
Garnata: An Information Retrieval System for Structured
Documents based on Probabilistic Graphical Models

Luis M. de Campos, Juan M. Fernández-Luna, Juan F. Huete, Alfonso E. Romero
Departamento de Ciencias de la Computación e Inteligencia Artificial
E.T.S.I. Informática, Universidad de Granada, 18071 Granada, Spain.

{lci, jmfluna, jhg, aeromero}@decsai.ugr.es

Abstract

In this paper, Garnata, an infor-
mation retrieval system for XML
documents is presented. This sys-
tem is specifically designed for im-
plementing Bayesian network-based
models for structured documents.
We show its architecture and perfor-
mance from the indexing and the re-
trieval points of view, coming to the
conclusion that the system is flexible
and fast.

Keywords: Information Retrieval
Systems, Structured documents,
Bayesian networks

1 Introduction

In the beginning, Information Retrieval (IR)
only dealt with documents whose internal or-
ganization was not taken into account. Thus,
they were considered as atomic units, and
therefore, a query result was a set of those
documents sorted by their relevance status
value (RSV). Nowadays, due to the great ac-
ceptance of markup languages as SGML and
XML, the field of IR has evolved developing
new techniques to work with structured doc-
uments [2]. This research has shown two im-
portant points: the internal organization of
the documents is relevant for retrieval pur-
poses (determining the appropriate level of
component granularity to be returned) and
the structure can be useful to compute the
RSV of different parts of the document, mak-
ing the ranking more accurate.

This evolution implies that new models have
been developed from the ‘classic’ IR to this
new ‘structured’ field, but the scope of these
new models is not limited to retrieval: index-
ing is also a challenging task. So, new In-
formation Retrieval Systems (IRS) have been
built in order to implement these theoretical
models. Here, our aim is double: on the one
hand, to build an experimental software be-
ing able to test the effectiveness and efficiency
of the models (as it is done in the INitiative
for the Evaluation of XML Retrieval [6], a fo-
rum to compare structured IRSs under the
same conditions), and, on the other hand, to
have an operational environment where the
user can interact with them.

An example of this evolution is the Bayesian
Network Retrieval Model [3], which was ini-
tially designed to work with flat documents,
and later extended to deal with structured
documents. At present, our current model,
is the Context-based Influence Diagram for
Structured Documents [4, 5], a Probabilistic
Graphical Model (PGM) that takes into ac-
count the context of the components in the
documents, as well as user preferences.

There are available lots of IRSs, most of
them for flat document retrieval (really few
of them for structured documents), but these
are too general for the specific requirements
that PGMs need in order to perform efficient
and effective retrieval. The cost of updating
or extending them to support our PGM-based
IR models is much greater than the cost of
building our own IRS from scratch, totally
adapted to our models. Therefore, the Gar-

nata IRS has been specifically designed to im-
plement models based on PGMs. In its de-
velopment, the underlying model to deal with
structured text was carefully studied, extract-
ing the most critical operations in terms of ef-
ficiency. Having them in mind, the system has
been implemented with the aim of optimizing
them, using an efficient combination of data
structures that assure a good response time
for a query. Although at its present form the
system only can answer ‘content’ queries, it is
completely ready to implement ‘content and
structure’ queries using the same data struc-
tures. It is basically an experimental plat-
form, where different PGMs can be imple-
mented and tested using standard test collec-
tions, but also used in operational environ-
ments without too much effort.

The aim of this paper is to describe the archi-
tecture of Garnata, studying the system per-
formance but not the model effectiveness. In
order to expose our ideas, this paper is divided
into the following sections: the first one will
briefly show the context of our work. Section
3 will describe the Bayesian network model for
structured documents implemented by Gar-
nata. Section 4 presents the architecture and
the main features of this software. With the
objective of testing its performance in terms
of indexing and retrieval time, in Section 5
some experiments are presented, concluding
in Section 6 with some remarks and future
research.

2 Related Work

There are several approaches for tackling the
problem of indexing and retrieval of struc-
tured documents, mainly marked up in XML.
One of these is based on storing documents
in tables of relational databases and using
the tools given by database management sys-
tems to retrieve documents, for instance, the
SQL language. Examples of this approach are
Agora [11] or NATIX [9]. A group composed
of classic IR techniques is the other main per-
spective to the indexing and retrieval of struc-
tured documents. Basically, they store the
tree representing the document collection, as

for example [10], or use the classic approach
of inverted file containing the occurrences of
the terms in XML tags, and any kind of data
structure to represent the internal organiza-
tion (hierarchy) of the documents [13]. This
is the philosophy that Garnata implements,
differing the data structured used. In [8] the
reader can find a detailed revision of the state-
of-the-art in XML indexing and retrieval.

3 The Bayesian Network Model for
Structured Documents

A collection of structured documents will
be composed of M documents, D =
{D1, . . . , DM} and the set of the terms used
to index these documents. Each document Di

is organized hierarchically, representing struc-
tural associations of elements in Di, which
will be called structural units. Each one is
composed of other smaller structural units,
except some ‘terminal’ or ‘final’ units which
are indivisible, but composed of terms. Con-
versely, each structural unit, except the one
corresponding to the complete document, is
included in only one structural unit.

The Bayesian network modeling a collection
of structured documents will contain two
kinds of nodes, representing the terms and
the structural units. The former will be
represented by the set T = {T1, T2, . . . , Tl}.
There are two types of structural units: ba-
sic or final structural units, containing only
terms, and complex structural units, com-
posed of other final or complex units, Ub =
{B1, B2, . . . , Bm} and Uc = {S1, S2, . . . , Sn},
respectively. Therefore, the set of all struc-
tural units is U = Ub∪Uc. Each node T , B, S
or generally U has associated a binary random
variable, which can take its values from the
sets {t−, t+}, {b−, b+}, {s−, s+} or {u−, u+}
(the term/unit is not relevant or is relevant),
respectively. A unit is relevant for a given
query if it satisfies the user’s information need
expressed by this query. A term is relevant in
the sense that the user believes that it will
appear in relevant units/documents.

There is an arc from a given node (either term
or structural unit) to the particular structural

Figure 1: Bayesian network representing a
structured document collection.

unit node it belongs to. It should be noticed
that the hierarchical structure of the model
determines that each U ∈ U has only one
structural unit as its child –the unique struc-
tural unit containing U– (except for the leaf
nodes, i.e. the complete documents, which
have no child). We shall denote indistinctly
by Hi(U) or Uhi(U) the single child node asso-
ciated with node U (with Hi(U) = null if U
is a leaf node). Figure 1 displays an example
of the proposed network topology.

The conditional probabilities have also to be
assessed: p(t+), p(b+|pa(B)), p(s+|pa(S)), for
every node in T , Ub and Uc, respectively, and
every configuration of the corresponding par-
ent sets (pa(X)). The conditional probabili-
ties for the basic and complex structural units
are defined as follows:
∀B ∈ Ub, p(b+|pa(B)) =

∑

T∈R(pa(B))

w(T, B) ,

(1)
∀S ∈ Uc, p(s+|pa(S)) =

∑

U∈R(pa(S))

w(U, S) .

(2)
where w(T, B) is a weight associated to each
term T belonging to the basic unit B and
w(U, S) is a weight measuring the importance
of the unit U within S. In any case R(pa(U))
is the subset of parents of U relevant in the
configuration pa(U), i.e., R(pa(B)) = {T ∈
Pa(B) | t+ ∈ pa(B)} and R(pa(S)) = {U ∈
Pa(S) |u+ ∈ pa(S)}. These weights can be
defined in any way, constrained to w(T, B) ≥
0, w(U, S) ≥ 0,

∑
T∈Pa(B) w(T, B) ≤ 1, and∑

U∈Pa(S) w(U, S) ≤ 1. For example, they can

be defined using a normalized tf-idf scheme
(that is, they are divided by the sum of all
weights in the final unit), as in [4]. With re-
spect to the prior probabilities of relevance
of the terms, p(t+), they can also be defined
in any reasonable way, for example an identi-
cal probability for all the terms, p(t+) = p0,
∀T ∈ T , as proposed in [4], although any
other approach could be used.

To provide the user an ordered list of struc-
tural units given a query Q, expressed as a
list of index terms, and taking into account
the specific characteristics of the canonical
model used to define the conditional probabil-
ities, the posterior probabilities of relevance
p(b+|q),∀B ∈ Ub and p(s+|q), ∀S ∈ Uc, are
efficiently computed using eqs. (3) and (4):

p(b+|q) =
∑

T∈Pa(B)\Q w(T,B) p(t+) +
∑

T∈Pa(B)∩R(q) w(T,B) . (3)

p(s+|q) =
∑

U∈Pa(S) w(U, S) p(u+|q) . (4)

where R(q) denotes the set of terms in the
query Q and p(u+|q) is the posterior proba-
bility of any unit parent of S. Figure 2 shows
an algorithm that efficiently computes these
data, derived from eqs. (3) and (4) (see [5]
for a more detailed explanation), traversing
only the nodes in the graph that will require
updating. It is assumed that the prior proba-
bilities of all the nodes are stored in prior[X];
the algorithm uses variables prob[U] which,
at the end of the process, will store the corre-
sponding posterior probabilities. Essentially,
the algorithm starts from the items in Q and
carries out a width graph traversal until it
reaches the basic units that require updating,
computing p(b+|q). Then, starting from these
modified basic units, it carries out a depth
graph traversal to compute p(s+|q), only for
those complex units that require updating.

The algorithm that initializes the process by
computing the prior probabilities prior[U] (as
the items T ∈ T are root nodes, the prior
probabilities prior[T] do not need to be cal-
culated, they are stored directly in the struc-
ture) is quite similar to the previous one, but
it needs to traverse the graph starting from
all the items in T .

for each term T in Q
for each unit B child of T

if (prob[B] exists)
prob[B] += w(T,B)*(1-prior[T]);

else { create prob[B];
prob[B] = prior[B]+w(T,B)*

(1-prior[T]); }
for each basic unit B s.t. prob[B] exists {

U = B; prod = prob[B]–prior[B];
while (Hi(U) is not NULL) {

S = Hi(U);
prod *= w(U,S);
if (prob[S] exists)

prob[S] += prod;
else { create prob[S];

prob[S] = prior[S]+prod; }
U = S; }

}
Figure 2: Computing p(b+|q) and p(s+|q).

3.1 Virtual nodes

At the beginning of this section, we mentioned
that each structural unit is composed of other
smaller structural units, except for the ‘final’
units, which do not contain any other unit
but text. However, it is quite common to find
collections where a unit can contain text and
other units at the same time; e.g. a paragraph
which includes a bold-faced sentence:

<paragraph> This is an example of a
paragraph with a <bold> bold-faced
text <\bold>. <\paragraph>

To deal with this situation, and in order to
continue having a clear distinction between
complex and final units, so the propagation
algorithm could work correctly, the model in-
cludes some special nodes, called virtual units,
which are fictitious nodes that are parents of
the unit where this situation has been de-
tected (in the previous example, the ‘para-
graph’ unit) together with the units contained
in it (in this case, only ‘bold’). Therefore,
these virtual units will be final units contain-
ing only terms. Figure 3 shows this situation.

These virtual units cannot be retrieved and
their corresponding weights are computed ac-

Figure 3: Fragment of Bayesian network con-
taining a virtual unit.

cording to the general weighting scheme used,
taking into account their parent terms.

3.2 Some important requirements

From the algorithm in Figure 2, we can detect
some operations that any IRS implementing
this model must perform efficiently: 1) given
a unit, obtaining its child (the unit that con-
tains it); 2) given a unit and its child unit,
obtaining the corresponding weight; 3) given
a term, obtaining the list of units where it oc-
curs; and 4) given a term and a unit where it
occurs, obtaining the corresponding weight.

Beside these operations, the IRS has also to
allow a fast access to the data used by the
algorithm to compute the posterior probabil-
ities of the corresponding units (for instance,
prior probabilities and intermediate storage of
posterior probabilities).

4 The Garnata Information
Retrieval System for XML
documents

Garnata was born as an implementation com-
pletely adapted to the models based on PGMs
to retrieve structured documents, although
other models following the same philosophy
could be easily implemented in it. Written in
C++, following the object-oriented paradigm,
it offers a wide range of classes and a complete
set of utility programs. In its first stage it im-
plements the model described in section 3, but

it is ready to implement the CID model [5].

In the following sections we shall study its
architecture from the indexing and querying
points of view, presenting its main features.

4.1 Indexing Subsystem

4.1.1 Application Level

Garnata is able to manage different collec-
tions, and different indexes over the same col-
lection. Thus, a program (makeIndex) is pro-
vided to do this task. It can choose among
different stopword lists (previously inserted
into the system) and use (if desired) Porter’s
stemming algorithm. Also, it is able to detect
those situations explained in section 3.1 and
create the corresponding virtual units.

Moreover, as stated by Baeza and Ribeiro [1],
an IR system is characterized by its weighting
function, wij , which assigns a weight to the
term i in the document j. In our model, sev-
eral valid weighting schemes could exist be-
cause of its experimental nature. As a conse-
quence, in Garnata, indexing does not com-
pute the weights (setting all of them to be
zero). Instead of that, we have added the pos-
sibility to calculate weights (following a cer-
tain weighting scheme) for previously built in-
dexes without inserting into them, and store
them in files –the so-called weight files– . So,
records of that precomputed weight files are
kept in order to provide a fast way to in-
sert one into the index itself in order to re-
trieve with it. To achieve these two tasks two
separated executables (makeWeightFile and
insertWeightFile) are provided.

4.1.2 Physical Level and Data
Structures

Because indexes are only built few times,
there is no need for using a very fast index-
ing algorithm. In Garnata, it is emphasized
querying time over indexing time, even stor-
ing some redundant information. Neverthe-
less, we will also describe the structures asso-
ciated to indexing.

To store textual information (terms and iden-
tifiers of the final units where they appear),

we use inverted indexes [12]. While the lexi-
con is kept entirely in memory (both while in-
dexing and querying), the list of occurrences
is read from disk. We use another file to write
the list of relative positions of each term in-
side a unit in order to answer queries contain-
ing proximity operators or phrases (although
in the current stage of Garnata, they are not
used to formulate a query).

To maintain information about the structural
units, we use one direct access file, except for
the XPath routes, which are stored separately.
Other files keep relations among units, be-
ing accessible with two disk reads only1. So
a large file contains data of each unit itself
(identifier, tag, container, position, . . .) and
besides, we can easily manage the following
relationships with two disk accesses (see Fig-
ure 4 for more details):
• Given a non-final unit, returning the list

of identifiers of the units that it contains.
For unit 1 in Figure 4, it returns (2, 3, 4).

• Given a final unit, returning the con-
tainer unit and, recursively, all the con-
tainers until a root unit is found. For
unit 5 in Figure 4, it returns (2, 1).

• Given a final unit, returning the list of
contained terms (known as the direct in-
dex). For unit 5 in figure 4, it returns
(1, 2).

Figure 4: Relations between terms (circles)
and units (squares).

Although the indexing subsystem of Garnata
is not aimed to any particular IR model, all

1An access to this information requires two disk
reads: the first in the direct access file (to retrieve the
address) and the second in the proper data file (using
retrieved address). This approach is similar to how a
pointer works in programming languages.

of the previous operations are specifically de-
signed for the BNR-SD model and its deriva-
tives (SID and CID models [4]). Nowadays,
this subsystem does not implement any kind
of file compression.

4.2 Querying Subsystem

Querying subsystem is the most critical part
of an IR system. In our case, we have built
structures at indexing time to reduce at max-
imum the amount of disk accesses while pro-
cessing a query, in order to save time and
give a short response time. The algorithm
for achieving this task comprises the follow-
ing steps (not necessarily in this order):

1. Query is parsed, and occurrences of the
component terms are retrieved from disk.

2. For each occurrence, implied final units
are read into memory (if not already
there).

3. For each final unit, its descendants are
read into memory (if not already there).

4. Propagation is carried out, units are
sorted by its probability of relevance, and
the result is returned.

The first big bottleneck to be minimized is due
to the reading from disk of the unit objects
(containing information about each unit). We
will keep two unit caches in memory: the
first one, containing final units, and the sec-
ond one, containing complex units. Both will
be static caches, meaning that they will not
change the unit stored in each cache slot.
Cache is accessed doing a hash function-like
scheme2, so for each cache slot, we will have
several candidates (those identifiers being the
hash inverse of the slot identifier).

For the final units cache, in each slot, we will
store the unit containing greater number of
terms (among the candidates). For the com-
plex units cache, in each slot, we will store the
unit containing more final units. These two
heuristics has shown very good performance
in our experiments.

2Identifier mod N , with N the size of the cache.

5 Experimentation

The experimentation presented in this paper
tries to determine the efficiency of Garnata in
the tasks of indexing and retrieving, in terms
of disk space required by the indexes (uncom-
pressed), and time to index the collection and
to retrieve, following an approach similar to
[7], although not comparable because of the
use of different collections. In this paper we
are not concerned about the effectiveness of
the model, fact that will be treated in a fur-
ther study.

Two XML collections have been used to test
the system : Shakespeare3, which is com-
posed of Shakespeare’s plays, and INEX [6],
composed of articles from journals and pro-
ceedings of the IEEE Computer Society about
computer science. We have used version 1.4
(from 1995 until 2001).

In order to test how the indexing time and
index size increases when the size of the col-
lection also increases, we have obtained sev-
eral sub-collections from INEX 1.4 of different
sizes, as observed in Table 1, where we also
show the size of the original XML collection
in Megabytes, the number of total structural
units, and the number of final units of each
collection. The partitions created in INEX 1.4
correspond to the closest values to 5%, 20%,
50% and 75% of the total size, without split-
ting journals, i.e., integrating complete jour-
nals in a partition.

Collection Size Units Final Units
Shakespeare 7 MB 179,689 179,626
INEX (6%) 36 MB 412,596 326,326
INEX (15%) 81 MB 886,270 711,650
INEX (40%) 214 MB 2,500,624 1,994,248
INEX (78%) 418 MB 6,280,164 5,044,672
INEX (100%) 536 MB 8,239,997 6,600,015
Table 1: Information about test collections.

In Table 2, we show the size of the indexes
created by Garnata and the indexing times
(in minutes), and in Figures 5 and 6 the
graphs representing the original sizes of the
collections vs the sizes of the indexes and the
indexing times, respectively. These experi-

3http://qmir.dcs.qmw.ac.uk/Focus/collbuilding.htm

Figure 5: Collection size vs index size.

ments have been carried out in a Pentium IV
2.8GHz, and 3GB of RAM.

Collection Index Size Index Time
Shakespeare 29 MB 0.3 min.
INEX (6%) 93 MB 1.25 min.
INEX (15%) 205 MB 3.45 min.
INEX (40%) 375 MB 10.08 min.
INEX (78%) 1,331 MB 21.87 min.
INEX (100%) 1,638 MB 28.63 min.
Table 2: Index sizes and indexing times.

In order to measure the retrieval time, we
have ran a set of standard queries in each
collection, normally used for evaluation pur-
poses. In Shakespeare, this set is composed
of 43 queries, while in INEX, we have selected
the set of content queries used in 2004, con-
taining 74 queries. Table 3 shows the average
retrieval time in seconds and the standard de-
viation, for each considered collection. Figure
7 displays the original size of the collection vs.
average retrieval time.

Collection Mean Deviation
Shakespeare 0.05 s. 0.22 s.
INEX (6%) 0.05 s. 0.22 s.
INEX (15%) 0.12 s. 0.33 s.
INEX (40%) 0.51 s. 0.78 s.
INEX (78%) 0.93 s. 0.52 s.
INEX (100%) 1.39 s. 0.74 s.

Table 3: Retrieval times: averages and stan-
dard deviations.

Observing the results of the experiments, it is
easy to notice how the size of the indexes is
around three times the size of the set of XML
files composing each collection. So, the disk

Figure 6: Collection size vs Indexing time.

Figure 7: Collection size vs Retrieval time.

space occupied for these and other similar ex-
perimental datasets is reasonably affordable.
Taking into account the size of the current
hard disks, even for really very large collec-
tions this is not a serious problem.

We can also conclude that indexing time is
quite good, although possibly it could be im-
proved. As it is proportional to the amount
of information to be written in disk, its corre-
sponding ratio is quite similar to the original
collection size vs. index size ratio. Having
in mind that indexing is a task that it is not
very often performed and that this system is
mainly a testing environment, these times are
clearly acceptable, specially if we assume that
INEX is considered as a relatively large struc-
tured collection.

With respect to the retrieval time, the main
conclusion that we can draw is that the re-
sponse time is quite acceptable for an exper-
imental system, although for an operational
system it should be reduced.

6 Conclusions and Future Research

In this paper, Garnata has been presented.
This is an information retrieval system specifi-
cally designed to implement PGMs to retrieve
XML documents, although it could be easily
extended to deal with passage retrieval. We
have described the initial underlying retrieval
model as well as its architecture. The experi-
ments about indexing time and space, and re-
trieval time show an acceptable performance,
useful for environments mainly experimental,
but also for operational ones.

In order to reduce the size of the indexes, we
are planning to implement an efficient method
to perform compression and studying, on the
one hand, the decrease of size of the indexes,
and on the other hand, the expected increase
of the indexing and retrieval times. Only
empirically we can determine how much the
performance of the system could change and
make the decision of using compression or not.
Clearly, we are in favour of a faster search, al-
though more disk space is needed.

We also expect to measure the system effec-
tiveness evaluating the output with the rele-
vance judgments provided by INEX. In this
line, the CID model will be implemented and
its retrieval behaviour checked.

Acknowledgements

This work has been jointly supported by
the Spanish Ministerio de Educación y Cien-
cia and Junta de Andalućıa, under Projects
TIN2005-02516 and TIC276, respectively.

References

[1] R. Baeza-Yates, B. Ribeiro-Neto. Mod-
ern Information Retrieval, Addison Wes-
ley Longman, 2002.

[2] Y. Chiaramella. Information retrieval
and structured documents. LNCS,
1980:291–314, 2001

[3] L.M. de Campos, J.M Fernández-Luna,
and J.F. Huete. The BNR model: foun-
dations and performance of a Bayesian

network-based retrieval model. IJAR,
34:265–285, 2003.

[4] L. M. de Campos, J. M. Fernández-Luna,
J. F. Huete. Using context informa-
tion in structured document retrieval: an
approach based on influence diagrams.
IP&M, 40(5): 829–847, 2004.

[5] L.M. de Campos, J.M Fernández-Luna,
and J.F. Huete. Improving the Context-
based Influence Diagram Model for struc-
tured document retrieval: removing
topological restrictions and adding new
evaluation methods. LNCS, 3408:215–
229, 2005.

[6] http://inex.is.informatik.uni-
duisburg.de

[7] N. Fuhr, N. Govert. Index Compres-
sion vs. retrieval time of inverted files for
XML documents. In Proc. of the 11th
Int. Conf. On Information and Knowl-
edge Management, 662 –664, 2002.

[8] R. Luk, H. Leong, T. Dillon, A. Chan,
W. Croft, J. Allan. A Survey in indexing
and searching XML documents. JASIST,
53(6):415–437, 2002.

[9] C. Kanne, G. Moerkotte. Efficient stor-
age XML data. In Proc. of the 16th
ICDE, 198, 2000.

[10] E. Kotsakis. Structured information re-
trieval in XML documents. In Proc. of
the ACM SAC’02, 663 – 667, 2002.

[11] I. Manolescu, D. Florescu, D. Kossmann,
F. Xhumari, D. Olteanu. Agora: Living
with XML and relational database. In
Proc. VLDB, 623 – 626, 2000.

[12] I. H. Witten, A. Moffat, T. C. Bell
Managing Gigabytes, Morgan Kaufmann,
1999.

[13] A. Trotman. Searching structured docu-
ments. IP&M 40:619–632, 2004.

