<& Choice between processes ¢

We have used | and menu choice to describe pro-
cesses which have alternative behaviours. We have
emphasised that | is not an operation on processes,
but can only be used in conjunction with distinct pre-
fixing events.

However, CSP does have operators which can be used
to provide a choice between two (or more) existing
processes. They are:

external choice - the environment can choose be-
tween the various processes

internal choice - the choice is made within the pro-
cess, and cannot be observed by the environment.

By the environment, we mean whatever processes are
in parallel with the process containing the choice.

The distinction between choice made by a process and
choice made by its environment is important, because
problems could arise if two processes have both been
given control over a particular choice.

(Concurrent and Real Time Systems: Choice between processes @©Gay/Schneider 68)

If the passenger is defined by

PASS = board.37.A — pay.90
— alight.37.B — STOP

then we can consider what happens when the pas-
senger and the bus service interact, i.e. when we con-
struct

SERVICE a(SERV]CE)”a(PASS) PASS.

SERVICE can behave either as BUS37 or as BUS111,
and the choice is made by the environment. The fact
that PASS can only do board.37 as its first event,
means that BUS37 is chosen.

The system behaves exactly as if we had written

SERVICE

= board.37.A — (pay.90 — alight.37.B — STOP
| alight.37.A — STOP)

| board.111.A — (pay.70 — alight.111.B — STOP
| alight.111.A — STOP)

In general, (a — P) O (b — Q) is equivalent to
a— P|b— @, and it is possible to use O instead
of | (this is what FDR does).

However, we can also write (¢ — P) O (a — Q)
(remember that a — P | a — Q is illegal) — we
will see what this means soon.

- %

(Concurrent t and Real Time Systems: Choice between processes

@Gay/Schneider 70)

o

<& External Choice ¢

The process P O @ (pronounced “P external choice
Q") is initially prepared to do any event which either
P or @) could do. After the first event, the behaviour
is either that of P or that of (), depending on which
process did the event. The choice is called “external”
because the environment (another process in parallel)
can choose the first event.

Example: The journey from A (the bus station) to
B is covered by two bus routes: the 37 and the 111.
If both buses are present at the bus station, then the
service offered to the passenger is described by the
process

SERVICE = BUS37 O BUS111.

The passenger can choose which bus to use.

Here are possible definitions:

BUS37 =
board.37.A — (pay.90 — alight.37.B — STOP
| alight.37.A — STOP)

BUS111 =
board.111.A — (pay.70 — alight.111.B — STOHR
| alight.111.A — STOP)

Note that in this case, we do not think of events such
as alight.111.B as related to input or output.

_/

((Concurrent and Real Time Systems: Choice between processes

@©Gay/Schneider 69)

/

S

~
< Defining External Choice ¢

Here are the transition rules for external choice.
P a P/ Q a Ql

POQ-*-P POQ-*-¢Q

PP Q—qQ
POQ-———POQ POQ——POgQ
The first two capture the intention that the choice
is resolved by the first event. The second two al-

low either process to change state internally without
resolving the choice.

Example: Going back to
SERVICE = BUS37 O BUS111

we have the transitions

SERVICE board.37.A

pay.90 — ... | alight.37.A — STOP

SERVICE board.111.A

pay.70 — ... | alight.111.A — STOP

J

(Concurrent and Real Time Systems: Choice between processes

@©Gay/Schneider 71)

< Internal Choice ¢

The process P M (Q describes a choice between P
and @, but the environment has no control over the
choice. Internal choice is often also known as nonde-
terministic choice. The choice is resolved internally
by the process.

Suppose the bus company agrees to provide a bus
from A to B, but does not say whether it will be the
37 or the 111. The situation at the bus station is
now described by the process

SERVICE = BUS37 M BUS111.

We should interpret this as a specification of a bus
service. The company could implement the service by
always providing bus 37, or by deciding each morning
which bus to provide, etc. The passenger has no
control over the decision, and cannot tell which bus
will be available until she arrives at the bus station.

If a system is specified by the description P M1 @,
then all of the following are acceptable implementa-
tions.

o provide both P and (), and use some internal
means to choose between them

¢ just provide P

¢ just provide @

o

J

(Concurrent and Real Time Systems: Choice between processes

@©Gay/Schneider 72)

/
<& Example ¢

Consider
SERVICE = BUS3711 BUS111

again, and put it in parallel with PASS. According to
the transition rules, the first event which SERVICE
does will be a 7 event, resulting in either BUS37 or
BUS111. All the events of PASS require synchroni-

sation, so nothing can happen until 7 has been done.

There are two ways for SERVICE to do 7. The first
results in

BUS37 o(SERVICE) ”a(PASS) PASS
and then PASS can interact with BUS37.
The other possibility results in

BUS111 a(SE‘RVIC’E‘)”a(PASS) PASS

and now the whole system stops because BUS111
and PASS cannot synchronise on any events. This
is another example of deadlock.

-

~

/

(Concurrent and Real Time Systems: Choice between processes

@Gay/Schneider 74)

o

< Internal Choice ¢

To define internal choice by means of transition rules,

we use the internal event 7. A transition P —— Q
represents a change of state which is not accompa-
nied by any observable event; it is a change of state
whose occurrence cannot be observed directly by the
environment. We use 7 transitions to model the res-
olution of an internal choice.

Here are the transition rules:

PNQ-——P PNQ-——Q
Note that these rules capture one approach to imple-
menting P M (), namely to implement both P and
@ and then choose between them at random. In or-
der to give transition rules we are forced to choose
an implementation, and this is the most general.

_/

((Concurrent and Real Time Systems: Choice between processes

@©Gay/Schneider 73)

/

S

< Another example ¢

Keep the definition
SERVICE = BUS37 M BUS111

and suppose that there is also a train service from
A to B, described by the process TRAIN. Now the
options available to the passenger are described by
the process

TRAIN O SERVICE
which expands to

TRAIN O (BUS37 1 BUS111).

We have the transition

BUS37 M BUS111 " BUS37
and so the transition rules for external choice give
TRAIN O (BUS37 1 BUS111)

TRAIN O BUS37
We can interpret this transition as the fact that one
bus service may disappear while the passenger is still
thinking about whether to take the bus or the train.

~

J

(Concurrent and Real Time Systems: Choice between processes

@©Gay/Schneider 75)

e N
If the definition of TRAIN is
TRAIN = board.train.A — alight.train.B
— STOP
then there is also the transition
TRAIN O (BUS37 1 BUS111)
board.train. A
alight.train.B — STOP
which we can interpret as the passenger choosing the
train without ever discovering which bus is available.
_ /
(Concurrent and Real Time Systems: Choice between processes @©Gay/Schneider 76)
s p
More generally, the external choice
a—>POa—-QOb—R
allows the environment to choose between a and b,
but if a is chosen then the subsequent behaviour
could be that of either P or ().
Using external choice with several occurrences of the
same prefixing event leads to nondeterminism, in the
sense that the event which is observed does not de-
termine the subsequent behaviour.
We will eventually see that
a—>POa—-Q=a—>PMNa—Q
which emphasises the fact that the environment can-
not choose between P and Q.
_ %

(Concurrent and Real Time Systems: Choice between processes

@Gay/Schneider 78)

4 N
<& Nondeterminism <&
The first form of choice, |, is a special case of external
choice. The process
a—=P|lb—Q
is equivalent to
a—POb— Q.
However, general external choice has some extra power.
Because it is possible to construct an external choice
between any two processes, we can write, for example
a—POa— Q
(recall that @ — P | a — @ is forbidden).
We consider — to have higher precedence than 0O,
so that this process is the same as
(e = P)O(a— Q).
What does this mean? The process
a—POa— Q
can either do a and then behave like P, or do @ and
behave like (). The environment cannot influence
which of these possibilities will occur: all it can do is
choose to do @ in order to interact.
\ J
((Concurrent and Real Time Systems: Choice between processes @©Gay/Schneider 77)
4 N
< Connection Diagrams <
We can think of a process P with alphabet A =
{a, b, c} as a box with three possible points of con-
nection to the outside world. Similarly, @ with al-
phabet B = {b, ¢, d}.
“{ 1 b @
If P and @ are put in parallel, b and ¢ are events
which they may (indeed must) jointly participate in.
This can be represented by joining the appropriate
lines; of course, the events b and ¢ are still available
for connection to other processes.
b
P
c
Of course we can also consider the process P 4|, @
as a single box:
b
a— PylgQ [—d
c
o %

(Concurrent and Real Time Systems: Choice between processes

@©Gay/Schneider 79)

< Generalized Operators <

We have seen binary (two-argument) forms of internal
and external choice, and parallel composition. There
are more general forms of all these operators, which
provide a compact notation for a combination of an
arbitrary number of processes.

Suppose we want to define a process RELAY with
n input channels of type T (called in.1...in.n) and
n output channels of type T (called out.1. .. out.n.
This process should receive a message on any input
channel and send it out on the corresponding output
channel, repeatedly.

We need to define

RELAY = in.1?z :— out.ll2T — RELAY
O .27z :— out.2!lzT — RELAY

O m.n?z: T — out.n!lz — RELAY .
It is possible to shorten this definition as follows:
RELAY =0;cqy,. .72 :— out.ily — RELAY

In general, if I is a finite indexing set and for each
i € I there is a process P;, then the process

Oier P
is defined.
(Concurrent and Real Time Systems: Choice between processes @©Gay/Schneider 80)

<& General Parallel ©

If I is a finite indexing set such that for each i € I
there is a process P; and an interface set A;, then
the process
icl
I P,
is defined.

Any event a requires synchronisation from all pro-
cesses P; for which a € A;.

Example: A group of people must all be present for
a meeting to take place. If N is the set of all the
people’s names, then we can define the interface and
behaviour of each person as follows.

A, = {enter.n,leave.n, meeting}

PERSON, = enter.n — PRESENT,
PRESENT, = leave.n — PERSON,,
O meeting — PRESENT,

The process
GROUP =" PERSON,

describes the situation.

- %

@Gay/Schneider 82)

(Concurrent and Real Time Systems: Choice between processes

-

o

It behaves as we would expect, given the example
above. Formally the transition rules are

a /
s jel

Oies PP’
and, to deal with internal events:

T

P; P'
Oier P Oier P
In the second rule, P] = P; for i # j.

jel

T

<& General Internal Choice ¢

The same applies to internal choice. If [is an index-
ing set (finite or infinite) and for each i € I there is
a process P;, then the process

Mier P;

is a process which can behave like any of the P;. Here
is the transition rule.

— i €1

Mier P; P;
Example: A random number generator could be de-
scribed by the process

Mien out!i — STOP

Remember that M is a specification construct.

~

_/

((Concurrent and Real Time Systems: Choice between processes

@©Gay/Schneider 81)

/

S

< Shared Resources <©

It is common in concurrent systems for a resource to
be shared between a number of processes. Examples
might be a printer or a file server, or an individual file.
It is straightforward to describe this kind of situation
by placing several processes in parallel.

Example: Two users sharing a printer:

PRINTER = requestl — print — PRINTER
request2 — print — PRINTER
requestl — workl — USERI1
request2 — work2 — USER2

O

USER1
USER2

The parallel combination
USER!1 || USER2 | PRINTER

allows each user to work independently, but requires
synchronisation on requestl and request2 events. If
both users want to print at the same time, one of
them gets in first and the other has to wait.

This is fine, although there is nothing to prevent
USER]1 from getting access to the printer every time,
and excluding USER2.

~

J

(Concurrent and Real Time Systems: Choice between processes

@©Gay/Schneider 83)

o

<& Deadlock ©

Now consider a situation in which there are two shared
resources, and both of them must be acquired before
some task can be carried out. One example would
be two shared files, and two programs, both of which
need access to both files simultaneously.

Here is an example borrowed from Schneider. Two
children share a paintbox and an easel. If one child
wants to paint, she has to find the box and the easel;
after painting, she drops both the box and the easel.
ELLA =

(ella.get.box — ella.get.easel — ella.paint —
ella.put.box — ella.put.easel — ELLA)

O (ella.get.easel — ella.get.box — ella.paint —
ella.put.easel — ella.put.box — ELLA)

KATE =
(kate.get.box — kate.get.easel — kate.paint —
kate.put.box — kate.put.easel - KATE)
O (kate.get.easel — kate.get.box — kate.paint —
kate.put.easel — kate.put.box — KATE)

J

(Concurrent and Real Time Systems: Choice between processes

@©Gay/Schneider 84)

/

-

~

Another example (also from Schneider): two furniture
movers who need to move a table and a piano. Each
object requires two people to lift it.

PETE = lift.piano — PETE
lift.table - PETE

3

DAVE = lift.piano — DAVE
lift . table — DAVE

|

TEAM = PETE | DAVE

If both people make the same choice, they are able
to cooperate in lifting an object. If their choices are
different, then the result is deadlock:

PETE —— lift.piano — PETE

DAVE — lift.table - DAVE
and

lift.piano — PETE || lift.table — DAVE
cannot do anything; it is equivalent to STOP, or
deadlock.

A Draw a transition diagram for this system, includ-
ing the 7 transitions.

/

(Concurrent and Real Time Systems: Choice between processes

@Gay/Schneider 86)

-

The easel and the box can each be used by just one
child at a time.

EASEL =
ella.get.easel — ella.put.easel - EASEL
O kate.get.easel — kate.put.easel — FASEL

BOX =
ella.get.boxr — ella.put.boxr — BOX
O kate.get.box — kate.put.box — BOX

The combination of the two girls, the box and the
easel is

PAINTING = ELLA || KATE || EASEL | BOX

There is a problem with these definitions. If both
children decide to paint at about the same time, it is
possible that one of them finds the box (for example,
ella.get.box happens) and then the other finds the
easel (for example, kate.get.easel). Then none of
the processes can do another event: ELLA is wait-
ing to do ella.get.easel and KATE is waiting to do
kate.get.boz. In effect, each child is waiting for the
other, and nothing happens. The system as a whole,
after doing two events, has reached a state of STOP.
This is an example of a deadlock.

A Draw a transition diagram for this system.

o

_/

((Concurrent and Real Time Systems: Choice between processes

@©Gay/Schneider 85)

If the definition of PETE is changed, then the prob-
lem can be avoided:

PETE' = lift.piano — PETE
O lift.table - PETE

In these examples, our intention was to produce a
system whose behaviour continues indefinitely, and
we view termination (reaching STOP) as deadlock.
If we want to distinguish between intended and un-
intended termination, then we can introduce a new
event to indicate successful termination. (Conven-
tional CSP notation for such an event is v/, and the
process SKIP is defined by v — STOP. Roscoe's
presentation of CSP deals with SKIP in detail; we
will not use it.)

In general, if we want to check whether a given pro-
cess can deadlock, we have to examine all its possible
behaviours (effectively constructing a state transition
diagram) and look to see whether any STOP states
appear. An alternative is to exploit regularity in the
structure of the process to construct a mathematical
argument proving that deadlock is impossible.

FDR can check for possible deadlocks in a system,
and is able to handle reasonably large systems (con-
taining a few million states) efficiently.

S

~

J

(Concurrent and Real Time Systems: Choice between processes

@©Gay/Schneider 87)

< Livelock ¢

An attempt to prevent ELLA and KATE from dead-
locking might adapt ELLA’s description so that she
can return items before they have been used, rather
than wait indefinitely for them to become available.
Thus extra choices are introduced for ELLA when
she holds only one item.

ELLA = ella.get.box —
(ella.put.box — ELLA
O ella.get.easel — ella.paint —
ella.put.box — ella.put.easel - ELLA
O ella.get.easel —
(ella.put.easel — ELLA
O ella.get.box — ella.paint —
ella.put.easel — ella.put.box — ELLA

If we are interested only in the paint events, then we
might hide the put and get events. The system we
wish to consider is

SYSTEM = PAINTING \ INT
where

INT = {ella, kate}.{put, get}.{ easel, box}

(Concurrent and Real Time Systems: Choice between processes @©Gay/Schneider 88)

¢ Channels and Connections <&

COPYBIT = in?x :— out!ls — COPYBIT
where we suppose that
in(COPYBIT) = out(COPYBIT) = {0,1}.

COPYBIT has two channels, in and out. It re-
peatedly receives a single bit on the in channel and
outputs it on the out channel.

a(COPYBIT) = {in.0, in.1, out.0, out.1}.

By convention, a channel is used for communication
between two processes, and in one direction only.
Each channel of a process is either an output channel
or an input channel, according to its use.

In connection diagrams, channels are drawn as ar-
rows, labelled with the channel name.

N _copyBIT out

- %

@Gay/Schneider 90)

(Concurrent and Real Time Systems: Choice between processes

-

However, it is possible for ELLA to loop forever, re-
peatedly getting an item and then immediately putting
it back, without achieving any painting. Because
these events are all hidden, this becomes an infinite
loop of 7 events. This is what CSP calls livelock, or
divergence—the possibility of an infinite sequence of
T events.

FDR can be used to detect divergence, and indeed
detects it for this example. (Select “Livelock” from
the tabs below the menu bar, then select SYSTEM
in the “Implementation” field. Clicking on “Check”
does a check for divergence.) A process that can
diverge can never be guaranteed to make any real
progress.

Because the parallel operator in CSP does not make
any guarantees about how often each process will
be executed, (it is not necessarily fair to KATE or
ELLA) and the choice operator makes no guarantees
about how often each of its options will be executed,
it is possible for this painting system to execute for
ever without performing a paint event. However, a
real implementation might well be fair to KATE,
and thus not be divergent in practice. Care is needed
to ensure that the situation detected by FDR would
really arise in the situation being modelled.

o

~

_/

((Concurrent and Real Time Systems: Choice between processes

@©Gay/Schneider 89)

/
A variation on COPYBIT is an inverter:

NOT = in?z :— out!(l — z) - NOT

This illustrates the way that in general an output
value may be an expression involving values which
have previously been input.

Suppose we want to connect two copies of NOT
together, so that the output of one becomes the input
of the other.

in -out in -out

We would like to do this by placing them in parallel,
but there is a problem: an input in.0 or in.1 is am-
biguously an input for both processes, and there is no
link between the out channel on the left and the in
channel to which it should be connected.

To solve this problem we introduce some new nota-
tion: renaming. Defining two functions f and g on
events by

f(out.z) = mid.z

g(out.z) = out.x

g(in.z) = mid.z

(so we have also introduced a new channel called
mid) then f(NOT) is NOT with all events renamed
according to f.

S

~

J

(Concurrent and Real Time Systems: Choice between processes

@©Gay/Schneider 91)

o

f(NOT) behaves as if defined by
f(NOT) = in?z :— mid!(1 — z) — f(NOT)
and similarly g(NOT') behaves as if defined by
g(NOT) = mid?z :— out!(l — z) — g(NOT).

In general, if P is any process and f : a(P) — Ais a
function, the f(P) has alphabet A and has transitions
defined by

a

P P’
f(a
1) g ()
Now we can form f(NOT) || g(NOT), and events
on the mid channel represent messages sent from

f(NOT) to g(NOT). Synchronisation is required
for the events mid.0 and mid.1.

A possible sequence of transitions of f(NOT) || g(NOT)

IS:

(in.1, mid .0, out.1, in.0, mid.1, in.0)

J

(Concurrent and Real Time Systems: Choice between processes

@©Gay/Schneider 92)

o

In general if ¢ is an output channel of P and an input
channel of @), then in P || ¢ communication occurs
on channel ¢ each time P does the event c.v (outputs
message v) and @) simultaneously does the event c.v
(inputs message v). @ is prepared to accept any c.z,
so it is P which determines the actual message.

We require ¢(P) = ¢(Q). We can then write ¢ for
c(P).

In f(NOT) || g(NOT) the mid.0 and mid.1 events
are visible outside the system. Potentially they could
be interfered with by other processes, although we
would not normally want this to happen; for example,

f(NOT) || g(NOT) || STOP a
cannot do the mid events.

The hiding operator can be used to convert mid into
a local channel:

(F(NOT) || g(NOT)) \ mid.

_/

((Concurrent and Real Time Systems: Choice between processes

@©Gay/Schneider 93)

