< The Dining Philosophers <

Five philosophers live in a college; they spend most of
their time thinking, but occasionally become hungry.
The college has a communal dining room, with a cir-
cular table and five chairs. In the middle of the table
is a large bowl of rice, and the table is set with five
plates. There are also five chopsticks, one between
each pair of plates. 0

When a philosopher is hungry, he enters the dining
room, sits down in his chair, picks up the chopsticks
on either side of his plate (first the one on the left,
then the one on the right), and eats. Two chopsticks
are needed to eat rice, so if one of the chopsticks is
already in use, he has to wait. When the philosopher
has finished eating he puts down the chopsticks, gets
up from the chair, and leaves the dining room.

J

(cConcurr

ent and Real Time Systems: Examples @©Gay/Schneider 94)

-

~

The relevant events for the chopsticks are the pickup
and putdown events. CHOP; can potentially be
picked up or put down by either PHIL; or PHIL;¢;.

a(CHOP;) = {pickup.i.i, pickup.(i © 1).1,
putdown.i.i, putdown.(i © 1).i}

We will define the system as a concurrent combina-
tion of the philosophers and the chopsticks.

PHILS = ||'*"* PHIL,
CHOPS = ||**** cHOP;

COLLEGE = PHILS | CHOPS

sitdowng

putdown.1.2/ pickup.1.2
CHOP,

PHIL%

/

(Cone

rrrrr it and Real Time

@Gay/Schneider 96 )

We will model this system in CSP, and analyse its
behaviour. The relevant components are the five
philosophers, which we will model as processes
PHILy. .. PHIL4, and the five chopsticks, which we
will model as processes CHOP, ... CHOP,.

Using the symbols @ and © to denote addition and
subtraction modulo 5 (so that 4@ 1 = 0 and 0 &
1 = 4), philosopher PHIL; will sit in seat 7 and use
chopsticks i and 7 @ 1.

The alphabet of PHIL; is
a(PHIL;) = {sitdown;, getup;,
pickup.i.i, pickup.i.(i ® 1),
putdown.i.i, putdown.i.(i ® 1)}

In the events pickup.i.i etc. the is being used

purely as a symbol.

The event pickup.i.i represents PHIL; picking up
chopstick 7, and so on.

We will ignore the actions of eating, thinking, and
entering and leaving the dining room.

Because the alphabets of the processes PHIL; are
mutually disjoint, there can be no direct interaction
between the philosophers. The only way in which
they affect each other will be as a consequence of
the fact that they are competing for access to the
chopsticks.

_/

(concurr

ent and Real Time Systems: Examples @©Gay/Schneider 95)

S

~
Each process PHIL; simply cycles through a sequence

of six events:

PHIL; = sitdown; — pickup.i.(i ® 1) — pickup.i.i —
putdown.i.(i & 1) — putdown.i.i —
getup; — PHIL;

Each process CHOP; can be repeatedly picked up
and put down, but there is a choice of who picks it
up:

CHOP; =

pickup.i.i — putdown.i.i — CHOP;

O pickup.(i ©1).i = putdown.(i ©1).1 - CHOF;
Now we can look at the possible behaviour of COLLEGE.
Suppose all the philosophers sit down in order, and
then each one picks up the chopstick to his left.

What can happen next? Each PHIL; can only do
pickup.i.i, which requires synchronisation with CHOP;.
However, CHOP; has just done pickup.(i © 1).7 and
therefore can only do putdown.(i © 1).i next. This
means that there is no possible next event for COLLEGE.
We have a deadlock.

J

(Concurrent and Real Time

@©Gay/Schneider 97)




-
How can we modify COLLEGE to remove the pos-

sibility of deadlock? There are a number of obvious
but unsatisfactory ideas.

© Provide two chopsticks for each philosopher. But
if the chopsticks represent scarce resources, this
may not be feasible.

© Provide a single extra chopstick, in the middle of
the table, which can be used by any of the philoso-
phers. Similarly, this may not be feasible.

© Modify the definition of just one of the philoso-
phers, so that the chopsticks are picked up in the
opposite order. This will work (although it takes
some thought to be sure) but it breaks the sym-
metry of the system.

Instead we will try to control the way in which the
philosophers sit down, the idea being that if only 4
philosophers are seated at any one time, then even if
everyone picks up the left chopstick, one philospher
will be sitting on the left of an empty place, and can
pick up the chopstick to his right.

As we have seen, the behaviour of a system can be
controlled by adding another process in parallel, and
taking advantage of the fact that certain events re-
quire synchronisation.

o

J

(Concurrent and Real Time Systems: Examples

@©Gay/Schneider 98 )

We could consider checking the entire state space
of the system, to discover whether or not it can
deadlock. Since each philosopher has 6 states and
each chopstick has 3 states, the total number of
possible states of COLLEGE is 6° x 3%, or about
1.8 million, though not all of these will be reach-
able (since the states of the chopsticks must be con-
sistent with the states of the philosophers). Since
the effect of BUTLER is to restrict the number of
states, this is also a limit on the number of states of
NEWCOLLEGE. Systems of this complexity are
within the scope of current software tools such as

FDR.

-

~

/

(Concurrent and Real Time

@©Gay/Schneider 100)

-

o

We can define a process BUTLER with alphabet
a(BUTLER)=DU U,

where

D = {sitdowny, . .., sitdowny}

U = {getupy, ..., getups},
to control the sitting down and getting up of the
philosophers. BUTLER is defined in terms of aux-
iliary processes BUTLER,, ..., BUTLER,, all with
alphabet a( BUTLER).

BUTLERy = z: D — BUTLER,

BUTLER,; z:D — BUTLER;;
y: U —= BUTLER; ; 1<1<3

BUTLER, = y: U — BUTLER;
BUTLER = BUTLERy

The notation in the second line is shorthand for

BUTLER; =z : (DU U) — P(z)

[l

|

where

P(2)

BUTLER;, if z€ D
= BUTLER;, | if z € U.

Now we can define

NEWCOLLEGE = COLLEGE || BUTLER

A Convince yourself that NEWCOLLEGE does not
deadlock. How formal can you be?

~

_/

(Concurrent and Real Time Systems: Examples

@©Gay/Schneider 99)

/

S

< The Cyclic Scheduler <

Suppose there are a number of processes which we
need to control. Each process can be started by a
start event and uses a finish event to indicate that
it has finished. Suppose also that we want to start
the processes in order, returning to the first when the
last has been started; when a process has finished it
can be started again, but only when its turn comes
round.

We will define a scheduler, which uses start and finish
events to control the processes. The scheduler will be
implemented as a collection of cells (processes), each
of which communicates with one of the processes be-
ing controlled, and also with other cells.

The next slide has a diagram of the case where there
are 6 processes to control. @ denotes addition mod-
ulo the number of processes.

The idea is that each cell waits for a signal on the ¢
channel to its left, which means that the process to
its left has been started. Then the cell starts its own
process, and sends a signal on the ¢ channel to its
right, to tell the next cell that it can start its process.
Also, each cell has to wait for its process to do finish
before starting it again.

~

J

(Concurrent and Real Time

@Gay/Schneider 101)




In order to start everything off, one cell must begin
by starting its process instead of waiting.
STARTCELL; = start.i = c.(i®1) =
( finish.i = c.i = STARTCELL;
O c.i — finish.i - STARTCELL;)
The other processes wait for c.i
WAITCELL; = c.i — STARTCELL;
It is convenient to define
CELLy = STARTCELL,
CELL; = WAITCELL; (i>0)
and then
0<i<n
SCHED = (”{sta:t.i,ﬁnish.i,c.i,c(ie}l
{ci]|0< i< n}
\_ /)

@©Gay/Schneider 102)

y CELL;) \

(Concurrent and Real Time Systems: Examples

There are three properties which we would like to
verify for the scheduler. The first is that for each
i, the events start.i and finish.i happen alternately,
beginning with start.i. The second is that the events
start.0,. .., start.(n—1) happen in the correct cyclic
order. The third is deadlock-freedom.

For the first property, we can define a process speci-
fying alternation of start and finish for each cell:

ALT; = start.i — finish.i - ALT;

and combine them in parallel to produce a specifica-
tion for the scheduler as a whole.

0<i<n
ALTSPEC = ”{st(;t.i,ﬁnish.i} ALTZ

In this parallel combination the alphabets are all dis-
joint, and no synchronisation is required. It is simply
an independent parallel combination of the ALT pro-
cesses.

The specification
ALTSPEC Cp SCHED
can be checked with FDR.
For the second property, define
CYCLE; = start.i - CYCLE;g1 (0 <i<mn)
and specify
CYCLE, C SCHED \ {finish.i | 0 < i < n}.

o

_/

(Concurrent and Real Time Systems: Examples

@©Gay/Schneider 103)




