Practical Class 4 — Specifications!

This practical class uses FDR to investigate some more specifications.

Getting Started

1. Move to your CSP directory, and start an editor.

2. Type £dr2 &. You should see two windows: one entitled “FDR”, and
a file chooser window.

The Level Crossing

1. Copy the file crossing.fdr2 to your directory, and load it into your
editor and FDR. It contains the definitions for the first version of the
level crossing from lectures. There are six assertions, corresponding to
safety of SYSTEM and SAFE_SYSTEM, expressed in three different
ways. Check all the assertions.

2. Notice that when all the events except crash are hidden, and SYSTEM
fails to satisfy the specification, selecting “Debug” from the “Assert”
menu does not show all of the trace; all the events except crash are
replaced by “_tau”, which is ASCII for 7. This is what happens when
events are hidden; they get replaced by 7, which is a “silent” or “in-
ternal” event. Therefore there seems to be less information available
about the trace which causes the specification to fail. However, by
double-clicking on the process definitions which are shown on the left
of the debug window, it is possible to see the actual events, generated
by parts of the system, which correspond to the 7 events. Try this,
and see that in fact you can find out just as much about the behaviour

of the process as you could when the events were not hidden.

3. The CONTROL process is defined in a particular way, but there are
other possibilities. The definition in the file (and in the lecture notes)
raises the gate immediately after a train has gone through the crossing.
However, at a real level crossing, the gate stays down if another train

! This practical sheet is provided as course material to accompany the book ‘Concurrent
and Real Time Systems’.



is approaching. Change the definition of CONTROL so that it works
in this more sophisticated way, and check the assertions again.

Peterson’s Algorithm

The mutual exclusion problem is concerned with ensuring that two concur-
rently executing threads of control do not both reach a critical region of their
code at the same time. This is important if a program requires exclusive
control over resources such as memory in order to be sure of giving the right
result.

Peterson’s algorithm provides one way of achieving mutual exclusion for two
concurrent processes process 1 and process 2. It is described in pseu-
docode as follows:

program peterson;
(* Peterson’s two-process mutual exclusion algorithm *)

var
integer turn := 1;
boolean flagl := false;
boolean flag2 := false;

process 1;

begin
while true do
{flagl:= true; (* announce intent to enter *)
turn:= 2; (* give priority to other process *)

while flag2 and (turn = 2) do null;
CRITICAL SECTION 1
flagl:= false
}end
end;

process 2; (* similar *)

1. Copy the file petersonl.fdr2 to your directory, and load it into your
editor and FDR. It contains the (lengthy!) CSP definition of Peter-
son’s algorithm for mutual exclusion. Define a process SPEC so that



SPEC C; SYSTEM is a specification of mutual exclusion between
P1 and P2, and use FDR to check that Peterson’s algorithm does
guarantee mutual exclusion.

2. The file peterson2.fdr2 contains a shorter CSP definition of Peter-
son’s algorithm. The use of channels instead of individual events makes
the definitions of the processes and alphabets smaller. (Notice that
FLAG1 and FLAG?2 are essentially the same.) Read the definitions
and see how they correspond to version 1.

Dekker’s Algorithm

1. The following is pseudocode for Dekker’s algorithm, the first mutual
exclusion algorithm to be discovered.

(*x Dekker’s solution to the mutual exclusion problem *)

integer turn := 1;
boolean flagl := false ;
boolean flag2 := false;

process 1;
while true do
{flagl := true;
while flag2 do
{flagl := false;
while turn = 2 do null;
flagl := true

};
CRITICAL SECTION 1
turn := 2;
flagl := false

}

process 2; (* similar *)

Produce a CSP model of Dekker’s Algorithm, following the example
of either petersonl.fdr2 or peterson2.fdr2, as you prefer. Check
that mutual exclusion is guaranteed.



