
A Lambek Calculus with Dependent Types∗

Zhaohui Luo†

Royal Holloway, Univ of London
zhaohui.luo@hotmail.co.uk

In this note, we discuss how to introduce dependent types into the Lambek calculus [7] (or,
in general, an ordered calculus [17] and extensions such as those found in the studies of cate-
gorial grammars [12, 13]). One of the motivations to introduce dependent types in syntactical
analysis is to facilitate a closer correspondence between syntax and semantics, especially when
modern type theories are used in formal semantics [14, 9, 10, 2]. We then hope to establish a
uniform basis for NL analysis: from automated syntactical analysis to logical reasoning in proof
assistants based on type theories and formal semantics.

Dependent types have been used in various contexts in computational linguistics (see, for
example, [14, 3, 11] among others). In [15] that formalises the Lambek calculus in (a proof
assistant that implements) Martin-Löf’s type theory, Ranta discussed the idea of introducing
type dependency into directed types and gave an inspiring example to represent directed types
of quantifiers, although the paper did not study a formal treatment of such an extension. De
Groote et al [4] studied how to extend the underlying type system for ACGs by (intuitionistic)
dependent product types so that type families can be used to represent syntactic categories
indexed by linguistic features.

Combining resource sensitive types (such as those in linear logic [5]) with dependent types
has been an interesting but difficult research topic and many researchers have worked on this,
mainly with motivations to apply such calculi to programming and verification problems in
computer science (see early work such as [1] and recent developments such as [6, 16]). However,
how such a combination should be done is still widely open, on the one hand, and very much
depends on the motivations in their applications, on the other.

We present a Lambek calculus with dependent types. Besides the type constructors in the
Lambek calculus [7], we shall introduce directed types for dependent products (Πr and Πl)
and dependent sums (Σ∼ and Σ◦). Also considered is how to introduce type universes into
the calculus. These are some of the type constructors in a modern type theory found useful in
formal semantics and, therefore, their introduction at the syntactic level helps to facilitate a
closer syntax-semantics tie as mentioned above. A focus of the current note is to formulate the
rules for these types in ordered contexts so that their meanings are correctly captured.

1 The Lambek Calculus

Introducing dependent types into a Lambek calculus, we consider a calculus with contexts
having two parts:

Γ; ∆

where Γ is an intuitionistic context (whose variables can be used for any times in a term) and ∆
is a Lambek context (or ordered context). Types may only depend on ordinary variables in Γ,

∗Extended abstract for TYPES 2015, Tallinn, 2015.
†Partially supported by grants from Royal Academy of Engineering and CAS/SAFEA International Partner-

ship Program.

1



Lambek Dependent Types Luo

(/-F)
Γ; ∗ ⊢ A type Γ; ∗ ⊢ B type

Γ; ∗ ⊢ B/A type
(/-I)

Γ; (∆, x:A) ⊢ b : B Γ; ∗ ⊢ B/A type

Γ; ∆ ⊢ /x:A.b : B/A

(/-E)
Γ; ∆1 ⊢ f : B/A Γ; ∆2 ⊢ a : A

Γ; (∆1,∆2) ⊢ f a : B
(/-C)

Γ; (∆1, x:A) ⊢ b : B Γ; ∆2 ⊢ a : A

Γ; (∆1,∆2) ⊢ (/x:A.b) a = [a/x]b : B

Figure 1: Rules for directed Lambek types B/A.

(Πr-F)
Γ; ∗ ⊢ A type Γ, x:A; ∗ ⊢ B type

Γ; ∗ ⊢ Πrx:A.B type
(Πr-I)

Γ, x:A; ∆ ⊢ b : B Γ; ∗ ⊢ Πrx:A.B type

Γ; ∆ ⊢ λrx:A.b : Πrx:A.B

(Πr-E)
Γ; ∆ ⊢ f : Πrx:A.B Γ; ∗ ⊢ a : A

Γ; ∆ ⊢ appr(f, a) : [a/x]B
(Πr-C)

Γ, x:A; ∆ ⊢ b : B Γ; ∗ ⊢ a : A

Γ; ∗ ⊢ Πrx:A.B type

Γ; ∆ ⊢ appr(λrx:A.b, a) = [a/x]b : [a/x]B

Figure 2: Directed Πr-types.

but not on Lambek variables in ∆.1 Since we are going to introduce dependent types in which
objects may occur, we need the following equality typing rule which says that computationally
equal types have the same objects:

Γ;∆ ⊢ a : A Γ; ∗ ⊢ A = B

Γ;∆ ⊢ a : B

Contexts of the above form obey the following validity rules where, in the last two rules,
x ̸∈ FV (Γ,∆):

∗; ∗ valid

Γ;∆ valid Γ; ∗ ⊢ A type

(Γ, x:A); ∆ valid

Γ;∆ valid Γ; ∗ ⊢ A type

Γ; (∆, x:A) valid

For variables, we have

Γ, x:A,Γ′; ∗ valid

Γ, x:A,Γ′; ∗ ⊢ x : A

Γ; y:A valid

Γ; y:A ⊢ y : A

We can now present the directed types in the Lambek calculus. The rules for the directed
types B/A are given in Figure 1. The rules for A \ B are symmetric with term constructors
such as \x:A.b and are omitted (so are the rules for ordered conjunctions).

2 Dependent Lambek Types

Directed Dependent Products. Dependent product types (Π-types) are split into directed
dependent products (Πr and Πl). The rules for Πr-types are given in Figure 2. The rules for
Πl-types, omitted here, are symmetric with term constructors λlx:A.b and appl(a, f).

1This is a design choice of the current notes; it follows all the existing work (so far) on introducing dependent
types into resource sensitive calculi.

2



Lambek Dependent Types Luo

(Σ∼-F)
Γ; ∗ ⊢ A type Γ, x:A; ∗ ⊢ B type

Γ; ∗ ⊢ Σ∼x:A.B type

(Σ∼-I)
Γ; ∗ ⊢ a : A Γ;∆ ⊢ b : [a/x]B

Γ;∆ ⊢ pair(a, b) : Σ∼x:A.B

(Σ∼-E)
Γ;∆ ⊢ p : Σ∼x:A.B Γ, x:A; ∆′, y:B ⊢ e : C Γ; ∗ ⊢ C type

Γ; (∆,∆′) ⊢ let pair(x, y) = p in e : C

(Σ∼-C)
Γ; ∗ ⊢ a : A Γ;∆ ⊢ b : [a/x]B Γ, x:A; ∆′, y:B ⊢ e : C Γ; ∗ ⊢ C type

Γ; (∆,∆′) ⊢ let pair(x, y) = pair(a, b) in e = [a/x, b/y]e : C

Figure 3: Rules for Σ∼-types.

Type Universes. In type theory, a type universe is a type whose objects are (names of)
types. For instance, common nouns can be considered to correspond to types (rather than
predicates), as in formal semantics in modern type theories [14, 8]. In a similar fashion, we may
introduce a universe CN of common nouns:

∗; ∗ ⊢ CN type

Γ; ∗ ⊢ A : CN

Γ; ∗ ⊢ TCN (A) type

where TCN maps any common noun to a type (we often omit TCN and just write A for TCN (A)).
(CN is closed under several type constructors including the directed dependent sum types
below.)

Example 2.1. Here is a simple example in syntactic analysis (as in categorial grammar).
Consider the following sentence (1):

(1) Every student works.

The words in the sentence can be given the following types:

(2) every : ΠrX:CN. S/(X \ S)
(3) student : CN

(4) works : human \ S

where S is the type of sentences and student is a subtype of human (and, hence by contravari-
ance, human \ S is a subtype of student \ S). It is then straightforward to derive that

appr(every, student) works : S

In other words, (1) is a sentence.

Directed Dependent Sums Dependent sum types (Σ-types) are split into reverse dependent
sums (Σ∼) and concatenation dependent sums (Σ◦). The rules for Σ∼-types are given in
Figure 3, while the rules for Σ◦-types are symmetric and omitted. We remark that the universe
CN is closed under Σ∼ and Σ◦. For example, directed dependent sum types may be used to
analyse modified common nouns when the modifying adjectives are intersective or subsective.
To illustrate this with an example, assuming that B : A \ S, let’s use Σ∼(A,B) to abbreviate
Σ∼x:A.(x B) and Σ◦(A,B) to abbreviate Σ◦x:A.(x B). Now, with diligent : human \ S,
we can use Σ∼(student, diligent) to describe the modified common noun diligent student, and
Σ◦(student, diligent) to analyse student who is diligent.

3



Lambek Dependent Types Luo

References

[1] I. Cervesato and F. Pfenning. A linear logical framework. Information and Computation, 179,
2002.

[2] S. Chatzikyriakidis and Z. Luo. Natural language reasoning in Coq. J. of Logic, Language and
Information, 23(4), 2014.

[3] P. de Groote and S. Maarek. Type-theoretic extensions of abstract categorial grammars. Proc. of
the Workshop on New Directions in Type-theoretic Grammars. ESSLLI 2007, 2007.

[4] P. de Groote, S. Maarek, and R. Yoshinaka. On two extensions of abstract categorial grammars.
LPAR 2007, LNAI 4790, 2007.

[5] J.-Y. Girard. Linear logic. Theoret. Comput. Sci., 50, 1987.

[6] N. Krishnaswami, P. Pradic, and N. Benton. Integrating dependent and linear types. POPL 2015,
2015.

[7] J. Lambek. The mathematics of sentence structure. The American Mathematical Monthly, 65(3),
1958.

[8] Z. Luo. Common nouns as types. In D. Bechet and A. Dikovsky, editors, Logical Aspects of
Computational Linguistics (LACL’2012). LNCS 7351, 2012.

[9] Z. Luo. Formal semantics in modern type theories with coercive subtyping. Linguistics and
Philosophy, 35(6):491–513, 2012.

[10] Z. Luo. Formal Semantics in Modern Type Theories: Is It Model-theoretic, Proof-theoretic, or
Both? Invited talk at Logical Aspects of Computational Linguistics 2014 (LACL 2014), Toulouse.
LNCS 8535, pages 177–188, 2014.

[11] S. Martin and C. Pollard. A dynamic categorial grammar. Formal Grammar 2014, 2014.

[12] M. Moortgat. Categorial type logic. In J. van Benthem and A. ter Meulen, editors, Handbook of
Logic and Language, pages 3–43. Elsevier, 1997.

[13] G. Morrill. Categorial Grammar: Logical Syntax, Semantics, and Processing. CUP, 2011.

[14] A. Ranta. Type-Theoretical Grammar. Oxford University Press, 1994.

[15] A. Ranta. Syntactic calculus with dependent types. J of Logic, Language and Information, 7,
1998.

[16] M. Vákár. A categorical semantics for linear logical frameworks. FoSSaCS 2015, 2015.

[17] D. Walker. Substructural type systems. In B. Pierce, editor, Advanced Topics in Types and
Programming Languages, pages 3–43. MIT, 2005.

4


