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Probabilistic Networks

• Bayesian Networks (BNs) were 
introduced by Judea Perl in 1985 
(2011 Turing Award Winner)

• A BN is a DAG D=(V,A) plus tables 
associated with the nodes of the 
network

• In addition to Bayesian networks, also 
other probabilistic networks have been 
considered: Markov Random Fields, 
Factor Graphs, etc.
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Judea Pearl
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Example: 
A Bayesian
Network
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Applications

• diagnosis

• computational biology 

• document 
classification

• information retrieval

• image processing 

• decision support

• etc.
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A BN showing the main pathophysiological 
relationships in the diagnostic reasoning 
focused on a suspected pulmonary embolism 
event



APAC 2012 Stefan Szeider

Computational Problems
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Computational Problems

• BN Reasoning: Given a BN, compute the 
probability of a variable taking a specific value
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BN Learning and Local Scores
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Local Score Function
f(n,P)=score of node n with P ⊆V 
as its in-neighbors (parents)
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Our Combinatorial Model

• BN Structure Learning: 

Input: a set N of nodes and a local sore 
function f (by explicit listing of nonzero 
tuples)

Task: find a DAG D=(N,A) such that 
the sum of f(n,PD(n)) over all nodes n
is maximum.
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Example
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An Improved Dynamic Programming Algorithm for Exact

Bayesian Network Structure Learning

Sebastian Ordyniak and Stefan Szeider1

Exact Bayesian Network Structure Learning

Problem: Given a local score function f over a set of nodes N find a
Bayesian network (BN) on N whose score is maximum with respect to f .

n P f(n, P)
a {d} 1
a {b, c, d} 0.5
b {a, f} 1
c {e} 1
d ; 1
e {b} 1
f {d} 1
g {c, d} 1

A local score function f

7!

a

b c d

e f g

An optimal BN for f

Exact Bayesian Network Structure Learning is NP-hard.

Dynamic Programming over a Tree Decomposition

a, b, c, d

b, c, d

e, b, c f , b, d g, c, d

Idea: Use a tree decomposition of a super-structure to find an optimal
BN via dynamic programming (Ordyniak and Szeider, UAI 2010).

Method:
I Compactly represent locally optimal (partial) BNs via records ( ).
I Compute the set of all records that represent locally optimal (partial)

BNs for each node of the tree decomposition in a bottom-up manner.

Bottleneck: Large Number of Records!

References

I S. Ordyniak, S. Szeider, Algorithms and complexity results for exact
Bayesian structure learning, in: P. Grünwald, P. Spirtes (Eds.),
Proceedings of UAI 2010, The 26th Conference on Uncertainty in
Artificial Intelligence, Catalina Island, California, USA, July 8-11, 2010,
AUAI Press, Corvallis, Oregon, 2010.

I I. Tsamardinos, L. Brown, C. Aliferis, The max-min hill-climbing
Bayesian network structure learning algorithm, Machine Learning 65
(2006) 31–78.

I E. Perrier, S. Imoto, S. Miyano, Finding optimal Bayesian network given
a super-structure, J. Mach. Learn. Res. 9 (2008) 2251–2286.

Super-structure

Idea: Restrict the search to BNs whose skeleton is contained inside an
undirected graph (the super-structure).

I A good super-structure contains
an optimal solution.

I A super-structure can be
efficiently obtained, e.g., using
the tiling algorithm.

a

b c d

e f g

Dynamic Lower Bound Approach

Idea: Ignore records that do not represent optimal BNs.

a, b, c, d

b, c, d

e, b, c f , b, d g, c, d

X

X

X X

Method:
I For every record R compute a lower bound and an upper bound for

the score of any BN represented by R.
I Ignore all records whose upper bound is below the minimum of the

lower bounds over all records seen so far.

Experimental Results

We compared the algorithm without (no LB) to the algorithm with the
dynamic lower bound (LB) on the Alarm network.

running time (s) memory usage (MB)
super-structure no LB LB no LB LB
SSKEL 14 7 337 180
STIL(0.01) 20785 6393 15679 5346
STIL(0.05) 46560 16712 38525 18786
STIL(0.1) 44554 16928 38520 18918

I SSKEL is the skeleton of the Alarm network.
I STIL(↵) is a super-structure learned with the tiling algorithm, for the

significance level ↵.

The dynamic lower bound approach reduces the running time and the
memory usage by about a half or more!
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A local score function
An optimal BN 
structure

Heuristic Algorithms: find first an undirected graph, then greedily orient 
the edges, then do local search for improving the orientation
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NP-Hardness

• Proof: By reduction from FAS
(NP-h for max deg  4, [Karp 1972])

10

v

u’u

v

u’u

f(x,{u})=1 f(x’,{u’})=1

f(v,{x})=1
f(v,{x’})=1
f(v,{x,x’})=2

x x’

Theorem: BN Structure Learning is NP-hard. 
[Chickering 1996]  
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Very Few Polynomial Cases
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Theorem: An optimal branching 
can be found in polynomial 
time. (Chu and Liu 1965, Edmonds 1967)  
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Towards Finding Optimal Polytrees
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Exact Probabilistic Network Structure Learning

Problem: Given a local score function f over a set of nodes N find a DAG
on N whose score is maximum with respect to f .

v P fv(P)
3 {1} 1
4 {1} 0.1
5 {1} 0.5
5 {1, 2} 1
6 {4} 0.9
6 {3, 4} 1
7 {5} 0.9
7 {4, 5} 1

A local score function f

7!

1 2

3 4 5

6 7
An optimal DAG for f

Exact Probabilistic Network Learning is NP-hard.

Known Results

1 2

3 4 5

6 7

1 2

3 4 5

6 7
A polytree A branching

Restricting the structure of the resulting DAG has lead to the following
results:

I An optimal branching can found in polynomial time (Chu and Liu,
1965;Edmonds, 1967).

I Finding an optimal polytree is NP-hard (Dasgupta, 1999).

Our Result

Main Result: For every constant k an optimal k-branching can be found
in polynomial time.

1 2

3 4 5

6 7
A 2-branching

Remark: k-branchings are in between branchings and polytrees.

Our Method

(I) Guess an augmented arc set S := D [ D0:

1 2

3 4 5

6 7

Guess two sets D and D0 of at most k
arcs each, such that:

I The undirected graph induced by the
arcs in S := D [ D0 is acyclic.

I D0 contains only arcs whose heads
are also the heads of arcs in D.

I No two arcs in D0 have the same
head.

(II) Find an optimal extension A for S:

1 2

3 4 5

6 7

Using the weight function
w(u, v) := fv({u}) � fv(;) compute a
set A of arcs that is a heaviest common
independent set of the following two
matroids:

I The in-degree matroid M1(S)
contains all arc sets B such that no
arc in B has a head that is also a
head of an arc in S and no two arcs of
B share the same head;

I The acyclicity matroid M2(S) contains
all arc sets B such that the undirected
graph induced by the arcs in B [ S is
acyclic.

An arc set S [ A with maximum score is an optimal k-branching.

Running Time: Because there are at most n3k possible arc sets S and a
heaviest common independent set A for M1(S) and M2(S) can be found
in time O(n4) (Brezovec et al., 1986) the overall running time of the
algorithm is O(n3k+4).

Open Problems

I Can we find an optimal k-branching in time O(f(k)p(|N|)) for some
computable function f and polynomial p, i.e., is the problem to find
an optimal k-branching fixed-parameter tractable for parameter k?

I Can we generalize k-branchings from polytrees to DAGs, i.e., can we
efficiently find a maximum-score DAG that can be turned into a
branching by the deletion of at most k arcs?

References
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14 (1965) 1396–1400.
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Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence,
Stockholm, Sweden, July 30-August 1, 1999, Morgan Kaufmann, 1999, pp. 134–141.

I C. Brezovec, G. Cornuéjols, F. Glover, Two algorithms for weighted matroid
intersection, Mathematical Programming 36 (1) (1986) 39–53.

Theorem: Finding an optimal 
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• Identify a parameter k of the 
problem

• Aim: solve the problem in time 
f(k)nc

fixed-parameter tractable (FPT)

• XP: solvable in time nf(k)

• W-classes:  
FPT ⊆W[1] ⊆W[2]⊆···⊆ XP

12

Downey and Fellows: 
Parameterized Complexity
Springer 1999

Parameterized Complexity
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Parameters for BN 
Structure Learning?

1. Parameterized by the treewidth (of the 
super structure)

2. Parameterized Local Search

3. Parameterized by distance from being a 
Branching

13
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1.

BN Structure learning 

parameterized by the treewidth 

(of the super structure)
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The Super Structure

• Super structure Sf of a local score function f is the undirected 
graph Sf=(N,E) containing all edges that can participate in an 
optimal DAG [Perrier, Imoto, Miyano 2008]

15
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Exact Bayesian Network Structure Learning is NP-hard.

Dynamic Programming over a Tree Decomposition

a, b, c, d
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e, b, c f , b, d g, c, d

Idea: Use a tree decomposition of a super-structure to find an optimal
BN via dynamic programming (Ordyniak and Szeider, UAI 2010).

Method:
I Compactly represent locally optimal (partial) BNs via records ( ).
I Compute the set of all records that represent locally optimal (partial)

BNs for each node of the tree decomposition in a bottom-up manner.

Bottleneck: Large Number of Records!
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Super-structure

Idea: Restrict the search to BNs whose skeleton is contained inside an
undirected graph (the super-structure).

I A good super-structure contains
an optimal solution.

I A super-structure can be
efficiently obtained, e.g., using
the tiling algorithm.

a

b c d

e f g

Dynamic Lower Bound Approach

Idea: Ignore records that do not represent optimal BNs.

a, b, c, d

b, c, d

e, b, c f , b, d g, c, d

X

X

X X

Method:
I For every record R compute a lower bound and an upper bound for

the score of any BN represented by R.
I Ignore all records whose upper bound is below the minimum of the

lower bounds over all records seen so far.

Experimental Results

We compared the algorithm without (no LB) to the algorithm with the
dynamic lower bound (LB) on the Alarm network.

running time (s) memory usage (MB)
super-structure no LB LB no LB LB
SSKEL 14 7 337 180
STIL(0.01) 20785 6393 15679 5346
STIL(0.05) 46560 16712 38525 18786
STIL(0.1) 44554 16928 38520 18918

I SSKEL is the skeleton of the Alarm network.
I STIL(↵) is a super-structure learned with the tiling algorithm, for the

significance level ↵.

The dynamic lower bound approach reduces the running time and the
memory usage by about a half or more!
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undirected graph (the super-structure).

I A good super-structure contains
an optimal solution.

I A super-structure can be
efficiently obtained, e.g., using
the tiling algorithm.
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Dynamic Lower Bound Approach

Idea: Ignore records that do not represent optimal BNs.
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Method:
I For every record R compute a lower bound and an upper bound for

the score of any BN represented by R.
I Ignore all records whose upper bound is below the minimum of the

lower bounds over all records seen so far.

Experimental Results

We compared the algorithm without (no LB) to the algorithm with the
dynamic lower bound (LB) on the Alarm network.

running time (s) memory usage (MB)
super-structure no LB LB no LB LB
SSKEL 14 7 337 180
STIL(0.01) 20785 6393 15679 5346
STIL(0.05) 46560 16712 38525 18786
STIL(0.1) 44554 16928 38520 18918

I SSKEL is the skeleton of the Alarm network.
I STIL(↵) is a super-structure learned with the tiling algorithm, for the

significance level ↵.

The dynamic lower bound approach reduces the running time and the
memory usage by about a half or more!
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Exact Bayesian Network Structure Learning

Problem: Given a local score function f over a set of nodes N find a
Bayesian network (BN) on N whose score is maximum with respect to f .

n P f(n, P)
a {d} 1
a {b, c, d} 0.5
b {a, f} 1
c {e} 1
d ; 1
e {b} 1
f {d} 1
g {c, d} 1

A local score function f

7!
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An optimal BN for f

Exact Bayesian Network Structure Learning is NP-hard.

Dynamic Programming over a Tree Decomposition

a, b, c, d

b, c, d

e, b, c f , b, d g, c, d

Idea: Use a tree decomposition of a super-structure to find an optimal
BN via dynamic programming (Ordyniak and Szeider, UAI 2010).

Method:
I Compactly represent locally optimal (partial) BNs via records ( ).
I Compute the set of all records that represent locally optimal (partial)

BNs for each node of the tree decomposition in a bottom-up manner.

Bottleneck: Large Number of Records!
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Method:
I For every record R compute a lower bound and an upper bound for

the score of any BN represented by R.
I Ignore all records whose upper bound is below the minimum of the

lower bounds over all records seen so far.

Experimental Results

We compared the algorithm without (no LB) to the algorithm with the
dynamic lower bound (LB) on the Alarm network.

running time (s) memory usage (MB)
super-structure no LB LB no LB LB
SSKEL 14 7 337 180
STIL(0.01) 20785 6393 15679 5346
STIL(0.05) 46560 16712 38525 18786
STIL(0.1) 44554 16928 38520 18918

I SSKEL is the skeleton of the Alarm network.
I STIL(↵) is a super-structure learned with the tiling algorithm, for the

significance level ↵.

The dynamic lower bound approach reduces the running time and the
memory usage by about a half or more!
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Figure 7: An example for the graph G and the super-structure Sf according to the con-
struction used in the proof of Theorem 3.
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Figure 8: The example graph G from Figure 7 together with an edge set E0, given as the
bold edges in the illustration of G, and the resulting dag D(E0).

Before we go on to show Claim 5 we give some further notation and explanation. Let
E0 ✓ E(G). We denote by V (E0) the set of all nodes incident to edges in E0, i.e., the
set

S
e2E0 e. We say that E0 is representable if for every 1  i < j  k it contains at

most one edge between a node in Vi and a node in Vj . We define eij(E0) = {vi, vj} if E0

contains the edge between vi 2 Vi and vj 2 Vj and eij = ; otherwise. We define D(E0) to
be the directed graph with node set N and arc set { (v, aij) : v 2 eij(E0) and 1  i < j 
k } [ { (aij , v) : v /2 eij(E0) and 1  i < j  k }. Figure 8 shows D(E0) for a representable
edge set of the example graph G from Figure 7.

The main idea to show Claim 5 is that f(D) � s if and only if D has the form D(E0) for
a representable edge set E0 that corresponds to a k-clique in G. This is formally expressed
by the following claim whose proof can be found in the appendix.

21

MCC instance, k=3
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Theorem: BN Structure Learning is in XP when 
parameterized by the treewidth of the super 
structure. 

Proof: dynamic programming along a nice tree decomposition
For each node U of the tree decomp. we compute a table T(U).

T(U) gives the the highest possible score any partial solution (below U) 
can achieve 
• for a given chosen parents of the nodes in the bag, and 
• for a given reachability between nodes in the bag by directed paths. 

Corollary: If the super-structure has bounded 
degree, then we get fixed-parameter tractability



APAC 2012 Stefan Szeider

Experiments

18

• Alarm Network: 37 nodes
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Experiments

• Bottleneck: huge tables:

• SharpLib for dynamic programming

• Dynamic Lower Bound approach (LB)

• Ongoing improvements

19

Function MaxScore
Input: a set F of nodes with F ✓ N
and a node n 2 N \ F
Output: maxP2Pf (n)^P\F=;f(n, P )

ms = �1

for all P 2 Pf (n) do
if P \ F = ; and ms  f(n, P ) then

ms = f(n, P )

return ms

hh

Function UpperBound
Input: t 2 V (T )

Output: ub(t)
ub = 0

for each n 2 Ut do
ub = ub + MaxScore(n, ;)

return ub

hh

Figure 2: The pseudo-code for the functions MaxScore (Left) and UpperBound (Right).

compute the score according to the Akaike Information Criterion (AIC) [1], which is the default
scoring criterion provided by BNLEARN. It is however possible and straightforward to use any other
type of local score function as an input to the algorithm. The local score function together with the
super-structure is then fed into a C++ implementation of the algorithm from Section 4. For our im-
plementation we use SHARPLIB [21], a library for decomposition-based algorithms. To compute the
tree decomposition of the super-structure the algorithm uses the Greedy-Fill-In heuristic [2]. Using
upper bound and lower bound heuristics from LIBTREEWIDTH [15] we found that the Greedy-Fill-In
heuristic is able to compute an optimal tree decomposition for the considered super-structures using
negligible time. For all our experiments we use a single Opteron 6176SE core with 128 GB of RAM.

Characteristics of S
f

running time (s) memory usage (MB)
S
f

|V (S
f

)| |E(S
f

)| �(S
f

) tw(S
f

) no LB LB no LB LB
SSKEL 37 46 6 3 14 7 337 180
STIL(0.01) 37 62 7 5 20785 6393 15679 5346
STIL(0.05) 37 63 7 5 46560 16712 38525 18786
STIL(0.1) 37 65 7 5 44554 16928 38520 18918

Table 1: The characteristics of the considered super-structures and the running time and memory usage needed
without (no LB) and with (LB) the dynamic lower bound approach.

We consider two kinds of super-structures as an input to the algorithm:

• The skeleton SSKEL of the Alarm network.
• Super-structures STIL(↵) learned with the tiling algorithm [23] for a significance level ↵ 2

{0.01, 0.05, 0.10}.

For the super-structures learned with the tiling algorithm we additionally bound the in-degree of
the resulting BN by 2 in order to reduce the search space. Because the Alarm network contains
only 3 nodes with an in-degree greater than 2 (of which 2 have in-degree 3 and 1 has in-degree 4)
bounding the in-degree by 2 is only a weak restriction. Table 1 shows the characteristics of these
super-structures and the running time and memory usage of the algorithm with and without the
dynamic lower bound approach. It can be seen that the dynamic lower bound approach reduces both
the running time and the memory usage of the algorithm by about a half or more.

7 Conclusion

We have presented an improvement for a dynamic programming algorithm for exact BN structure
learning that utilizes super-structures of bounded treewidth. The improvement is based on a dynamic
computation of lower and upper bounds that permit to ignore certain records that do not represent
optimal solutions. Our experiments show that our approach leads to a significant reduction in both
the running time and the memory usage and thus improves the practical feasibility of the dynamic
programming approach.
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2.

BN Structure Learning 

parameterized local search
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Local Search

• Once we have a candidate BN, we can try 
to find a better one by local editing.

• We consider three local editing operations:

ADD - add an arc

DEL - delete an arc

REV - reversing an arc

• We parameterize by the number k of edits 
we can make in one step.

21
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k-Local Search

• Parameterizing LS problems by the number 
of changes in one step has been suggested 
by Fellows 2003

• Since then a series of paper on that 
parameterized local search have been 
published, considering, among others:
TSP, Max-SAT,  Max-Cut, Vertex Cover, Weighted 
SAT, Cycle Traversals, Stable Matchings, etc. 

22
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Results
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operations complexity
ADD PTIME

DEL PTIME

REV W[1]-h

ADD,DEL W[1]-h

ADD,REV W[1]-h

DEL,REV W[1]-h

ADD,DEL,REV W[1]-h

Theorem:Except for {ADD} 
and {DEL} all problems are 
W[1]-hard.

Hardness even holds for instances 
of bounded degree. 
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operations complexity
ADD PTIME

DEL PTIME

REV W[1]-h

ADD,DEL W[1]-h

ADD,REV W[1]-h

DEL,REV W[1]-h

ADD,DEL,REV W[1]-h

Theorem:Except for {ADD} 
and {DEL} all problems are 
W[1]-hard.

Hardness even holds for instances 
of bounded degree. 

Does it help to bound the degree?
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W[1]-hardness for bounded 
degree

• All known parameterized LS problems 
are FPT for instances of bounded degree. 

• Almost all W[1]-hard problems are FPT 
for graphs of bounded degree. 

• Red/Blue Nonblocker isn’t an exception.

• We have now a new proof by reduction 
from Independent Set (we don’t need the 
reduced graph to have bounded degree). 

24
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3.

BN Structure Learning 

parameterized by distance from being a 
branching
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Beyond Branchings
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Theorem: An optimal branching can 
be found in polynomial time. 
[Chu and Liu 1965, Edmonds 1967]  
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Towards Finding Optimal Polytrees

Serge Gaspers1, Mikko Koivisto2, Mathieu Liedloff3, Sebastian Ordyniak1 and Stefan Szeider1

Exact Probabilistic Network Structure Learning

Problem: Given a local score function f over a set of nodes N find a DAG
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algorithm is O(n3k+4).

Open Problems

I Can we find an optimal k-branching in time O(f(k)p(|N|)) for some
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k-branching = polytree such that after 
deleting certain k arcs, every node has 
at most one parent.
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Theorem: finding an optimal k-branching is 
polynomial for every constant k.

(i.e., the problem is in XP for parameter k.)
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Theorem: finding an optimal k-branching is 
polynomial for every constant k.

(i.e., the problem is in XP for parameter k.)

Approach: 
(1) guess the deleted arcs 
(2) solve the induced problem for branchings
turns out to be quite tricky!
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A k-branching (k=4)
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+ + = D   k-branching

+ = R∪X’=D-X
polytree with in-deg 
≤1

= X   deletion set

= X‘  co-set

|X|≤k and |X’|≤k. Hence for constant k we can try all X and X‘ 
in polynomial time.  For each choice of X∪X’ we compute the 
best set R such that R∪X’ is a polytree with in-deg ≤1.

= R   rest
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Matroid Approach

• Let X, X’ be two disjoint sets of arcs.

• We define define two matroids over N×N. 

• The in-degree matroid where a set R is 
independent iff R ∩ (X∪X’) = ∅ and R has 
indegree ≤1.

• The acyclicity matroid where a set R is 
independent iff R∪X∪X’ has no undirected cycles.

• Lemma: D is a k-branching iff D-X is independent in 
both matroids. 

30
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Matroid Intersection

• Hence, for each guessed set X we need to 
find an optimal set D that is independent in 
both matroids.

• Optimality can be expressed by considering 
weighted matroids:  w(u,v)= f(v,{u})−f(v,∅).

• Solution can be found by means of
a poly time algorithm for weighted 
matroid intersection
(Brezovec, Cornuejols, Glover 1986).
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FPT?

• We don’t know whether the k-branching 
problem is FPT.

• We have FPT algorithms for special cases 
whenever the guess-phase is FPT.

• For instance: the arcs in X∪X’  form an in-tree 
and each node has a bounded number of 
potential parent sets.

• BN structure learning remains NP-hard 
under this restriction.

32
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A slight generalization is 
W[1]-hard

Define a k-node branching as a polytree that 
becomes a branching by deletion of k nodes.

33
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A slight generalization is 
W[1]-hard

Define a k-node branching as a polytree that 
becomes a branching by deletion of k nodes.

33

Theorem: Finding an optimal 
k-node branching is W[1]-hard.
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A slight generalization is 
W[1]-hard

Define a k-node branching as a polytree that 
becomes a branching by deletion of k nodes.

33

Theorem: Finding an optimal 
k-node branching is W[1]-hard.

Proof: reduction from multicolored clique.
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Conclusion

• BN Network Structure Learning

• important and notoriously difficult

• parameterized complexity approach: 

• treewidth of super structure

• parameterized local search

• k-branchings and k-node branchings

• Other parameters?
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