< Failure Equivalence ¢

A first attempt at a new definition of process equiv-
alence might be to define P =, @ as

traces(P) = traces(Q)
refusals(P) = refusals(Q)

but this is not quite what we want. It would make
a— ((b— STOP) O (¢ — STOP))

and

a— ((b = STOP) N (¢ — STOP))

equivalent, which is no better than using trace equiv-
alence. The problem is that looking at refusals can
only detect differences at the first step. As with the
definition of determinism, we need to look at events
refused after arbitrary traces have been observed.

The solution is to define failures(P) as follows:
failures(P) = {(tr, X) | tr € traces(P)
and X € refusals(P/tr)}

and then say that P = () means

traces(P) = traces(Q)
and
failures(P) = failures( Q).

J

(cConcurr

ent and Real Time Systems: Failures @©Gay/Schneider 112)

-

\
<& Examples (ctd) ©

P=a— STOP | b— STOP
a(P) = {a,b}

failures(P) = {({),2)}
U{((a), X) | X C{a,b}
U{((b), X) | X C {a, b}

)

16}

O

2,{a},{b},{a,0}  &,{a},{b},{a, b}

/

(Concurr

@©Gay/Schneider 114)

ent and Real Time Failures

/ N
<& Examples &
P=a—b— STOP
a(P) ={a, b}
Jailures(P) = { ({), @), ((),{b}),
((a), @), ((a),{a}),
({a,b),2),((a,b),{a}),
((a,0),{b}),({a,b),{a,b})}
z,{b}
2,{a}
b
2,{a},{b},{a, b}
\ J
(Concurrent and Real Time Systems: Failures @©Gay/Schneider 113)
4 I
<& Examples (ctd) ©
P=a— STOP|b— P
a(P) = {a, b}
failures(P) = {((b)", @) | n > 0}
U{((e)" " (a), X) | nZ0A
X C{a,b}}
[%)
b
2,{a},{b},{a, b}
o %

(Concurrent and Real Time Systems: Failures

@Gay/Schneider 115)




o

<& Examples (ctd) ©

P=a—b—>STOPMb— STOP

2,{a}

o, (0}

a b

Do O

) @,{a},{b},{a, b}

@,

2,{a},{b},{a, b}

J

(Concurrent and Real Time Systems: Failures

@©Gay/Schneider 116)

/

-

\
Recall that {} € refusals(P) for every process P.

This means that for every process P and every trace
tr € traces(P), (tr,{}) € failures(P). So traces
can be recovered from failures by

traces(P) = {tr | (tr,{}) € failures(P)}.
This means that if failures(P) = failures(Q) then

traces(P) = traces(Q), so the definition of failure
equivalence can be simplified to

failures(P) = failures( Q).

If P is deterministic, we can analyse failures(P)
slightly more.

failures(P)
= {(tr, X) | tr € traces(P) and X € refusals(P/
= {(tr,X) | tr € traces(P)
and X N ingtials(P/tr) = {}}
= {(tr,X) | tr € traces(P)
and X N{z | s~ (z) € traces(P)} = {}}

which shows that failures(P) can be defined in terms
of traces(P).

So if P and @ are deterministic, and traces(P) =
traces(Q), then failures(P) = failures(Q).

Any process defined using just STOP, prefixing, menu
choice (or |), || and guarded recursion, is determinis-
tic.

/

(Concurrent and Real Time Failures

@©Gay/Schneider 118)

<& Examples (ctd) ¢

P=a—b— STOPOa— STOP

2,{b}

2,{a}
2,{a},{b},{a, b}

2,{a},{b},{a, b}

o

_/

(Concurrent and Real Time Systems: Failures

@©Gay/Schneider 117)

/
< Failure Refinement ¢

Failure refinement is defined in a similar way to trace
refinement.

PCrQ
if and only if
failures(Q) C failures(P)

It is pronounced “P is failure refined by @".

To see how failure refinement can be used in specifi-
cations, consider a very simple example: the process

SPEC =a — b — SPEC

Recall that if we use SPEC as a specification with
trace refinement, we get a safety specification. Pro-
cesses P satisfying the specification

SPECCr P
include
= STOP
a — STOP

=a—(b—POb— STOP)
=a—b—=>P

avillavBia vl

What is the effect of specifying
SPEC Cr P?

S

~

J

(Concurrent and Real Time Systems: Failures

@Gay/Schneider 119)




We need to calculate failures(SPEC). In words first:
the traces of SPEC are alternating sequences of a
and b events, starting with a. After a trace ending in
a, SPEC refuses the sets @ and {a}. After a trace
ending in b, it refuses the sets @ and {b}. So:

failures(SPEC) = {({a,b)" " (a), ) | n = 0}
U {({a,)" " (a),{a}) | n > 0}
U {({a,b)",2) [ n >0}
U {({a,b)",{b}) | n > 0}.

To determine whether SPEC T STOP we need to

calculate that

failures(STOP) = {((),2),((),{a}), (0, {b}),
((),{a,0})}
and then we can see that the failure pairs ({}, {a})
and ((), {a, b}) are in failures(STOP) but not in
failures(SPEC). Therefore it is not the case that
SPEC Cr STOP. We could also write this as
SPEC Zp STOP.

Now look at P = a — STOP.

failures(a — STOP) = {((),2), (O, {b}), ((a), 2),
({a),{a}), ({a),{b}),
({a); {a, b})}

The failure pairs ({a),{b}) and ({a),{a, b}) are in

failures(P) but not in failures(SPEC), so again

SPEC Lp P.

J

(cConcurr

ent and Real Time Systems: Failures ©Gay/Schneider 120)

-

\
< Safety and Liveness ¢

Saying that tr € traces(P) is a positive statement:
it describes something that P can do. A specification
of the form

SPEC Cp P

puts a limit on the traces that P can do, so it is a
specification which restricts behaviour.

Saying that (¢r, X') € failures(P) is a negative state-
ment: it describes something that P cannot do. A
specification of the form

SPEC Cp P

puts a limit on what P can fail to do, so it requires
P to accept at least a certain range of behaviours.

Alternatively: P fails a safety (trace) specification by
doing too much. P fails a liveness (failure) specifica-
tion by refusing too much, i.e. by not doing enough.

<& Another Example <

Process P will have alphabet {a, b, c}, and we want
to specify that P must be able to do an infinite se-
quence of alternating a and b events, starting with
a; we do not care when ¢ events occur.

/

(Concurrent and Real Time Failures

@©Gay/Schneider 122)

<& Exercise ©

If we define P=a — (b — P O b — STOP), is
it true that SPEC Ty P ? Either show that all the
failure pairs of P are also failure pairs of SPEC, or
find a failure pair of P which is not a failure pair of
SPEC.

< Liveness <

SPEC Cpr P is a liveness specification which re-
quires P to do certain events. Which definitions of
P satisfy the specification? Obviously

P=a—b—>P

does, because that is the same process as SPEC.
In fact this is the only process satisfying this specifi-
cation. So in this example, the specification is very
restrictive indeed: it pins down the implementation
precisely.

_/

(concurr

ent and Real Time Systems: Failures @©Gay/Schneider 121)

S

~

We can use the process
ALT =a — b — ALT

as a specification for the a and b events, as before.
To allow the ¢ events to occur freely we use hiding,
and express the specification as

ALT Cp (P \ {c})
Definitions of P satisfying this specification include
P=a—>b—>P
P c—~a—>c—>c—>b—P

P a—b—>c—P
P=a—wc—b—a—>b—P

because in each case, P \ {c} is the same process
as ALT.

Definitions of P not satisfying the specification in-
clude
Q=c—>b—>Q
P=a—(b—>PO0Ob—Q)
P=a—-b—(POa—c— STOP).

J

(Concurrent and Real Time Systems: Failures

@Gay/Schneider 123)




o

< Level Crossing Liveness <

In our model of the level crossing, there is an infinite
stream of cars trying to cross, and also an infinite
stream of trains. We can specify liveness (the re-
quirement that whenever a car approaches it should
eventually be allowed to cross, and similarly for the
trains) as follows.
CARSPEC = car.approach — car.enter —
car.leave - CARSPEC
TRAINSPEC = train.approach — train.enter —
train.leave — TRAINSPEC

The specifications are

CARSPEC Cp (SAFE_SYSTEM \ {train, gate})

TRAINSPEC Cy (SAFE_SYSTEM \ {car, gate}
(all the gate.??? events are hidden, etc.)

These specifications can be checked using FDR.

J

(Concurrent and Real Time Systems: Failures

@©Gay/Schneider 124)

o

& Scheduler Liveness ¢

A liveness specification for the cyclic scheduler is that
the processes continue to be started, in turn, forever.
This can be written

CYCLE, Cp (SCHED \ {finish})

where CYCLEj is the process which was used for
the safety specification, and all the finish.i events
are hidden. This specification can be checked with
FDR.

Another liveness specification might be to pick a par-
ticular process i and specify that start.i and finish.i
keep happening alternately forever. This can be done
with a specification process in which start.i and finish.i
alternate, by hiding all the other start and finish
events in SCHED.

_/

(Concurrent and Real Time Systems: Failures

(©Gay/Schneider

125)




