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Type-theoretical semantics with coercive subtyping∗
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Abstract In the formal semantics based on modern type theories, common nouns
are interpreted as types, rather than as functional subsets of entities as in Montague
grammar. This brings about important advantages in linguistic interpretations but
also leads to a limitation of expressive power because there are fewer operations
on types as compared with those on functional subsets. The theory of coercive
subtyping adequately extends the modern type theories with a notion of subtyping
and, as shown in this paper, plays a very useful role in making type theories more
expressive for formal semantics. In particular, it gives a satisfactory treatment of the
type-theoretic interpretation of modified common nouns and allows straightforward
interpretations of interesting linguistic phenomena such as copredication, whose
interpretations have been found difficult in a Montagovian setting. We shall also
study some type-theoretic constructs that provide useful representational tools for
formal lexical semantics, including how the so-called dot-types for representing
logical polysemy may be expressed in a type theory with coercive subtyping.

Keywords: coercive subtyping, formal semantics, lexical semantics, type-theoretical se-
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1 Introduction

Church’s simple type theory (Church 1940), as employed in Montague grammar
(Montague 1974), has traditionally served as a logical language for formal semantics.
Powerful alternatives, arguably more advantageous ones, may be offered by the
modern type theories such as Martin-Löf’s type theory (Nordström, Petersson &
Smith 1990; Martin-Löf 1984) and UTT (Luo 1994). By a type-theoretical semantics,
we mean a formal semantics based on a modern type theory. The theory of coercive
subtyping (Luo 1997, 1999) adequately extends the modern type theories with a
notion of subtyping and, as shown in this paper, plays a very useful role in making
modern type theories more expressive for formal semantics.1

∗ The author wants to thank Nicholas Asher and the anonymous referees for their comments on the
abstract of the paper.

1 The idea of using coercive subtyping in linguistic semantics was considered in (Luo & Callaghan
1998). Part of the current paper may be seen as a further development of those initial ideas.
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In linguistic semantics, there have been a lot of interesting developments in-
cluding, for example, the Generative Lexicon Theory (Pustejovsky 1995) in lexical
semantics. However, the research so far has failed to provide a satisfactory formal
account to explain the important linguistic phenomena in the lexical theories. Most
of the employed formalisms are based on (extensions of) Montague grammar and
unable to capture the linguistic phenomena satisfactorily. This paper studies type-
theoretical semantics and shows that modern type theories, together with the theory
of coercive subtyping, may offer a powerful language in which interesting lexical
phenomena such as logical polysemy (Pustejovsky 1995) and copredication (Asher
2009) can be properly interpreted.

This paper also studies some type-theoretic constructs that provide useful repre-
sentational tools for formal lexical semantics. We shall study how the dot-types, as
proposed by Pustejovsky (1995) in studying logical polysemy in lexical semantics,
can be formally expressed in a type theory with coercive subtyping. Also studied,
though briefly, are coercion contexts for representing linguistic phenomena such as
reference transfers in local contexts.

In section 2, we give a brief introduction to modern type theories and the theory
of coercive subtyping and discuss several relevant issues to introduce the background
and some notational conventions. The use of coercive subtyping in type-theoretical
semantics is discussed in section 3. A formal treatment of the dot-types is given in
section 4, followed by a brief discussion in section 5 on the representation of local
coercions by coercion contexts in type theory.

2 Modern type theories and coercive subtyping

2.1 Modern type theories

Modern type theories may be classified into the predicative type theories such
as Martin-Löf’s type theory (Nordström, Petersson & Smith 1990; Martin-Löf
1984) and the impredicative type theories such as the Calculus of Constructions
(CC) (Coquand & Huet 1988) and the Unifying Theory of dependent Types (UTT)
(Luo 1994). In computer science, modern type theories have been implemented in
the proof assistants such as Agda (Agda 2008) and Coq (Coq 2007) and used in
applications to formalisation of mathematics and verification of programs.

We assume that the reader be familiar with the simple type theory (Church
1940) (or Montague grammar (Montague 1974)), compared with which modern type
theories have several distinctive features that are briefly described below.

Dependent types: Π-types and Σ-types. Modern type theories contain dependent
types. An example is the so-called Σ-types of dependent pairs. If A is a type and
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B is an A-indexed family of types, then Σ(A,B) is a type, consisting of pairs (a,b)
such that a is of type A and b is of type B(a). For instance, if Man is the type
of men and handsome is a predicate over men (this is a Man-indexed family of
propositions/types), then Σ(Man,handsome) is a type of handsome men (or more
precisely, of those men together with proofs that they are handsome). When B(x) is
a constant type (i.e., always the same type no matter what x is), a Σ-type degenerates
into a product type of non-dependent pairs. For Σ-types (and the product types), there
are associated projection operations π1 and π2 so that π1(a,b) = a and π2(a,b) = b,
for every (a,b) of type Σ(A,B).

There are other dependent types such as the Π-type Π(A,B) of dependent func-
tions which, in the non-dependent case, degenerates to the function type A→ B. The
objects of Π(A,B) are λ -functions f which can be applied to any object a of type A
to form f (a) of type B(a) (or just B in the non-dependent case).

Inductive types and canonical objects. In a modern type theory, most of the types
are inductively-defined, examples of which include the types of natural numbers,
trees, ordinals, etc. The above Σ-type is another example.

An important feature of a modern type theory is that its meaning theory, as
advocated by Martin-Löf and others (such as Dummett and Prawitz in the wider
context of proof-theoretic semantics), is based on the notion of canonical object. An
inductively-defined type consists of its canonical objects. For example, the type of
natural numbers consists of the canonical numbers 0, 1, 2, ..., and the other natural
numbers all compute to canonical numbers.2 For instance, 3+4 is a natural number
because it computes to the canonical number 7.

The notion of canonical object is so important that modern type theories are
sometimes called type theories with canonical objects. Based on it, every inductive
type is equipped with an induction principle (so-called elimination rule) expressing
that, in order to prove a property for all objects of the inductive type, one only has to
prove it for all of its canonical objects. The modern type theories have the following
important property:3

• Canonicity: Any closed object of an inductive type is definitionally equal to
a canonical object of that type.

2 The notion of computation is also in the centre of the meaning theory of modern type theories.
Intuitively, in a modern type theory, every process of computation starting from a well-typed term
terminates and it computes to a (unique) ‘normal form’.

3 Being an essential property, canonicity has been considered by Martin-Löf since the early days of
development of his type theory. However, as far as the author is aware, the term ‘canonicity’ appeared
in Altenkirch, McBride & Swierstra 2007 for the first time.

40



Type-theoretical semantics with coercive subtyping

Embedded logic. According to the propositions-as-types principle (Curry & Feys
1958; Howard 1980), a type theory may have an embedded logic (or sometimes
called the internal logic). For example, the logical proposition A&B corresponds to
the product type A×B and a pair of a proof of A and a proof of B corresponds to an
object of the product type. Similarly, this correspondence extends to other logical
operators: the logical implication (⊃) corresponds to the function types (→), the
universal quantifier (∀) to the dependent Π-types, etc.

The embedded logic in the simple type theory (Church 1940) is the higher-order
predicate logic. For Martin-Löf’s type theory, the embedded logic is first-order4 and,
for impredicative type theories, the embedded logics are second-order or higher-
order, where there is a type Prop of logical propositions. Formally, Prop is a totality
and one can quantify over it to form other propositions (and this process is regarded
as ‘circular’ by predicativists or ‘impredicative’, in the technical jargon.)

Remark Prop is very much like the type t in the simple type theory. The only
difference is that, in modern type theories, we have explicit proof terms of logical
propositions. In this paper, we shall use Prop in linguistic interpretations. For
instance, a verb is interpreted as a predicate of type A→ Prop, where A is the type
of entities to which the verb can be meaningfully applied. 2

2.2 Coercive subtyping

Coercive subtyping (Luo 1997, 1999) is a general theory of subtyping for modern
type theories. In computer science, coercive subtyping has been studied and imple-
mented in many proof assistants such as Coq (Coq 2007; Saïbi 1997), Lego (Luo
& Pollack 1992; Bailey 1999), Matita (Matita 2008) and Plastic (Callaghan & Luo
2001), and used effectively in interactive theorem proving. In this paper, coercive
subtyping is applied to linguistic semantics.

We shall now introduce informally the basics of coercive subtyping and explain
why the extension is adequate for modern type theories.

Basics in coercive subtyping. The basic idea of coercive subtyping is to consider
subtyping as an abbreviation mechanism: A is a (proper) subtype of B (A < B) if
there is a unique implicit coercion c from type A to type B and, if so, an object a of
type A can be used in any context CB[_] that expects an object of type B: CB[a] is
legal (well-typed) and equal to CB[c(a)].

4 Please note that the embedded logic in Martin-Löf’s type theory is not the ordinary first-order
predicate logic. In particular, the existential quantifier is expressed by the ‘strong’ Σ-types, not the
weak existential types, which only exist in impredicative type theories, not in Martin-Löf’s type
theory.
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For instance, one may consider the type of men to be a subtype of the type of
human beings by declaring a coercion between them: Man <m Human. If we assume
that shout be interpreted as [[shout]] : Human→ Prop and John as [[John]] : Man,
then the interpretation (1′) of the following sentence (1) is well-typed:

(1) John shouts.

(1′) [[shout]]([[John]])

The reason that (1′) is well-typed is because that Man is now a subtype of Human.
In general, this is reflected by the following coercive definition rule:

Γ ` f : (B)C Γ ` a : A Γ ` A <c B : Type
Γ ` f (a) = f (c(a)) : C

expressing that an appropriate coercion can be inserted to fill up the gap in a term.
(See Luo 1999 for a formal presentation with complete rules.)

Notation We shall adopt the following notational abbreviations, writing

• A < B for ‘A <c B : Type for some c’, and

• A≤ B for ‘A = B : Type or A < B’. 2

Subsumptive subtyping v.s. coercive subtyping. In set theory, one has the subset
relation between sets. Similarly, in a type theory, one can consider a notion of
subtyping between types. To mimic the subset relation, the subtyping relation is
traditionally captured by the notion of subsumptive subtyping characterised by means
of the following subsumption rule:

(*)
a : A A≤ B

a : B

which says that, if A is a subtype of B, every object of type A is also of type B.
Unfortunately, subsumptive subtyping is incompatible with canonicity and cannot

be employed in a modern type theory. This is because that the induction principles
(the elimination rules) do not take into account of the objects introduced by sub-
typing relations and, as a consequence, the subsumptive rule (∗) would introduce
inconsistency in a modern type theory.5

Coercive subtyping, on the other hand, is a suitable subtyping framework for
modern type theories. As compared with subsumptive subtyping, coercive subtyping

5 It is not difficult to see this if one is familiar with how the induction principles of inductive types are
formulated in a modern type theory. As it requires some formal technical details, we omit it here.
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does not introduce new objects into a type. In the framework of coercive subtyping,
A < B means that there is a (unique) coercion that maps any object of A to an object
of B. This is consistent with the idea of canonical object – if B is an inductive type,
we do not need to change its elimination rule, since B will still have the same objects
even if A < B. Furthermore, the extension with coercive subtyping is adequate, as
explained below.

Conservativity: adequacy of the coercive subtyping extension. When using a
type theory for formal semantics, a basic requirement is that the type system has
a consistent embedded logic. For example, the higher-order logic embedded in
the simple type theory is consistent and this is the basis for it to be employed in
Montague grammar. When one wants to extend a type theory in order to represent
certain linguistic phenomena, one of the first things one has to make sure is that the
extension does not in any way jeopardise the consistency of the embedded logic.

Such a requirement applies to the extension of modern type theories with coercive
subtyping and, fortunately, it meets the requirement. In fact, the coercive subtyping
extension is not only consistent but conservative as long as the employed coercions
are coherent6 (the proof method in Soloviev & Luo 2002 can be used to show this).
For a type theory with nice meta-theoretic properties such as Strong Normalisation
(and hence logical consistency), its extension with coercive subtyping has those
properties, too. Intuitively, this says that the coercive subtyping extension is adequate
and can safely be used in various applications, including linguistic semantics.

3 Coercive subtyping in type-theoretical semantics

In type-theoretical semantics, common nouns are interpreted as types (Ranta 1994),
rather than as functional subsets of entities as in Montague grammar. (See below
for more explanations on this.) This brings about important advantages in linguistic
interpretations but has some unwelcome consequences because there are fewer
operations on types as compared with those on functional subsets.

For example, one can easily define a subset relation between the functional
sets of entities: for s and s′ of type e→ t, s ⊆ s′ if and only if ∀x : e. s(x) ⊃ s′(x).
This notion of subset has been used substantially in various semantic investigations
based on the Montague grammar. However, such a notion between types is not that
straightforward. As we have discussed in section 2.2, the traditional notion of sub-
typing, subsumptive subtyping, is incompatible with the notion of canonical object
in modern type theories and therefore cannot be employed for a type-theoretical

6 As coercions may be declared by the users, they must be coherent to be employed correctly (and to
guarantee conservativity). Essentially, coherence requires that the coercions between any two types
be unique. See Luo 1999 for a formal definition.
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semantics. Instead, the theory of coercive subtyping (Luo 1999) adequately extends
the modern type theories which, as we show in this section, can be employed to
play a very useful role in, for example, giving a satisfactory treatment of the type-
theoretic interpretations of modified common nouns and allowing straightforward
interpretations of interesting linguistic phenomena such as copredication, whose
interpretations have been found difficult in a Montagovian setting.

Type-theoretical semantics: common nouns as types. Some of the basic ideas
of developing formal semantics in a modern type theory have been studied by Ranta
(1994), where various semantic issues of natural languages have been studied in
Martin-Löf’s type theory.7 To compare a type-theoretical semantics with Montague
grammar, one of the most basic differences is between the interpretations of common
nouns. In Montague grammar, common nouns like man and human are interpreted as
functional subsets (or predicates) of entities, i.e., as objects of type e→ t, where e is
the type of entities and t the type of propositions. In a type-theoretical semantics
based on modern type theories, on the other hand, common nouns are interpreted as
types. For instance, the interpretations of man, human and book are types:

[[man]], [[human]], [[book]] : Type.

This is natural in a modern type theory, which is ‘many-sorted’ in the sense that there
are many types like [[man]] and [[book]] consisting of objects standing for different
sorts of entities, while the simple type theory may be thought of as ‘single-sorted’ in
the sense that there is the type e of all entities.

In a type-theoretical semantics, verbs and adjectives are interpreted as predicates.
For example, we have

[[heavy]] : [[book]]→ Prop
[[read]] : [[human]]→ [[book]]→ Prop

where Prop is the type of propositions (see section 2.1). Modified common noun
phrases are interpreted by means of Σ-types of dependent pairs: for instance,

[[heavy book]] = Σ([[book]], [[heavy]]).

Remark (meaningfulness) To interpret common nouns as types in a ‘many-sorted’

7 Ranta himself may not regard his work as studying logical semantics (see, for example, the preface
of Ranta 1994). However, if one looks at it from a technical (and non-philosophical) point of
view, the work has studied the basics of formal semantics in a modern type theory and made many
valuable proposals. Here, we are not going to conduct a full-scale evaluation of the current status of
type-theoretical semantics, but only mention some basic ideas that will be relevant for our discussion.
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setting has its advantage in that it effectively distinguishes meaningless and false
expressions. For example, the verb talk can be given the following interpretations:

(2) In Montague grammar: [[talk]]M : e→ t
(3) In type-theoretical semantics: [[talk]]T : [[human]]→ Prop

Now consider the following sentence (4), which is given interpretation (5) in the
Montague grammar and (6) in the type-theoretical semantics:

(4) A table talks.
(5) ∃x : e. [[table]]M(x) & [[talk]]M(x)
(6) ∃t : [[table]]T . [[talk]]T (t)

where [[table]]M : e→ t is a predicate while [[table]]T is a type. Now, the term (5) is
well-typed (and false), while the term (6) is simply not well-typed, i.e., meaningless.
We contend that, in this respect, the type-theoretical semantics captures the meanings
in a better way: the sentence (4) is usually regarded as meaningless (unless in some
fictional world), as in the type-theoretical semantics. 2

Coercive subtyping: basic applications As explained above, in a type-theoretical
semantics, common nouns are interpreted as types and, in particular, modified
common nouns as Σ-types. We have, for instance,

[[John]] : [[man]]
[[W&P]] : [[heavy book]] = Σ([[book]], [[heavy]])

where W&P abbreviates the book ‘War and Peace’. Now, how do we interpret the
following sentences?

(7) John reads a book.
(8) Somebody reads ‘War and Peace’.
(9) John reads ‘War and Peace’.

Note that the type of [[read]] is [[human]]→ [[book]]→ Prop. To interpret the
above sentences directly would require the following terms to be well-typed:

(7′) ∃b : [[book]] . [[read]]([[John]],b).

(8′) ∃h : [[human]] . [[read]](h, [[W&P]]).

(9′) [[read]]([[John]], [[W&P]]).

But none of the above three terms is well-typed. [[read]] requires its first argument
to be of type [[human]] and its second of type [[book]], but [[John]] is of type [[man]]
and [[W&P]] is of type [[heavy book]]. Or, put in another way, how could we reflect
the following facts:
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• A man is a human.

• A heavy book is a book.

Such phenomena are captured by means of coercive subtyping. For the first case, we
declare that [[man]] is a subtype of [[human]]:

[[man]] < [[human]] .

For the second case, we have

[[heavy book]] < [[book]],

and, in fact, we declare in general that the first projection π1 of a Σ-type is always a
coercion, for any type A and any A-indexed family of types B:

Σ(A,B) <π1 A.

Furthermore, the subtyping relations propagate through the type constructors such as
Π and Σ (and, in the non-dependent cases,→ and ×). For instance, they propagate
through the function types, contravariantly: if A′ ≤ A and B ≤ B′, then A→ B ≤
A′→ B′. For example,

[[human]]→ [[book]]→ Prop < [[man]]→ [[heavy book]]→ Prop.

With these subtyping relations, the terms in (7′-9′) can now be well-typed and
they interpret the sentences in (7-9), respectively.

Remark The above problem is discussed in Ranta 1994: 62-64, where it is called the
problem of ‘multiple categorization of verbs’ (in our case, the verb ‘read’) and three
possible solutions are considered, but none of them is completely satisfactory. One
of them is closest to ours where explicit first projections are employed; it is one step
short: using π1 as an implicit coercion, we have managed to capture the phenomena
as intended. 2

As another example, let’s consider the dot-types as studied in Pustejovsky 1995.8

Let PHY and INFO be the types of physical objects and informational objects,
respectively. One may consider the dot-type PHY • INFO as the type of the objects
with both physical and informational aspects. Intuitively, a dot-type is a subtype
of its constituent types: PHY • INFO < PHY and PHY • INFO < INFO. A book

8 Dot-types will formally be studied in section 4. Here, we study the example informally.
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may be considered as having both physical and informational aspects, reflected as:
[[book]] < PHY • INFO. By contravariance,

PHY→ Prop < PHY • INFO→ Prop < [[book]]→ Prop
INFO→ Prop < PHY • INFO→ Prop < [[book]]→ Prop

Therefore, for example, for [[burn]] : PHY→ Prop and [[boring]] : INFO→ Prop,
the following phrase (10) can be interpreted by term (10′), as intended:9

(10) burn a boring book

(10′) ∃b : Σ([[book]], [[boring]]). [[burn]](b)

Remark In Montague grammar (and its extensions), common nouns are interpreted
as functional subsets of type e0→ t, where e0 is a subtype of the type e of entities.
For instance, [[book]] : PHY • INFO→ t and [[heavy]] : (PHY→ t)→ (PHY→ t).
In such a situation, in order to interpret, e.g., ‘a heavy book’, one would have to
apply [[heavy]] to [[book]] by requiring, for example, PHY• INFO→ t to be a subtype
of PHY→ t, which is not the case – type clashes would happen, leading to unnatural
and complicated treatments (Asher 2008). 2

Copredication. The final example we shall use to illustrate the use of coercive
subtyping is the interpretation of copredication. Copredication has been studied by
Asher (2009), where the following example is considered:

(11) John picked up and mastered the book.

The idea is that the interpretations of the phrases pick up and master should
be of the same type so that the use of and in the above sentence can be interpreted in
a straightforward way. Now, when we consider the types PHY and INFO as above, it
is natural that these phrases have the following types:

[[pick up]] : [[human]]→ PHY→ Prop
[[master]] : [[human]]→ INFO→ Prop

9 Thanks to an anonymous referee for the suggestion of the word ‘boring’.
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By coercive subtyping (and contravariance for function types), we have

[[pick up]] : [[human]]→ PHY→ Prop
< [[human]]→ PHY • INFO→ Prop
< [[human]]→ [[book]]→ Prop

[[master]] : [[human]]→ INFO→ Prop
< [[human]]→ PHY • INFO→ Prop
< [[human]]→ [[book]]→ Prop

In other words, [[pick up]] and [[master]] can both be used in contexts where terms
of type [[human]]→ [[book]]→ Prop are required and, therefore, the interpretation
of the sentence (11) can proceed straightforwardly as intended.

Remark In a Montagovian setting, the interpretations of such sentences with co-
predication can become rather sophisticated (see, for example, Asher & Pustejovsky
2005). This is because, in Montague grammar, common nouns are interpreted as
functional subsets. Such an interpretation seems incompatible with the subtyping
relationships involving PHY and INFO. In a type-theoretical semantics with coer-
cive subtyping, where common nouns are interpreted as types, the interpretation of
sentences with copredication is quite straightforward. 2

4 Dot-Types in Type Theory with Coercive Subtyping

In the type theory with coercive subtyping, several useful constructions can be
defined and used to model various linguistic phenomena. In this section, we study
how the so-called dot-types may be represented.

Dot-types, sometimes called dot objects or complex types, are proposed by
Pustejovsky in his Generative Lexicon Theory (Pustejovsky 1995). Although the
meaning of a dot-type is intuitively clear, its proper formal account seems sur-
prisingly difficult and tricky.10 Researchers have made several proposals to model
dot-types including, for example, Asher & Pustejovsky (2005) and Cooper (2007).
There are arguments about whether these do capture and therefore give successful
formal accounts of dot-types and the author contends that the issue has not been
settled.

In the following, we present a type-theoretic treatment of dot-types with the help

10 See, for example, Asher 2008 for an interesting discussion on various choices of representation,
where you can also find a semantic account of the meaning of dot-types in category theory.
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of coercive subtyping11 which, we believe, gives an adequate formal account of dot-
types and can hence be used in a type-theoretical semantics to interpret, for instance,
copredication (as in section 3) and logical polysemy as studied in Pustejovsky 1995.

In section 3, we have already introduced the dot-types PHY • INFO informally
with examples. An important feature of the dot-type is that, to form a dot-type A•B,
its constituent types A and B should not share common parts. This is consistent with
Pustejovsky’s idea as expressed in the following paragraph:

Dot objects have a property that I will refer to as inherent polysemy. This
is the ability to appear in selectional contexts that are contradictory in type
specification. (Pustejovsky 2005)

Put in another way, a dot-type A•B can only be formed if the types A and B do not
share any components. For instance,

• PHY • PHY should not be a dot-type because its constituent types are the
same type PHY.

• PHY • (PHY • INFO) should not be a dot-type because its constituent types
PHY and PHY • INFO share the component PHY.

The notion of component is formally defined as follows.

Definition 4.1 (components) Let T : Type be a type in the empty context. Then,
C (T ), the set of components of T , is defined as:

C (T ) =df

{
SUP(T ) if the normal form of T is not of the form X •Y
C (T1)∪C (T2) if the normal form of T is T1 •T2

where SUP(T ) = {T ′ | T ≤ T ′}. 2

The rules for the dot-types are given in figure 1. Note that, in the formation
rule, we require that the constituent types do not share common components: C (A)∩
C (B) = /0. Once well-formed, a dot-type behaves somehow like a product type:
intuitively, its objects are pairs and the projections p1 and p2 correspond to the
projection operations π1 and π2, respectively. However, there are two important
differences between dot-types and product types:

• The constituent types of a dot-type do not share components, while those of
a product type can.

11 The idea of using coercive subtyping to model dot-types was considered in Luo & Callaghan 1998
where, however, the product types and the associated projection coercions were proposed; this is
known to be incoherent from Y. Luo’s PhD thesis (Luo 2005).
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Formation Rule

A : Type B : Type C (A)∩C (B) = /0
A•B : Type

Introduction Rule

a : A b : B
〈a,b〉 : A•B

Elimination Rules
c : A•B
p1(c) : A

c : A•B
p2(c) : B

Computation Rules

a : A b : B
p1(〈a,b〉) = a : A

a : A b : B
p2(〈a,b〉) = b : B

Projections as Coercions

A•B : Type
A•B <p1 A : Type

A•B : Type
A•B <p2 B : Type

Coercion Propagation

A•B : Type A′ •B′ : Type A <c1 A′ : Type B = B′ : Type
A•B <d1[c1] A′ •B′ : Type

where d1[c1](〈a,b〉) = 〈c1(a),b〉.

A•B : Type A′ •B′ : Type A = A′ : Type B <c2 B′ : Type
A•B <d2[c2] A′ •B′ : Type

where d2[c2](〈a,b〉) = 〈a,c2(b)〉.

A•B : Type A′ •B′ : Type A <c1 A′ : Type B <c2 B′ : Type
A•B <d[c1,c2] A′ •B′ : Type

where d[c1,c2](〈a,b〉) = 〈c1(a),c2(b)〉.

Figure 1 The rules for dot-types.
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• The projections p1 and p2 for dot types are both coercions; this is OK (see
Proposition 4.2 below). For product types, however, only one of them can be
coercions for, otherwise, coherence would fail (Luo 2005).

According to the rules in figure 1, A•B is a subtype of A and a subtype of B. In other
words, an object of the dot-type A•B can be regarded as an object of type A, in a
context requiring an object of A, and similarly for B. This is crucial for, for example,
the well-typedness of terms in the examples in section 3 that involve the dot-type
PHY • INFO. Finally, the subtyping relations are propagated through the dot-types,
by means of the coercions d1, d2 and d as specified in the last three rules in figure 1.

Since the constituent types of a well-formed dot-type do not share components, it
is straightforward to prove the following coherence property. (Recall that, informally,
coherence means that there is at most one coercion between any two types.)

Proposition 4.2 (coherence) The coercions p1, p2, d1, d2 and d are coherent to-
gether. 2

Note that coherence is important as it guarantees the correctness of employing
the projections p1 and p2 and the propagation operators d1, d2 and d as coercions,
and hence the subtyping relationships A•B < A and A•B < B.

Remark If the constituent types of a dot-type shared a common component, coher-
ence would fail. For instance, PHY and PHY • INFO share the component PHY. If
PHY • (PHY • INFO) were a dot-type, there would be the following two coercions
p1 and p1 ◦ p2:

PHY • (PHY • INFO) <p1 PHY

PHY • (PHY • INFO) <p1◦p2 PHY

which are between the same types but not equal – coherence would then fail. 2

Finally, it is worth remarking that one may consider a formal treatment of dot-
types by means of the so-called (non-dependent) record types, which are informally
labelled product types (Pollack 2002; Luo 2009a,b). Then, the condition that the
constituent types do not share common components can be achieved by requiring
that the (top-level) labels of the constituent types be distinct. Furthermore, the
record projections can be taken as coercions (see Luo 2009b for details, where the
coherence of these coercions is discussed in a different context).
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5 Coercions in local contexts

In this section, we briefly discuss coercion contexts, which are useful for representing
special phenomena such as reference transfers in local contexts.

In the use of natural language, many usages are only meaningful in special
situations or local contexts in which, for instance, the meanings of some words
change (cf. reference transfers as discussed by Nunberg (1995) and Jackendoff
(1997)). Consider the following utterance by a waiter in a café:

(12) The ham sandwich shouts.

Let us assume that the act of shouting requires that the argument be human, i.e.,
[[shout]] : [[human]]→ Prop. But ham sandwich clearly is not human and there
is nothing about the semantics which suggests the required subtyping relation:
[[ham sandwich]] < [[human]] . This suggests that, in certain local contexts, it is
acceptable to distinguish entities on the basis of some salient property. Here, it is the
property of having ordered a ham sandwich, in the environment of a café, etc. This
is clearly dependent on the extralinguistic context of an utterance and, in particular,
there are contexts where this kind of coercion is invalid.

In the framework of coercive subtyping, coercions have only been considered as
global in the sense that they are applicable in all valid contexts (see, for example,
Luo 1999 for formal details). As suggested by the above example, to apply coercive
subtyping in formal semantics, a notion of coercion context is called for in the
type-theoretic framework, with which coercions can be introduced, and only valid,
in a specific context.

A coercion context is a context whose entries may be of the form A <c B as well
as the usual form x : A. Formally, this involves the following rules:

Γ ` A : Type Γ ` B : Type Γ ` c : (A)B
Γ, A <c B valid

Γ, A <c B, Γ′ valid
Γ, A <c B, Γ′ ` A <c B : Type

where (A)B is the functional kind from A to B in the logical framework (see Chapter
9 of Luo 1994 for formal details.) In other words, coercions can now be introduced
in contexts and they are only valid ‘locally’ in the context where they are introduced.
For example, we may introduce [[ham sandwich]] < [[human]] in a particular local
context and then the above sentence (12) can be interpreted satisfactorily.

Remark (coherent context) Please note that the validity of a context is not enough
anymore for it to be legal. One needs to make sure that the context is coherent, in
the sense that the declared coercions in the context do not lead to more than one
coercion between two types. Since it requires some formal backgrounds to be treated
more concisely, its details are omitted here. 2
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Coercions may be introduced into terms (expressions in the type theory), by
means of the following rule:

Γ, A <c B ` J
Γ ` coercion A <c B in J

where J is any of the forms of judgement (e.g., J may be k : K) and the key word
coercion distributes through J. For example, the judgements coercion A <c B in (a :
A) and (coercion A <c B in a) : (coercion A <c B in A) are identified.

In this paper, we content ourselves with the above informal introduction to
coercion contexts and claim that the notion supports the intended applications of
subtyping in local contexts. A formal development is left for a future paper.

6 Conclusion

In this paper, we have studied the application of modern type theories to formal
semantics and shown that the theory of coercive subtyping plays a useful role in
enriching modern type theories to become powerful formal languages for type-
theoretical semantics. It will be interesting to conduct a full-scale study of type-
theoretical semantics, starting with, for example, an evaluation of the proposals made
by Ranta (1994). One may compare carefully the semantic interpretations in the
Montagovian setting and those possible in the type-theoretical semantics and this is
expected to lead to the further interesting development in type-theoretical semantics.

As to concrete proposals for linguistic interpretations, we should mention that
there have been various proposals for the formalisation of structured lexical entries
as studied by Pustejovsky (1995). In particular, Cooper (2005, 2007) has proposed to
use dependent record kinds in Martin-Löf’s type theory to represent lexical entries.
Note that these record kinds are not types, as we have talked about in this paper – in
the type theory they are at the same level as other kinds like Type, the kind of all
types. This would prohibit them from, for example, being combined with other types
to form new types. Dependent record types are studied in, for example, Pollack
2002; Luo 2009a,b. Cooper’s work has shown that record types can be employed to
represent lexical entries and it is very interesting to see how this may be combined
with other type constructs (e.g., dot-types and their record-type formalisation as
mentioned at the end of section 4) in type-theoretical semantics.

There have been a lot of work to study formal or semi-formal accounts of the
Generative Lexicon Theory (Pustejovsky 1995, see Bassac, Mery & Retoré 2010 for
an interesting and rather comprehensive summary of the work so far). It is unclear
what, if any, formalism may be employed to capture the essential aspects of the GL
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theory. It would be interesting to see how far one may go to model the GL theory in
a type-theoretical semantics.
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