Parameterized Complexity of Local Search

Jiong Guo
Local Search

Local search is a meta-heuristic widely applied in practice for solving (hard) combinatorial problems.

- Meta-heuristic = applicable to (almost) any problem.
Local Search

Local search is a meta-heuristic widely applied in practice for solving combinatorially hard problems.

- Meta-heuristic = applicable to (almost) any problem.

Extremely popular because:

- Easy to understand
- Easy to implement
- Generic
- Actually works (sometimes...)
 - Linear Programming (simplex)
 - Traveling Salesman
 - ...
Local Search

Basic idea:

1. Start with some solution S.

2. Local improvement:
 Search for a better solution S' in the "neighborhood" $N_k(S)$, where k is a predetermined "radius".

3. If such an S' exists, repeat 1+2 with S'.

4. Otherwise, return S'.
Analyzing Local Search

- How many local improvement steps are necessary?
 - PLS-completeness [Johnson, Papadimitriou, and Yannakakis, 1988]
Analyzing Local Search

- How many local improvement steps are necessary?
 - PLS-completeness [Johnson, Papadimitriou, and Yannakakis, 1988]

- How easy is the local improvement step?
 - Typically, the size of a k-radius neighborhood = $O(n^k)$.
 - Brute-force = $O(n^k)$ time.
 - Can we do better? — $f(k)n^{O(1)}$ time.
 - Parameterized Complexity
Parameterized Complexity

Definition Parameterized local improvement for optimization problems

Input An instance G, a solution S^*, a distance function d of solutions, and an integer k.

Output A better solution S and $d(S, S^*) \leq k$

fixed-parameter tractable—$f(k)|G|^{O(1)}$ vs. W[1]-hard
Parameterized Complexity

- Traveling Salesman
 [E. Balas, 1999] [D. Marx, 2008]
 [Guo, Hartung, Niedermeier, Súchy, 2011]

- r-Center, Vertex Cover, Odd Cycle Transversal, Max Cut, Min Bisection
 [Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Villanger, 2009]

- Feedback Arc Set on Tournaments
 [Fomin, Lokshtanov, Raman, Saurabh, 2010]

- Stable Marriage
 [Marx and Schlotter, 2001]

- Boolean Constraint Satisfiability
 [Krokhin and Marx, 2012]

- Satisfiability
 [S. Szeider, 2011]

- Cluster problems
 [Dörnfelder, Guo Komusiewicz, Weller, 2011]

- String problems
 [Guo, Hermelin, Komusiewicz, 2012]
Traveling Salesman

Definition Given two permutations π, π' of $\{1, 2, \ldots, n\}$, the shift distance between π and π' is defined as

$$d(\pi, \pi') = \max_{1 \leq i \leq n} |\pi(i) - \pi'(i)|,$$

where $\pi(i)$ denotes the position of i in π.

Local Improvement of Traveling Salesman

Input: A set of n cities $\{1, \ldots, n\}$ with pairwise distance $c(i, j)$ between the cities, a tour π^*, and an integer k.

Output: A tour π with $c(\pi) < c(\pi^*)$ and $d(\pi, \pi^*) \leq k$.

Assume π^* starts and ends at 1 and is equal to the identity permutation.
Traveling Salesman

Theorem [E. Balas, 1999]
Local Improvement of Traveling Salesman can be solved in $O(k^22^{2(k-1)}n)$ time.

Proof Reduction to the Shortest Path problem on a graph with $O(n \cdot (k + 1)2^{2(k-1)})$ vertices and a maximum out-degree of $2k$.
Traveling Salesman

Definition Given a permutation π of $\{1, 2, \ldots, n\}$ and $1 \leq i \leq n$, define

$$S^- (\pi, i) := \{ l \geq i \mid \pi(l) < i \}$$

and

$$S^+ (\pi, i) := \{ l < i \mid \pi(l) \geq i \}.$$
Observation For all feasible π and all $1 \leq i \leq n$,

$$|S^- (\pi, i)| = |S^+ (\pi, i)| \leq k.$$
Traveling Salesman

Case: $j > i$ and $i \in s_{i}^{-}$:

- $s_{i+1}^{-} = s_{i}^{-} \cup \{j\} \setminus \{i\}$
- $s_{i+1}^{+} = s_{i}^{+}$
Traveling Salesman

Maximum out-degree $\leq 2k$.
Closest String

Definition Given two length-n strings S and S', the Hamming distance $d_H(S, S')$ is equal to the number of different positions in S and S'.

Closest String

Input A set of length-n strings T_1, T_2, \ldots, T_m

Output A length-n string S minimizing

$$\max_{1 \leq i \leq m} d_H(S, T_i).$$

Example:

<table>
<thead>
<tr>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>T_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0</td>
<td>1 1 1 0</td>
<td>0 0 0 1</td>
<td>1 1 0 0</td>
</tr>
</tbody>
</table>

$S := 1 1 0 1$
Hamming neighborhood: \(N_k(S) := \{S'|d_H(S, S') \leq k\}. \)

Local Improvement of Closest String

Input
A set of length-\(n\) strings \(T_1, T_2, \ldots, T_m\), a string \(S^*\), and an integer \(k\).

Output
A string \(S\) with \(S \in N_k(S^*)\) and
\[\max_{1 \leq i \leq m} d_H(S, T_i) < \max_{1 \leq i \leq m} d_H(S^*, T_i)\]

Example: \(k = 1\)

\[
\begin{align*}
T_1 &: 0 1 0 0 \\
T_2 &: 1 1 1 0 \\
T_3 &: 0 0 0 1 \\
T_4 &: 1 1 0 0 \\
S^* &: 1 1 1 1 \\
S &: 1 1 0 1
\end{align*}
\]
Parameterized reductions:

\[(I, k) \in P \iff (I', k') \in Q\]

- \(f(k) \cdot |I|^{O(1)}\)
- \(k' = g(k)\)

\(P \text{ W[1]-hard} \implies Q \text{ W[1]-hard.}\)
Multicolored Hitting Set (MHS)

Input A set $V = \{v_1, v_2, \ldots, v_n\}$ colored by k colors, and a family of subsets E_1, \ldots, E_m of V

Output A subset $H \subseteq V$ of k distinctly colored elements such that $H \cap E_i \neq \emptyset$ for all i's.
Closest String

Multicolored Hitting Set (MHS)

Input A set $V = \{v_1, v_2, \ldots, v_n\}$ colored by k colors, and a family of subsets E_1, \ldots, E_m of V.

Output A subset $H \subseteq V$ of k distinctly colored elements such that $H \cap E_i \neq \emptyset$ for all i's.
Closest String

Warm up: $k + 2$ letters:

$$T_1 := \begin{bmatrix} G & R & 0 & 0 \\ \end{bmatrix}$$

$$T_2 := \begin{bmatrix} G & R & G & 0 \\ \end{bmatrix}$$

$$T_3 := \begin{bmatrix} 0 & R & G & R \\ \end{bmatrix}$$

$$T_4 := \begin{bmatrix} G & 0 & G & 0 \\ \end{bmatrix}$$

$$T_5 := \begin{bmatrix} 0 & 0 & 0 & R \\ \end{bmatrix}$$

$$T_6 := \begin{bmatrix} 0 & R & 0 & R \\ \end{bmatrix}$$

$$T_G := \begin{bmatrix} G & G & G & G \\ \end{bmatrix}$$

$$T_R := \begin{bmatrix} R & R & R & R \\ \end{bmatrix}$$

$$S^* := \begin{bmatrix} 1 & 1 & 1 & 1 \\ \end{bmatrix}$$
Closest String

Warm up: \(k + 2 \) letters:

\[
T_1 := \begin{array}{cccc}
G & R & 0 & 0
\end{array}
\]
\[
T_2 := \begin{array}{cccc}
G & R & G & 0
\end{array}
\]
\[
T_3 := \begin{array}{cccc}
0 & R & G & R
\end{array}
\]
\[
T_4 := \begin{array}{cccc}
G & 0 & G & 0
\end{array}
\]
\[
T_5 := \begin{array}{cccc}
0 & 0 & 0 & R
\end{array}
\]
\[
T_6 := \begin{array}{cccc}
0 & R & 0 & R
\end{array}
\]
\[
T_G := \begin{array}{cccc}
G & G & G & G
\end{array}
\]
\[
T_R := \begin{array}{cccc}
R & R & R & R
\end{array}
\]
\[
S^* := \begin{array}{cccc}
1 & 1 & 1 & 1
\end{array}
\]
\[
S := \begin{array}{cccc}
G & 1 & 1 & R
\end{array}
\]
Closest String

Binary strings

Using long strings with two parts: encoding and padding

- \(S^* = \) all-0 string,
- Any column in the padding part will contain at most one 1.
- Will force changes to be done only in the encoding part of \(S^* \).
Closest String

Binary strings

- m strings to encode E_i's.
- Pad so that each has exactly $n - k$ 1's.

$T_1 := 1 1 0 0 ...$
$T_2 := 1 1 1 0 ...$
$T_3 := 0 1 1 1 ...$
$T_4 := 1 0 1 0 ...$
$T_5 := 0 0 0 1 ...$
$T_6 := 0 1 0 1 ...$
Closest String

Binary strings

$E_1\ E_2\ E_3\ E_4\ E_5\ E_6$

$v_1\ v_2\ v_3\ v_4$

- $2^k - 1$ strings to encode each of the proper subset of colors.
- Pad so that T_C has exactly $n - \left| C \right|$ 1’s.

$T_0 := 1\ 1\ 1\ 1\ \ldots$

$T_{\{G\}} := 0\ 1\ 0\ 1\ \ldots$

$T_{\{R\}} := 1\ 0\ 1\ 0\ \ldots$
Closest String

Binary strings

\[
\begin{align*}
T_1 & := 1 1 0 0 \\
T_2 & := 1 1 1 0 \\
T_3 & := 0 1 1 1 \\
T_4 & := 1 0 1 0 \\
T_5 & := 0 0 0 1 \\
T_6 & := 0 1 0 1 \\
T_0 & := 1 1 1 1 \\
T_{\{G\}} & := 0 1 0 1 \\
T_{\{R\}} & := 1 0 1 0 \\
S^* & := 0 0 0 0
\end{align*}
\]
Closest String

Binary strings

v_1 v_4

E_1 E_2 E_3 E_4 E_5 E_6

$T_1 := 1 1 0 0 ...$
$T_2 := 1 1 1 0 ...$
$T_3 := 0 1 1 1 ...$
$T_4 := 1 0 1 0 ...$
$T_5 := 0 0 0 1 ...$
$T_6 := 0 1 0 1 ...$

$T_\emptyset := 1 1 1 1 ...$
$T_{\{G\}} := 0 1 0 1 ...$
$T_{\{R\}} := 1 0 1 0 ...$

$S^* := 0 0 0 0 ...$
$S := 1 0 0 1 ...$
Closest String

Binary strings

\begin{align*}
T_0 & := 1 \ 1 \ 1 \ 1 \ \ldots \\
T_{\{G\}} & := 0 \ 1 \ 0 \ 1 \ \ldots \\
T_{\{R\}} & := 1 \ 0 \ 1 \ 0 \ \ldots \\
S^* & := 0 \ 0 \ 0 \ 0 \ \ldots \\
S & := 1 \ 0 \ 0 \ 1 \ \ldots
\end{align*}

- \(d_H(S, T_C) < n \implies \) selected vertices have a color not in \(C \).

- Selected vertices have exactly one of each color.
Closest String

Binary strings

- \(d_H(S, T_{E_i}) < n \implies \text{selected vertices hit } E_i \).
- Selected vertices form a multicolored hitting set.
The local improvement of Closest String is $W[2]$-hard even for binary alphabets.

Exponential Time Hypothesis (ETH): n-variable 3-SAT not solvable in $2^{o(n)}$ time.

Corollary The local improvement of Closest String cannot be solved in $n^{o(k)} \cdot \text{poly}(n, m)$, assuming ETH.

Brute-force is essentially optimal!
Conclusion

• Until now, the local improvement of most problems W[1]-hard
 – W[1]-hard
 * TSP with edge exchange/swap/reveral/..., string problems with Hamming distance, subgraph problems with set difference, clustering problem with KT-distance, ...
 – FPT
 * TSP with shift distance, subgraph problems on special graphs, ...

• Ways out of the dilemma:
 – the starting solution S^*
 – new distance measures
 – ...

• Experimental studies

[Simonetti and Balas, 1996]