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Probabilistic Networks

® Bayesian Networks (BNs) were
introduced by Judea Perl in 1985
(2011 Turing Award Winner)

e A BN is a DAG D=(V,A) plus tables
associated with the nodes of the
network

® |n addition to Bayesian networks, also

other probabilistic networks have been
considered: Markov Random Fields, Judea Pearl
Factor Graphs, etc.
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Example:

A Bayesian
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Computational Problems
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BN Learning and Local Scores
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BN Learning and Local Scores

Local Score Function

f(n,P)=score of node n with P ¢V
as its in-neighbors (parents)

7N
Sample Data ®)
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Our Combinatorial Model

® BN Structure Learning:

Input: a set N of nodes and a local sore
function f (by explicit listing of nonzero

tuples)

Task: find a DAG D=(N,A) such that
the sum of f(n,Po(n)) over all nodes n
IS maximum.
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Example

: An optimal BN
A local score function
structure
n P f(n,P) a
a {d} 1
a {b,c,d} 0.5
b {a,f} 1
¢ {e} 1 q ; p
d 0 1
e {b} 1
f {4y 1
g {c,d} 1
e f g

Heuristic Algorithms: find first an undirected graph, then greedily orient
the edges, then do local search for improving the orientation
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NP-Hardness

Theorem: BN Structure Learning is NP-hard.
[Chickering 1996]

® Proof: By reduction from FAS
(NP-h for max deg 4, [Karp 1972])

3¢ 3 ¢
\ / )=l © © fx{uh=
4 o
f(w{x})=1
f(v,{x})=1I
f(v,{x,x’})=2
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Very Few Polynomial Cases

1 2

O
Theorem: An optimal branching
o . 3O 4 5

can be found in polynomial f
time. (Chu and Liu 1965, Edmonds 1967) O O
| 6 7
A branching
Theorem: Finding an optimal L 2

polytree is NP-hard (Dasgupta 1999)

3 3
Can parameters make the \f

O O

broblem tractable? 6 7
A polytree
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Parameterized Complexit

\
® |dentify a parameter k of the o
problem

® Aim:solve the problem in time
f(k)n€
fixed-pbarameter tractable (FPT)

® XP:solvable in time nfk

® VV-classes: L SR R
FPT QW['] QW[Z]Q ---CXP Downey and Fellows:

Parameterized Complexity
Springer 1999
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Parameters for BN
Structure Learning?

|. Parameterized by the treewidth (of the
super structure)

2. Parameterized Local Search

3. Parameterized by distance from being a
Branching
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BN Structure learning
barameterized by the treewidth

(of the super structure)
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The Super Structure

® Super structure St of a local score function f is the undirected
graph S=(N,E) containing all edges that can participate in an
optimal DAG [Perrier, Imoto, Miyano 2008]

f(n,P)
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Hardness

Theorem: BN Structure Learning is W] I]-hard when
parameterized by the treewidth of the super
structure.
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Hardness

Theorem: BN Structure Learning is W] I]-hard when
parameterized by the treewidth of the super
structure.

Proof: by reduction from multi-colored clique (MCC).

V11 V12 V13

V33 V21 U33

U39 V22

V31 V23

MCC instance, k=3 Super Structure BN corresponding to
clique
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XP-tractability

Theorem: BN Structure Learning is in XP when
parameterized by the treewidth of the super
structure.
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XP-tractability

Theorem: BN Structure Learning is in XP when
parameterized by the treewidth of the super

structure.

Proof: dynamic programming along a nice tree decomposition
For each node U of the tree decomp. we compute a table T(U).

T(U) gives the the highest possible score any partial solution (below U)

can achieve
e for a given chosen parents of the nodes in the bag, and

e for a given reachability between nodes in the bag by directed paths.

APAC 2012 | 7 Stefan Szeider



XP-tractability

Theorem: BN Structure Learning is in XP when
parameterized by the treewidth of the super

structure.

Proof: dynamic programming along a nice tree decomposition
For each node U of the tree decomp. we compute a table T(U).

T(U) gives the the highest possible score any partial solution (below U)

can achieve
e for a given chosen parents of the nodes in the bag, and

e for a given reachability between nodes in the bag by directed paths.

Corollary: If the super-structure has bounded
degree, then we get fixed-parameter tractability

APAC 2012 | 7 Stefan Szeider



Experiments

® Alarm Network: 37 nodes
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Experiments

® Bottleneck: huge tables:

® SharplLib for dynamic programming

® Dynamic Lower Bound approach (LB)

® Ongoing improvements

Characteristics of S running time (s) | memory usage (MB)
Sy V(S¢)| |E(WSr)| A(Sy) tw(Sy) | noLB LB | noLB LB
SSKEL 37 46 6 3 14 7 337 180
St (0.01) 37 62 7 5 20785 6393 | 15679 5346
Sti.(0.05) 37 63 7 5 46560 16712 | 38525 18786
Sti.(0.1) 37 65 7 5 44554 16928 | 38520 18918
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2.

BN Structure Learning

barameterized local search
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Local Search

® Once we have a candidate BN, we can try
to find a better one by local editing.

® We consider three local editing operations:

B ADD - add an arc
B DEL - delete an arc

B REV - reversing an arc

® We parameterize by the number k of edits
we can make in one step.
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k-Local Search

® Parameterizing LS problems by the number

of changes in one step has been suggested
by Fellows 2003

® Since then a series of paper on that
parameterized local search have been
published, considering, among others:
TSP, Max-SAT, Max-Cut,Vertex Cover, Weighted

SAI, Cycle Traversals, Stable Matchings, etc.
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Results

Theorem:Except for {ADD}
and {DEL} all problems are
W[ 1]-hard.

Hardness even holds for instances

of bounded degree.

APAC 2012
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operations | complexity
ADD PTIME
DEL PTIME
REV WII11-h
ADD,DEL WII11]-h
ADD,REV WII11-h
DEL,REV WII11]-h
ADD,DEL,REV WI11]-h
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operations | complexity
ADD PTIME
DEL PTIME
REV WII11-h
ADD,DEL WII11]-h
ADD,REV WII11-h
DEL,REV WII11]-h
ADD,DEL,REV WI11]-h

Does it help to bound the degree?
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W] I]-hardness for bounded
degree

® All known parameterized LS problems
are FPT for instances of bounded degree.

® Almost all W] Il]-hard problems are FPT
for graphs of bounded degree.

® Red/Blue Nonblocker isn’t an exception.

® VWe have now a new proof by reduction
from Independent Set (we don’t need the
reduced graph to have bounded degree).
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Reduction from IS for {REV}

BN local search
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Reduction from IS for {REV}

BN local search
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Reduction from IS for {REV}

Independent Set BN local search
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3.

BN Structure Learning

barameterized by distance from being a
branching

APAC 2012 26 Stefan Szeider



Beyond Branchings
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Beyond Branchings

Theorem:An optimal branching can
be found in polynomial time. 30 4 N0s
[Chu and Liu 1965, Edmonds 1967] f

@, @
6 7

A branching
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Beyond Branchings

Theorem:An optimal branching can
be found in polynomial time.
[Chu and Liu 1965, Edmonds 1967]

k-branching = polytree such that after
deleting certain k arcs, every node has

at most one parent.

Theorem: Finding an optimal
polytree is NP-hard [Dasgupta 1999]
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XP-Result

Theorem: finding an optimal k-branching is
polynomial for every constant k.

(i.e., the problem is in XP for parameter k.)
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XP-Result

Theorem: finding an optimal k-branching is
polynomial for every constant k.

(i.e., the problem is in XP for parameter k.)

Approach:

(1) guess the deleted arcs

(2) solve the induced problem for branchings
turns out to be quite tricky!
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A k-branching (k=4)
f) |+¥+Y¥ =D kbranching

¢ = X deleton set
WA an

* = R rest

*+ = RuX'=D-X
polytree with in-deg

O <|

|X|]=<k and |X’|<k. Hence for constant k we can try all X and X
in polynomial time. For each choice of XuX’ we compute the

best set R such that RuX’ is a polytree with in-deg <|.

®
|
O
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Matroid Approach

Let X, X’ be two disjoint sets of arcs.
We define define two matroids over NxN.

The in-degree matroid where a set R is
independent iff R n (XuX’) = @ and R has

indegree <|.

The acyclicity matroid where a set R is
independent iff RuUXuX’ has no undirected cycles.

Lemma: D is a k-branching iff D-X is independent in
both matroids.
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Matroid Intersection

® Hence, for each guessed set X we need to
find an optimal set D that is independent in
both matroids.

® Optimality can be expressed by considering
weighted matroids: w(u,v)= f(v,{u})—f(v,2).

® Solution can be found by means of
a poly time algorithm for weighted
matroid intersection

(Brezovec, Cornuejols, Glover 1986).~ sS\—" /:}
Cff S
2
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FPT?

We don’t know whether the k-branching
problem is FPT.

We have FPT algorithms for special cases
whenever the guess-phase is FPT.

For instance: the arcs in XuX’ form an in-tree

and each node has a bounded number of
potential parent sets.

BN structure learning remains NP-hard
under this restriction.
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A slight generalization is
W] | ]-hard

Define a k-node branching as a polytree that
becomes a branching by deletion of k nodes.
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A slight generalization is
W] | ]-hard

Define a k-node branching as a polytree that
becomes a branching by deletion of k nodes.

Theorem: Finding an optimal
k-node branching is V[ | ]-hard.

Proof: reduction from multicolored clique.
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Conclusion

® BN Network Structure Learning
® important and notoriously difficult
® parameterized complexity approach:
® treewidth of super structure
® barameterized local search
® k-branchings and k-node branchings

® Other parameters!
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