of the incoming (known) links. This is modeled by the BN.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments

Multilabel model

Experiments

Remarks

Structured Document Categorization Using Bayesian Networks V

Linked-document categorization: multilabel III

Experimentation INEX 2009 corpus: 54572 documents, test/train split of a 20/80%. 39 categories.

Measures Accuracy (ACC), Area under Roc curve (ROC), F1 measure (PRF) and Avg prec on 11 std (MAP).

- Learning Bayesian Network, using WEKA package.
 - Hillclimbing algorithm (easy and fast) + BDeu metric (3 parents max. per node).
- Propagation, using Elvira
 - Compute *p*(*c_i*) (once), and *p*(*c_i*|*e_j*) (for each document *j*). Exact propagation is **slow** for so many categories! ⇒ **Importance Sampling** algorithm (approximate).

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Structured Document Categorization Using Bayesian Networks V

Linked-document categorization: multilabel IV

Results

	MACC	μΑСС	MROC	μROC	MPRF	μ PRF	MAP
N. Bayes	0.95142	0.93284	0.80260	0.81992	0.49613	0.52670	0.64097
N. Bayes + BN	0.95235	0.93386	0.80209	0.81974	0.50015	0.53029	0.64235
OR gate	0.92932	0.92612	0.92526	0.92163	0.45966	0.50407	0.72955
OR gate + BN	0.96607	0.95588	0.92810	0.92739	0.51729	0.55116	0.72508

Our method clearly improves both baselines.

тс

Notation Representation Particularities Evaluation

Bayesian networks

- Definition Storage problems Canonical models
- **OR Gate**
- Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

- Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments
- Multilabel model
- Experiments

Remarks

Structured Document Categorization Using Bayesian Networks IV

Linked-document categorization: multilabel V

Conclusions

- A new model for classification of multilabel linked documents, based on BNs.
- Very flexible.
- Any learning procedure is usable.
- Very promising results

Future work

- Use different baselines.
- More extensive experimentation.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Outline

1 Text Categorization

- 2 Bayesian networks
- 3 An OR Gate-Based Text Classifier
- Automatic Indexing From a Thesaurus Using Bayesian Networks
- Structured Document Categorization Using Bayesian Networks

⇒ Final Remarks

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Final Remarks Summary

Most relevant contributions

- A new text classifier (OR gate), better than NB.
- Definition of a **new problem** (*thesaurus indexing*). **Two models**, outstanding results.
- Some minor contributions in XML classification ("text replication").
- Two models of link-based document categorization. Promising results in the Multilabel one.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Final Remarks II List of Publications supporting this work:

In the thesis:

See pages 170-173

or...

In the www:

Visit http://decsai.ugr.es/~aeromero

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Final Remarks III Software:

- **DauroLab**. A toolbox for Machine Learning. Written in Java (by me!).
- Free (libre) software (GPL v3).
- http://sf.net/projects/daurolab.

тс

Notation Representation Particularities Evaluation

Bayesian networks

Definition Storage problems Canonical models

OR Gate

Models Experiments

Thesaurus

Definitions Unsupervised model Supervised model Experiments

Structured

Structured documents Transformations Experiments Link-based categorization Multiclass model Experiments Multilabel model Experiments

Remarks

Thank you for your attention