
Starting design with OpenSCAD 
 
Adrian Johnstone, January 3, 2020 
 
OpenSCAD is a free text-based 3D modelling tool which runs on Windows, OS X and Linux. It is easy to 

install and use, but complicated things sometimes need a lot of thought.  

The learning curve – visual vs text-based tools 
 
Most 3D design tools are visual: objects are drawn directly by the engineer and manipulated using a point-
and-click interface. Skilled users can achieve excellent results but learning such a tool can take a long time. 
 
There is an alternative: write a script describing how to build the 3D model out of a few geometrical 
primitives such as cylinders and cuboids, and then have the computer draw it for you. The OpenSCAD tool 
uses this approach and runs on all common current personal computers. There is a related tool called 
OpenJSCAD which runs purely in the browser and thus can even be used on tablets and phones. 
 
These tools are easy to learn because they only provide a few very simple facilities. On the other hand, 
operations such as adding a fillet to a joint can probably be done with a single command in most visual 
packages, whereas in OpenSCAD some ingenuity is sometimes required. 
 
The basic approach 
 
Text based tools use computational solid geometry to build up complex objects from simple geometrical 
shapes and operations such as union, intersection and difference.  
 
For instance, a 2mm thick plate can be specified as cube([50,20,2]); which when rendered looks like 

this: 

 
 
We can add a blue 5mm diameter cylinder by writing:  color("blue") cylinder(10,5,5); 
 

 
 
 
Objects can be ‘subtracted’ from one another using the difference()operation. If we write 

 
difference() { cube([50,20,2]); cylinder(10,5,5); } 

 
we get 

 



Objects can be moved about in space using the translate() operation. In OpenSCAD, points in space 
are specified using a vector which is written as a coordinate triple in square brackets: [x, y, z]. 
 
If the cylinder’s position is moved to the centre of the plate, then we get the effect of a drilled hole: 
 

difference() { 

cube([50,20,2]); 

translate([25,10,0]) cylinder(10,5,5); 

} 

 

renders as  

 
 
Advantages and disadvantages 
 
The main advantages of these script-based systems are 
 
Precision: there is no need for a visual snap grid or complicated snap operators – object locations and 
dimensions are specified numerically and exactly. 
 
Interoperability: scripts are simple text files which can be edited with normal text editors, emailed and 
displayed without needing to install special software. 
 
Modularity: the language encourages packaging of designs into small named modules that can be shared and 
reused 
 
Paramaterisability: instead of using explicit numbers everywhere, we can used named values that are 
specified once and used many times: modifying the single named value allows global changes to the 
properties of a 3D model. 
 
Free, mostly bug free and lots of free examples: these tools are simple compared to visual editors and have 
few untested dark corners. OpenSCAD has a vast number of users, so there is a lot of online help available. 
 
The main disadvantage is that rather than just picking up the corner of an object on the screen and stretching 
it so that it looks right, the engineer has to work out numerically where it should go, and that often requires 
some trig and geometry. Specifications can also become quite large and that requires discipline when 
organising modules. For instance the script for this RCH wagon, with its multitude of plates, nuts and bolts, 
is over a thousand lines long. 
 

 



Installing OpenSCAD on Windows and generating 3D prints 
 
1. Use a web browser to visit https://www.openscad.org/ which in January 2020 looked like this: 
 

 
 

2. Click the Download OpenSCAD button and follow your browser’s procedure to save and run the file 
OpenSCAD-2019.05-x86-64-Installer.exe which will take you to this dialog box: 
 

 
 

3. The default installation directory is fine, so just click the Install button. OpenSCAD is small, so installation 
should take little time. 
 
4. Start OpenSCAD via the Windows start menu. The welcome dialog looks like this (but your list of recent 
files would initially be empty). 
 

 
5. Clock on the New button. A window will open showing an empty text editor and an empty 3D preview. 

https://www.openscad.org/
https://www.openscad.org/


 

 
 

6. Click on the white editor window, and type into it this line 
 

cube([50,10,20]); 

 
7. Press function key 5 (F5) and the script will be rendered 

 

 
 

8. Click on the 3D preview window and try rotating and panning by click-and-dragging the left and right 
buttons. You can zoom in and out using your mouse wheel, or by using the               buttons at the bottom of 
the window. 
 
9. The F5 preview function is fast for viewing but does not produce the detail needed for a 3D print. To 
prepare for printing, press F6 to do a full render. For simple objects, the appearance does not change. For 
complex objects, especially those with curves, there may be an appreciable delay. 
 
10. Then press F7 to get the save STL dialog, save the STL file to your preferred location and try a test print. 
 

 
 



Example 1 – a door wedge 
 
Here is a 3D printed door wedge which we can describe in OpenSCAD 
as the difference between two cuboids 

 
 
 
 
The wedge is 12cm by 3cm by 2.5cm at its highest point. OpenSCAD 
uses millimetres as the basic unit, so we make a cuboid of the correct 
size, centred at the origin by writing: 
 
cube([120, 30, 25], center = true);  

 
 
 
By default, everything in OpenSCAD renders as a sort-of golden 
yellow. When building up a design, it is useful to add colours to show 
the parts that are being currently manipulated: an object can be 
prefixed by a colour specification (written the American way): 
 
color ("cyan") cube([120, 30, 25] , center = true); 

 
 
We now add a second cuboid, rotated by seven degrees around the Y 
axis to form the top surface of the wedge: 
 

color ("cyan") cube([120, 30, 25], center = true); 

rotate([0,-7,0]) cube([125, 35, 25], center=true);  
 

 

 
 
The slanted cuboid needs to be raised by 10mm: a translation of 10 
units along the Z axis: 
 
color ("cyan") cube([120, 30, 25], center = true); 

translate([0,0,10])  

rotate([0,-7,0]) cube([125, 35, 25], center=true);  

 

 
 
Finally, we ‘subtract’ the slanted cuboid from the original one to 
form the wedge: 
 

difference() { 

  color ("cyan") cube([120, 30, 25], center = true); 

  translate([0,0,10])  

  rotate([0,-7,0]) cube([125, 35, 25], center=true); 

} 
 


