< Input and Output ¢

So far we have treated all events in the same way,
regardless of whether they are thought of as inputs or
outputs. It is useful, however, to introduce separate
notation for inputs and outputs.

We will use events of the form c.v where ¢ is the
name of a channel and v is the value of a message
passing along the channel. Each channel has a type,
which is simply the set of possible values which can
be transmitted along it. If the type of c is T, then
the set of events associated with ¢ is {c.t | t € T'}.

We can define two new forms of prefixing. The pro-
cess c!lv — P outputs the message v on the channel
¢ and then behaves like P. We require v € T, where
T is the type of ¢. In fact, ¢clv - P =cv — P
(using the ordinary prefix notation), but the c!v no-
tation emphasises the fact that ¢ and v are viewed
as a channel and a message.

The process c?z : T — P(z) is prepared to input
any value z of type T, and then behave like P(z).
In the ordinary menu choice notation,

c’t: T — P(z)=

y:{c.z|z€ T} — P(message(y)),

where, if y = c.z, message(y) = 2.

(cConcurr

ent and Real Time Systems: Specification @©Gay/Schneider 61)

-

<& Specifications ¢

Recall the definitions for the specification of the sys-
tem consisting of the student and the college.

STUDENT = yearl — (pass — YEAR2
| fail = STUDENT)

YEAR2 = year2 — (pass — YEAR3
| fail -» YEAR2)
YEAR3 = year3 — (pass — graduate — STOH

| fail — YEAR3)

COLLEGE = fail — CF | pass — C1
C1 = fail - CF | pass — C2
C2 = fail —» CF | pass — prize — STOP

CF = fail - CF O pass — CF
SYSTEM = STUDENT ||, COLLEGE
Initially we defined

SPECF = pass — SPECF | fail - SPECF
SPEC = pass — SPEC1 | fail - SPECF

SPEC1 = pass — SPEC?2 | fail - SPECF

SPEC?2 = pass — prize — STOP | fail - SPECF

but the specification
SPECP Cp SYSTEM

is not quite what we want, because it does not allow
SYSTEM to do yearl, year2, year3 or graduate.

/

(Concurr

Specificati @Gay/Schneider 63)

ent and Real Time

~

We can define input and output prefixes, using la-
belled transition rules, as follows.

(clv —» P)-2%.p

[ve T
(c?z: T — P(z)) "~ P(v)

Example:

COPYBIT = in?z : {0,1} — outls - COPYBIT

COPY = in?z : N = outlz — COPY

SQUARE = in?z : Z — out!(z+z) - SQUARE

_/

(concurr

ent and Real Time Systems: Specification @©Gay/Schneider 62)

S

~
<& The Correct Specification <

To allow for yearl, year2, year3 and graduate we
defined

EXTRA = yearl - EXTRA
| year2 — EXTRA
| year3 — EXTRA
| graduate — EXTRA

and then
SPEC = SPECP |, EXTRA
where
SP = {pass, fail, prize}
E = {yearl, year2, year3, graduate}.

In general, to simplify the definition of processes such
as FEXTRA, we can define, for any set A of events,
the process RUN 4.

RUNy=z:A— RUN4
Then EXTRA = RUN g, and SPECF = RUN (s jat-

J

(Concurr

ent and Real Time Specificati @©Gay/Schneider 64)

o

¢ Hiding ©

There is an alternative approach to this kind of spec-
ification. Instead of putting a process in parallel with
the specification to generate the events which we
don't care about, we can hide those events from the
process being specified.

If we define
NEWSYSTEM =
SYSTEM \ {yearl, year2, year3, graduate}

then the behaviour of NEWSYSTEM is derived from
that of SYSTEM by making the listed events invisi-
ble. The traces of NEWSYSTEM are the traces of
SYSTEM with these events removed.

Now we can simply write
SPEC Cr NEWSYSTEM.

as the specification. SPEC only involves the events
which we are interested in, and the hiding in the defi-
nition of NEWSYSTEM shows which events we are
leaving out of the specification.

J

(Concurrent and Real Time Systems: Specification

@©Gay/Schneider 65)

/

-

< Defining Hiding ¢

The transition rules defining hiding are

a

P——PFP _ [,c4
P\A-"-P\ 4

a

P
P\ 4

P lagA
P\ A

a

As we saw when using FDR, the hidden events are re-
placed by 7, representing “silent” or “internal” events.
T events are not normally included in traces, although
as we have seen, FDR can show where in a trace the
T events occur. When we discuss traces, we will not
include 7.

~

/

(Concurrent and Real Time

Specificati @Gay/Schneider 67)

¢ Using Hiding <

Returning to the level crossing example, there is an al-

We can use hiding to avoid specifying the events
which we don't care about. In this case, all we want
to do is specify that crash never occurs.

If we hide all the events except crash from SYSTEM
(or SAFE_SYSTEM) then all we need for the spec-
ification is a process which never does crash:

STOP Cy SYSTEM \ (Ex U E¢ U Eg)

o

ternative approach to specifying the desired behaviour.

_/

(Concurrent and Real Time Systems: Specification

@©Gay/Schneider 66)

