
Coercion completion and conservativity in

coercive subtyping

�

Sergei Soloviev

IRIT, Universit�e Paul Sabatier

118 route de Narbonne

31062 Toulouse Cedex (France)

Email: soloviev@irit.fr

Zhaohui Luo

Department of Computer Science

University of Durham

South Road, Durham DH1 3LE, U.K.

Email: Zhaohui.Luo@durham.ac.uk

Abstract

Coercive subtyping o�ers a general approach to subtyping and inher-

itance by introducing a simple abbreviational mechanism to constructive

type theories. In this paper, we study coercion completion in coercive

subtyping and prove that the formal extension with coercive subtyping of

a type theory such as Martin-L�of's type theory and UTT is a conservative

extension. The importance of coherence conditions for the conservativity

result is also discussed.

1 Introduction

One of important di�erences between type theory and set theory is that in the

former we do not have a notion of subtype that corresponds to the notion of

subset in the latter, though types often can be considered as inductively de�ned

sets. The lack of useful subtyping mechanisms in dependent type theories with

inductive types [CPM90, Dyb91, Luo94] and associated proof-development sys-

tems is a serious obstacle in their applications to large-scale formal development.

Particularly, in the presence of inductive types which include types of natural

numbers, lists, trees, and types of mathematical structures such as ��types,

it is not clear how subtyping should be introduced to reason about subsets

�
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and represent inheritance, without compromising with good proof-theoretical

properties.

The more traditional approach to subtyping considers usually a subtyping

relation over lambda-terms. The notion of coercion was introduced later as an

explicit representation of the transformation of (the elements of) the subtype

into (the elements of) the supertype. The subtyping relation was interpreted

by the existence of a certain de�nable term c:A ! B when A < B, with

motivation of giving semantics to calculi with subtyping and inheritance (see,

e.g., [BCGS91], where no equational theory was studied for the calculus with

coercions). Others have also considered coercions in di�erent frameworks of

subtyping. See, for example, [MCMS94, PS94, LMS95, Tiu95, Che96, Che98].

These studies had in common that coercion terms were supposed to possess a

priori some special properties distinguishing them among all de�nable terms.

For example, in [LMS95, Tiu95, Che96] coercions are \almost identical" maps.

They are characterized formally as �-terms that become �-equal in the untyped

�-calculus after all type information is erased.

Data types in dependent type theories such as Martin-L�of's type theory

[NPS90] and the type theory UTT [Luo94], can in general be considered as

inductive in the sense that they consist of their canonical objects. This is

rather di�erent from the traditional views when one studies type systems of

programming languages and most of the work about subtyping, where objects

constitute a pre-given universe, while types are assigned to the objects and a

subtyping relation is obtained by overloading object terms (e.g. �-terms). It is

not clear (if possible) how the traditional approach to subtyping can be applied

to type theory with inductive types in accordance with the view that types

consist of canonical objects.

The framework on coercive subtyping [Luo97, Luo99] takes a new approach

to subtyping and inheritance { taking coercions seriously and directly at the

proof-theoretic level and providing a coherent view on how subtyping and in-

heritance can be studied in a type theory with inductive data types.

The basic idea of coercive subtyping in this context is that A is a subtype ofB

if there is a (unique) coercion c from A to B, and therefore, any object of type A

may be regarded as an object of type B via c, where c is a functional operation

from A to B in the type theory. Note that in our setting, coercions are any

mapping between types, including those of user-de�ned coercions. We do not

only consider those mappings with special properties (e.g., "almost identical"),

but arbitrary mappings satisfying the uniqueness condition (more formally, the

coherence condition).

1

In the theoretical framework of coercive subtyping, the

role of c is represented by the following coercive de�nition rule:

(CD)

� ` f : (x:K)K

0

� ` k

0

:K

0

� ` K

0

<

c

K

� ` f(k

0

) = f(c(k

0

)): [c(k

0

)=x]K

0

1

The terminology `coercion' used in this paper is quite di�erent from some of the uses in

the literature. For example, Chen [Che98] has used `coercions' to represent `almost identical'

maps as mentioned above. We instead use the terminology in the general sense as given above.
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which says that, if f is a functional operation with domainK, k

0

is an object of

K

0

, and c is a coercion from K

0

to K, then f(k

0

) is (well-typed and) de�nition-

ally equal to f(c(k

0

)). Intuitively, we can view f as a context which requires an

object of K; then the argument k

0

in the context f stands for its image of the

coercion, c(k

0

). Therefore, one can use f(k

0

) as an abbreviation of f(c(k

0

)).

The above simple idea, when formulated in a typed logical framework [Luo94],

becomes very powerful. In our early work [Luo97, Luo99], we have developed the

framework that covers subtyping relations represented by the following kinds of

coercions:

� Simple coercions: representing subtyping between two types. For example,

coercions between basic inductive types: the type of even numbers E is a

subtype of the type of natural numbers N .

� Parameterised coercions: representing (point-wise) subtyping (or subfam-

ily relation) between two families of types indexed by objects of the same

type. A coercion can be parameterised over free variables occurring in it

and (possibly) its domain or range types. As a special case, for exam-

ple, each vector type V ec(A; n) can be taken as a subtype of that of lists

List(A), parameterised by the index n, where the coercion would map the

vector < a

1

; :::; a

n

> to the list [a

1

; :::; a

n

].

� Coercions between parameterised inductive types: we have general sche-

matic rules that represent natural propagation of the basic coercions to

other structured (or parameterised) inductive types. For example, �(A;B)

is a subtype of �(A

0

; B

0

) if A is a subtype of A and B is a subfamily of

B

0

.

Coercive subtyping has applications in many areas such as large proof develop-

ment, inductive reasoning, representing implicit syntax (e.g., overloading), etc.

See for example [Luo99]

2

.

Coercion mechanisms with certain restrictions have been implemented both

in the proof development systems Lego [LP92] and Coq [Coq96], by Bailey

[Bai96, Bai98] and Saibi [Sai97], respectively. Callaghan of the Computer As-

sisted Reasoning Group at Durham has recently implemented Plastic, a proof as-

sistant that supports logical framework and coercive subtyping [Cal99], [CL00].

In the formal system of coercive subtyping, we distinguish basic and derived

coercions. The system of basic coercions is open in the sense that new basic

coercions may be declared (e.g., by the user). Though the new coercion terms

speci�ed as basic coercions need not have a priori special properties (they can be

any functional maps), the set of basic coercions are required to be coherent (i.e.,

any two coercions of the same domain and range types are equal). Note that

applications of the rules of logical framework (e.g., rules for dependent prod-

uct introduction) permits to obtain derived coercions from the basic coercions.

2

More recently, we have worked on dependent coercions, which have dependent product as

kinds. These coercions correspond to subtyping between a type and a family of types (e.g.,

from lists to vectors). See [LS99] for details.
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Even if the uniqueness of basic coercions is assured (the coherence condition),

it doesn't imply in any direct way the uniqueness of derived coercions. In fact,

that coercions between the same types are unique is closely related to the con-

servativity of the extension of the type theory with coercive subtyping. In this

paper, we study the properties of general coercions and of type theory extended

by coercive subtyping based on the properties of the system of basic coercions

(such as coherence).

We shall focus on the issue of coercion completion and conservativity, one

of the key meta-theoretic properties for coercive subtyping. The conservativity

result says, intuitively, that every judgement that is derivable in the theory with

coercive subtyping and that does not contain coercive applications is derivable

in the original type theory.

Furthermore, for every derivation in the theory with coercive subtyping, one

can always insert coercions correctly to obtain a derivation in the original type

theory. Based on the meta-theoretic results presented in [JLS98], we show that

the formal extension of coercive subtyping is a conservative extension of the

original type theory, and hence justify that it is a truly abbreviational mecha-

nism. The result is proved for a large class of basic subtyping rules, including

those for parameterised inductive data types covered by inductive schemata,

under the condition that the basic subtyping rules are coherent. We also dis-

cuss the importance of the coherence conditions (related to basic coercions) in

the context of proving conservativity results.

The conservativity proof is di�cult. It is partly due to the complexity of

the dependent type system that is studied. More importantly, the di�culty

comes from the fact that with coercive subtyping, it is necessary to consider

coercion completion (the process of coercion insertion by means of an algorithm)

based on the structure of derivations rather than terms or judgements. The

main theorem, that the coercion completion map is total, shows that every

derivation in the calculus extended by coercive subtyping can be transformed

into a derivation in the original type theory (without subtyping). The result not

only justi�es the adequacy of abbreviational mechanism of coercive subtyping,

but provides a further justi�cation of the practical implementations of coercions

in proof systems.

The proof of the conservativity theorem consists of the following three major

parts:

1. Lemmas about general meta-theoretic properties of the theory with coer-

cive subtyping;

2. Transitivity elimination in the calculus with subtyping and subkinding but

without coercive application and de�nition rules.

3. The proof of the well-de�nedness (totality) of a coercion completion which

maps derivations of the full theory into the calculus without coercive ap-

plication and de�nition rules.

Most of the results about the structure of derivations in type theories with coer-

cive subtyping (speci�ed in typed logical framework) were presented in [JLS98],
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as well as the theorem about transitivity elimination. New in this paper is the

part about coercion completion and its relationship to conservativity. The main

result is that coherence of basic subtyping rules does imply conservativity, un-

der certain conditions (these conditions are satis�ed, for example, for the type

theory UTT or Martin-L�of's type theory.)

In Section 2, we give a formal description of the system with coercive sub-

typing, which is essentially the same as that presented in [Luo99], and introduce

notations and general rule forms considered in the meta-theoretic development.

Section 3 contains several basic meta-theoretic results of the calculus, about

substitution, weakening, presupposed judgements and transitivity elimination.

The issue of conservativity (and its relationship with coherence conditions) is

discussed and explained in Section 4, where we also give an informal discussion

on the main results and the methods used in the meta-theoretic development.

Section 5 gives the de�nition of the coercion completion map and presents the

main results about its properties. The conservativity results that follow from

the results about coercion completion are presented in Section 6.

2 Coercive subtyping and subkinding

In this section, we give a formal presentation of the type theory extended with

coercive subtyping.

2.1 Typed Logical Framework LF and Type Theories

The systems considered in this paper are extensions of the typed logical frame-

work LF. LF is presented as in Chapter 9 of [Luo94] and in the paper [Luo99],

with minor modi�cations. One of these modi�cations that should be noted is

that we have included as part of the system several structural rules (weakening,

context-retyping) that are usually treated as admissible. We need something

more than mere admissibility: it is important that we have concrete elimi-

nation algorithms for these rules, substitutions and some other operations on

derivations (extraction of derivations of presupposed judgements), and these

algorithms are well-behaving w.r.t. coercion completion.

The inference rules of LF we use can be found in the appendix. For the reader

less familiar with the notation used in the literature on logical frameworks, it

may be noted that [x:K]t represents abstraction (in terms) while (x:K)K

0

is

used for dependent product kinds. (K)K

0

denotes dependent product (x:K)K

0

when x doesn't occur free in K

0

and is sometimes denoted by K ! K

0

.

We consider a type theory T speci�ed in LF and study its extensions with

coercive subtyping. Examples of such type theories include Martin-L�of's inten-

sional type theory [NPS90], UTT [Luo94], and many others.

These theories have in particular the means to de�ne inductive data types.

For example, in UTT, given any collection of inductive schemata � in a con-

text �, one may declare the constant expressions M[�]:Type (inductive type

itself), �

i

:�

i

[M[�]] (introduction operators, corresponding to the schemata of
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the collection �) and E[�] (the elimination operator, which may be used to

de�ne functions with the domainM[�]). Under such schemata, UTT contains

a large class of inductive date types, including the type of natural numbers, the

type of lists, types of trees, the type of ordinals, types of pairs (�-types), and

types of dependent functions (�-types). We give a simple example; for further

details see [Luo94].

Example 2.1 If � is the sequence X; (X)X then M[�] is the type of natural

numbers. If we write N �M[X; (X)X], there will be two introduction operators

�

0

:N and �

1

:(N )N usually denoted by 0 and succ; the elimination operator Rec

N

is the operator of primitive recursion (possibly with values in another type).

Now, let T be any type theory speci�ed in LF. We shall present the system

T [R], the extension of T with coercive subtyping and subkinding, whose basic

subtyping relation is given by the basic subtyping rules R, which satisfy certain

coherence conditions. In order to state the coherence conditions for the basic

subtyping rules, we �rst consider an intermediate system T [R]

0

.

2.2 Coercive subtyping

The system T [R]

0

spells out how subtyping relations are set up. T [R]

0

is

obtained from T by adding the subtyping judgement form � ` A <

c

B:Type,

and the rules below. All coercions are functions, � ` c:(El(A))El(B). The new

rules of T [R]

0

belong to the following groups:

� Basic subtyping rules.

� Transitivity and congruence rules for subtyping.

� Substitution rule for subtyping.

Basic subtyping rules. In general basic subtyping rules are the rules whose

conclusions are subtyping judgements of the form � ` A <

c

B:Type. The

premises may include some subtyping judgements of that form, and some judge-

ments that do not contain subtyping or subkinding.

Example 2.2 In coercive subtyping the coercion itself is part of the de�nition

of a subtype. For example, one can de�ne the type E of even numbers in the

following way. Let N be the inductive type of natural numbers de�ned as above

in Example 2.1. De�ne E as a `copy' of N with 0

E

:E, succ

E

:E ! E and Rec

E

,

together with the coercion E <

c

N :

c � Rec

E

([x:E]N; 0; [y:N ](succ(succ(y)))):E! N

i.e., c(0

E

) = 0 and c(succ

E

(e)) = succ(succ(c(e)).

More sophisticated examples can be found in [Luo99], many of which come

from the theory of inductive types [Luo94].
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Transitivity and congruence rules.

(ST:2)

� ` A <

c

B:Type � ` A = A

0

:Type

� ` A

0

<

c

B:Type

(ST:3)

� ` A <

c

B:Type � ` B = B

0

:Type

� ` A <

c

B

0

:Type

(ST:4)

� ` A <

c

1

B:Type � ` B <

c

2

C:Type

� ` A <

[x:El(A)]c

2

(c

1

(x))

C:Type

(ST:5)

� ` A <

c

B:Type � ` c = c

0

:(El(A))El(B)

� ` A <

c

0

B:Type

Substitution rule for subtyping

(ST:6)

�; x:K;�

0

` A <

c

B:Type � ` k:K

�; [k=x

0

]�

0

` [k=x]A <

[k=x]c

[k=x]B:Type

The following lemma is obvious, because the extension above has no means to

obtain a judgement which is not of subtyping form from a subtyping judgement.

Lemma 2.3 T [R]

0

is a conservative extension of T, that is, if J is not of the

form A <

c

B:Type, then � ` J is derivable in T if and only if � ` J is

derivable in T [R]

0

.

Coherence conditions

De�nition 2.4 (coherence conditions) We say that R is coherent if T [R]

0

has

the following properties:

1. � 6` A <

c

A:Type for any �, A and c.

2. If � ` A <

c

B:Type and � ` A <

c

0

B:Type, then � ` c = c

0

: (El(A))El(B).

In this paper, we assume that R is coherent.

Example 2.5 Consider the types Rings, Groups and Monoids (they may be

de�ned using �-types, cf. [Luo94]. One may de�ne the coercions (using projec-

tions):

c

1

:Rings!Monoids

c

2

:Rings! Groups

c

3

:Groups!Monoids

where c

1

maps a ring to its multiplicative monoid, and c

2

to its additive

group; c

3

maps a group to its monoid. If R consists of any two of them, then

it is coherent, but if include all three, the resulting system is not coherent since

by c

1

we obtain the multiplicative monoid of a ring and by the composition of

c

2

and c

3

its additive monoid.
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2.3 Subkinding

A further intermediate system T [R]

0K

is obtained from T [R]

0

by adding the

new subkinding judgement form � ` K <

c

K

0

, and the following inference rules

(SK:1 � 9).

Basic subkinding rule

(SK:1)

� ` A <

c

B:Type

� ` El(A)<

c

El(B)

;

Subkinding for dependent products kinds

(SK:2)

� ` K

0

1

<

c

1

K

1

�; x

0

:K

0

1

` [c

1

(x

0

)=x]K

2

= K

0

2

�; x:K

1

`K

2

kind

� ` (x:K

1

)K

2

<

c

(x

0

:K

0

1

)K

0

2

;

where c � [f :(x:K

1

)K

2

][x

0

:K

0

1

]f(c

1

(x

0

)) ;

(SK:3)

� `K

0

1

= K

1

�; x:K

0

1

` K

2

<

c

2

K

0

2

�; x:K

1

`K

2

kind

� ` (x:K

1

)K

2

<

c

(x:K

0

1

)K

0

2

;

where c � [f :(x:K

1

)K

2

][x:K

0

1

]c

2

(f(x));

(SK:4)

� ` K

0

1

<

c

1

K

1

�; x

0

:K

0

1

` [c

1

(x

0

)=x]K

2

<

c

2

K

0

2

�; x:K

1

`K

2

kind

� ` (x:K

1

)K

2

<

c

(x

0

:K

0

1

)K

0

2

;

where c � [f :(x:K

1

)K

2

][x

0

:K

0

1

]c

2

(f(c

1

(x

0

))) .

Transitivity and congruence for subkinding.

(SK:5)

� ` K

1

<

c

K

2

� ` K

2

= K

0

2

� ` K

0

1

<

c

0

K

0

2

(SK:6)

� ` K

1

<

c

K

2

� ` K

1

= K

0

1

� ` K

0

1

<

c

0

K

0

2

(SK:7)

� ` K <

c

1

K

0

� ` K

0

<

c

2

K

00

� ` K <

[x:K]c

2

(c

1

(x))

K

00

(SK:8)

� ` K <

c

K

0

� ` c = c

0

:(K)K

0

� ` K <

c

0

K

0

Substitution rule for subkinding

(SK:9)

�; x:K;�

0

` K

1

<

c

K

2

� ` k:K

�; [k=x]�

0

` [k=x]K

1

<

[k=x]c

[k=x]K

2

Lemma 2.6 T [R]

0K

is a conservative extension of T and T [R]

0

.

2.4 Coercive rules

The extension of T with coercive subtyping, the system T [R], is obtained from

T [R]

0K

by adding the following rules, which establish the essential connection

between the original system T and its subtyping/subkinding extension.
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Coercive application rules

(CA:1)

� ` f : (x:K)K

0

� ` k:K

0

� ` K

0

<

c

K

� ` f(k):[c(k)=x]K

0

(CA:2)

� ` f = f

0

: (x:K)K

0

� ` k

1

= k

2

:K

0

� ` K

0

<

c

K

� ` f(k

1

) = f

0

(k

2

): [c(k

1

)=x]K

0

Coercive de�nition rule

(CD)

� ` f : (x:K)K

0

� ` k

0

:K

0

� ` K

0

<

c

K

� ` f(k

0

) = f(c(k

0

)): [c(k

0

)=x]K

0

3 Basic meta-theoretic properties and transitiv-

ity elimination

3.1 Basic meta-theoretic properties.

As the technical background, we use several results from our paper [JLS98].

Elimination of wkn, retyping and substitutions.

Let T [R]

�

, T [R]

�

0

, T [R]

�

0K

, LF

�

denote the corresponding system where the

following rules have been removed: weakening wkn; context-retyping 3.3; the

substitution rules of LF (rules 6.1-6.7); the substitution rules for subtyping and

subkinding (rules ST.6, SK.9). (For the rule references, see Appendix.)

Theorem 3.1 There is an algorithm E that transform every derivation d in

T [R] into a derivation of the same judgement in T [R]

�

.

Presupposed judgements and split-theorem.

In the split-theorem below, the so-called presupposed judgements and their

derivations are considered. The notion of presupposed judgement is important

for dependent type systems. Di�erent from simple typed systems, the notions of

well-formed type/context etc cannot be separated from that of the derivability

in the system. Thus, for example, the judgement � ` t:K presupposes the

judgements � ` valid (validity of the context) and � ` Kkind (K is �-kind).

The judgement � ` El(A)kind presupposes the judgement � ` A:Type.

In our system with subtyping, we have more judgement forms and more

forms of presupposed judgements corresponding to them. For example, the

judgement � ` A <

c

B:Type has as presupposed judgements � ` A:Type; � `

B:Type and � ` c:(El(A))El(B). When product kinds � ` (x:K)K

0

are con-

sidered � ` Kkind and �; x:K ` K

0

kind may be regarded as presupposed

judgements as well.

Most of the forms of presupposed judgements may be found in the theorem

below which we call \split-theorem". We shall not go into the formal details

here since not all the proofs in this paper are presented in full detail.
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Theorem 3.2 (Split-theorem) There are algorithms v, k, p

�

�

, l

=

; r

=

, l

�

=

; r

�

=

;

kd, l

<

; r

<

; co that transform every T [R]

�

-derivation d,

1. �

1

;�

2

d

` J into its subderivation �

1

v

�

1

d

` valid;

2. �

1

; x:K;�

2

d

` J into its subderivation �

1

k

�

1

(d)

` Kkind;

3. �

d

` (x:K

1

)K

2

into its subderivation �; x:K

1

p

�

�

(d)

` K

2

;

4. �

d

` K

1

= K

2

into the derivation l

=

(d) of � ` K

1

kind and r

=

(d) of

� ` K

2

kind;

5. �

d

` k

1

= k

2

:K into the derivation l

�

=

(d) of � ` k

1

:K and r

�

=

(d) of � `

k

2

:K;

6. �

d

` �:K into the derivation kd(d) of � ` Kkind (� denotes here term

or term equality);

7. �

d

` A <

c

B:Type or �

d

` K <

c

K

0

into the derivations l

<

(d) of � `

A:Type or � ` Kkind, r

<

(d) of � ` B:Type or � ` K

0

kind, co(d) of

� ` c:(El(A))El(B) or � ` c:(K)K

0

respectively.

Remark 3.3 The derivation d

0

obtained from d by any of the algorithms men-

tioned in the theorems 3.1 and 3.2 contains only the applications of the rules

present in d (except the rules that are eliminated) and some new applications of

the LF

�

rules.

Corollary 3.4 Taking into account remark 3.3, the theorems above may be ap-

plied to any subsystem of T [R] that contains the LF-rules.

3.2 Transitivity elimination

The role of the following theorem is to expand coherence conditions \half-way",

from subtyping judgements in T [R]

0

to the subkinding judgements in its conser-

vative extension T [R]

0K

. (Combination of this result with coercion completion,

which will transform arbitrary subkinding judgements into judgements that be-

long to T [R]

0K

is then used in the proof of main results.)

Theorem 3.5 (Elimination of transitivity of subkinding in T [R]

0K

.) There is

an algorithm, transforming every derivation of the judgement � ` K <

c

K

0

in

T [R]

0K

into a derivation of the judgement � ` K <

c

0

K

0

in the same calculus,

not containing rules SK:5� 7, and such that � ` c

0

= c:(K)K

0

in T. Moreover,

if congruence rule was not used then the derivation of c = c

0

uses only �-equality

rule 5.7.
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Corollary 3.6 If the coherence conditions for subtyping are satis�ed, then in

T [R]

0K

coherence also holds in the following sense:

a) if � ` K = K

0

in T (or T [R]

0K

, since the latter is conservative extension

of T) then � ` K <

c

K

0

is not derivable in T [R]

0K

;

b) if � ` K <

c

K

0

and � ` K <

c

0

K

0

are derivable in T [R]

0K

, then � `

c = c

0

:(K)K

0

4 Coercion completion and conservativity

4.1 The problem of conservativity

We consider in this paper the conservativity problem, one of the main problems

when an approach to coercive subtyping as an abbreviational mechanism is

taken.

The issue of conservativity is closely connected with that of coherence of

coercions (uniqueness of coercion between given subtype and supertype). Sup-

pose f :(x:K)K

0

and a:K

0

, where K

0

<

c

K

0

. By coercive de�nition rule,

f(c(a)) = f(a). If there is another coercion K

0

<

c

0

K such that c 6= c

0

(as-

sume c; c

0

be the terms of T), then one may derive that f(c(a)) = f(c

0

(a)), and,

with f � [x:K]x and a � y [y:K

0

], y:K

0

` c(y) = c

0

(y):K and ` c = c

0

:(K

0

)K.

In this case, the extension would not be a conservative extension. It may even

be the case that the whole system becomes inconsistent.

Conceptually, the basic coercions are declared by the user. This part is open

for extensions. Thus, one may require coherence of the basic coercions (it is

\user's responsibility")

3

. Still non-conservativity might arise if derived coercions

were not coherent. The problem is how the conditions on basic coercions are

connected with the behaviour of arbitrary coercions. In a dependent type system

it is even more complicated by the fact that the coercions in question may be

themselves derived using coercive rules.

The purpose of our work is to show how coherence conditions do imply

conservativity.

Remark 4.1 It is possible to distinguish coercive application from ordinary ap-

plication syntactically. To make distinction one may insert a \placeholder" for

absent coercion as the \dot" in the following alternative formulation of coercive

rules.

4

(CA:1

0

)

� ` f : (x:K)K

0

� ` k:K

0

� ` K

0

<

c

K

� ` f � (k):[c(k)=x]K

0

(CA:2

0

)

� ` f = f

0

: (x:K)K

0

� ` k

1

= k

2

:K

0

� ` K

0

<

c

K

� ` f � (k

1

) = f

0

� (k

2

): [c(k

1

)=x]K

0

3

We note that research on coherence checking and coherence proofs is on-going and beyond

the scope of this paper.

4

There are arguments in favor (and against) both variants. The formulation without

placeholder for coercions is closer to standard practice.

11



(CD

0

)

� ` f : (x:K)K

0

� ` k

0

:K

0

� ` K

0

<

c

K

� ` f � (k

0

) = f(c(k

0

)): [c(k

0

)=x]K

0

This remark is important for the conservativity problem. Since with coer-

cive rules new expressions (containing coercive application) become derivable,

the notion of conservativity for the system where coercive applications are not

marked requires some subtlety.

The conservativity for the system with the `dot'-marking can be understood

in ordinary sense. However, the conservativity for the system without the `dot'-

marking should be understood as the statement \every judgement J which is

derivable in the system with coercive rules and doesn't contain coercive appli-

cations is derivable in the system without coercive rules". This formulation

presupposes that it is possible to check if J contains coercive applications, at

least when a derivation of J is given. (Note that the presence of coercive rules

in a derivation d doesn't a-priori mean that its �nal judgement contains coercive

applications.)

As we show, in the situation considered in present paper (when basic coer-

cions are coherent) the check for coercive applications is always possible and two

formulations are equivalent. (The calculus with \dot" is equivalent to the cal-

culus without dot in the sense that there is one-to-one correspondence between

derivations.)

4.2 Coercion completion: the idea

Consider an inference of coercive application rule CA:1.

� ` f : (x:K)K

0

� ` k:K

0

� ` K

0

<

c

K

� ` f(k):[c(k)=x]K

0

Assume that there exist some T-derivations of the premises � ` f : (x:K)K

0

and

� ` k:K

0

, and a T-derivation of the judgement � ` c:(K

0

)K . Now we obtain a

T-derivation as follows:

� ` f : (x:K)K

0

� ` k:K

0

� ` c:(K

0

)K

� ` c(k):K

� ` f(c(k)):[c(k)=x]K

0

:

Coercive equality application rule and coercive de�nition rule could be modi�ed

in the same way.

This construction suggests an idea how to de�ne a transformation (we call

it �) on the whole derivation. We should begin from the top, and move to

the bottom replacing subkinding judgements in the premises of coercive rules

CA.1, CA.2 and CD by the derivations of their coercion terms, and modifying

the rules accordingly.

The problem with this idea is that the insertions of coercions depend on

derivations. Thus, it should be shown that after insertion the premises of all

rules will be matching (at least, up to the equality in T). Note, that even the

12



identical kinds or terms may be modi�ed in di�erent ways in di�erent deriva-

tions, since di�erent coercion terms could be inserted. This is one of the places

where the coherence conditions are to be used.

For example, if we consider the ordinary application rule

� ` f : (x:K

1

)K

2

� ` k:K

1

� ` f(k):[k=x]K

2

;

and assume that some T [R]-derivations of its premises, say, d

1

; d

2

became the

derivations�(d

1

);�(d

2

) in T of �

0

` f

0

: (x:K

0

1

)K

0

2

and �

00

` k

00

:K

00

1

respectively,

then the corresponding kinds in �

0

and �

00

should be equal in T, and the same

for K

0

1

and K

00

1

. If they are T-equal, there is a canonical way to insert a T-

derivation of the corresponding equality (or equalities), and then use the same

rule as in the main derivation.

If the transformation is de�ned, the result is a T-derivation for the judge-

ments which are not subtyping or subkinding. If it is de�ned for a derivation

of a subtyping or subkinding judgement, the result is a derivation in T [R]

0

or

T [R]

0K

(conservative extensions of T that have corresponding judgement forms

but do not use coercive rules CA.1, CA.2, CD).

4.3 Coercion completion and conservativity proof

Let us outline shortly the structure of conservativity proof based on coercion

completion. The main technical results are presented in section 5.

� In the subsection 5.2 we de�ne the operation �, used in coercion comple-

tion. The de�nition, in addition to the idea of inserting the coercion terms

in place of coercive applications, uses the idea that after the insertion the

premises of ordinary rules are to be \adjusted" (using T-equalities), in or-

der to make possible the use of the same rule. At this stage� is de�ned as

a partial operation, since it is not yet proved that one may always derive

in T the necessary equalities.

� In the subsection 5.3 we show that the operation � agrees with the algo-

rithms considered in the theorems 3.1 and 3.2. For example, if for some

derivation d the derivation �(d) is de�ned (it doesn't contain coercive

rules), and � is any of the algorithms considered in the theorems 3.1, 3.2,

then�(�(d)) is also de�ned, and the �nal judgements of�(d) and�(�(d))

are equal in T (componentwise).

� In the subsection 5.4 we prove that � is total. Main idea: if there is a rule

with several premises, their matching parts may be considered as presup-

posed judgements of the premises. If � is de�ned for the premises, one

may use the results of previous section to show that after the use of these

operations the premises are still matching up to T-equality. Coherence of

coercions in T [R]

0K

(corollary 3.6) is also used here.
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� Totality of � permits us to prove that if a judgement J is derivable then

the places where coercions are inserted do not depend on its derivation, if

J is derivable in the system with coercions then�(J) may be de�ned up to

T-equality independently on derivation and �nally to prove conservativity

(in the sense discussed above, that is, if J is not modi�ed by �, it is

derivable in T).

4.4 The scope of conservativity proof

The technique we use in the proof of conservativity is very general, in particular,

it doesn't depend on any assumptions about normalization properties and covers

subtyping rules naturally connected with inductive types. For instance, the

proof works for the subtyping schemata based on the schemata for inductive

types [Luo99]. In the following, we illustrate the subtyping schemata with the

example of �-types, and explain the di�culty to be encountered in the proof.

Subtyping schemata. There is a general schema to de�ne the rules of T [R]

0

that `propagate' the coercions between parameter types to parameterised induc-

tive types. If �[A

1

; :::; A

n

] is a list of inductive schemata depending on type pa-

rameters A

1

; :::; A

n

(each parameter occurs only covariantly or contravariantly)

and for some types B

1

; :::; B

n

; C

1

; :::; C

n

there are basic coercions B

i

<

c

i

C

i

(if

the parameter A

i

is covariant) or C

i

<

c

i

B

i

(if it is contravariant) then one may

declare the coercion

M[�[B

1

; :::; B

n

]] <

c

M[�[C

1

; :::; C

n

]]

where M[:::] denotes the inductive type corresponding to the schema with the

parameters B

1

; :::; B

n

, C

1

; :::; C

n

respectively and c is constructed from c

1

; :::; c

n

according to certain rules. The following is an example illustrating this schema.

Example 4.2 (Coercion between parameterised �-types.) With the notation

of inductive schemata (see [Luo94]), the �-types (types of dependent pairs) is

represented as:

� =

df

[A:Type][B:(A)Type]M[(x:A)(B(x))X]

: (A:Type)(B:(A)Type)Type:

The constructor pair

�

and elimination operator E

�

are:

pair

�

: (A:Type)(B:(A)Type)(x:A)(B(x))�(A;B)

E

�

: (A:Type)(B:(A)Type)(C:�(A;B))Type)

(f :(x:A)(y:B(x))C(pair

�

(x; y)))

(z:�(A;B))C(z)

According to the subtyping schemata, one of the rules that propagate the coer-

cions A

0

<

c

1

A

00

, B

0

(x) <

c

2

B

00

(x) to �-types is:

� ` A

0

<

c

1

A

00

:Type �; x:A

0

` B

0

(x) <

c

2

B

00

(x):Type(c

1

(x))

�(A

0

; B

0

) <

c

�(A

00

; B

00

)
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where c is the following term (in context �):

E

�

(A

0

; B

0

; [u:�(A

0

; B

0

)]�(A

00

; B

00

); [x:A

0

][y:B

0

(x)](pair

�

(A

00

; B

00

)(c

1

(x); c

2

(y))))

that is, c(pair

�

(A

0

; B

0

; x; y)) = pair

�

(A

00

; B

00

; c

1

(x); c

2

(y)).

The problem of matching premises. As it was pointed out above, the

insertion of coercion terms may change the premises of the rules (if we proceed

downwards a derivation) in such a way that they may not be matching as needed.

However, we have some means to make modi�ed premises matching. Namely, if

the modi�ed premises are derivable in T (or in T [R]

0

; T [R]

0K

), we may further

modify them in order to make them matching again by adding derivable T-

equalities.

The possibility to express matching in terms of identity of certain presup-

posed judgements was essential for our work. For example, if we consider the

rule

� ` f :(x:K

1

)K

2

� ` t:K

1

� ` f(t):[t=x]K

2

(5:5)

and the premises are modi�ed to �

0

` f

0

:(x:K

0

1

)K

0

2

and �

00

` t

0

:K

00

1

during

the process of insertion of coercions; the condition of applicability of the same

rule to the modi�ed premises is that �

0

� �

00

, K

0

1

� K

00

1

. In fact, this may be

regarded as the condition imposed on the presupposed judgements �

0

` K

0

1

kind

and �

00

` K

00

1

kind of the judgements �

0

` f

0

:(x:K

0

1

)K

0

2

and �

00

` t

0

:K

00

1

.

It is possible to express the conditions of applicability of the rules to given

premises in terms of identity of certain presupposed judgements of the premises

for speci�cations in type theories such as UTT or Martin-L�of intensional type

theory.

The method of coercion completion we describe below works well with con-

crete forms of the rules we considered, such as the rules introducing constant

coercions, coercions parameterised by elements of a type or the rules \propa-

gating" coercions from the level of type parameters to the level of an inductive

type.

However, it remains an open problem to �nd some simple (su�cient) general

conditions on the form of rules of type theory T and of the system R of basic

subtyping rules such that coercion completion will work.

5 Coercion Completion and its Properties

In this section we de�ne the operation� used in coercion completion and present

the main results leading to the results about conservativity in the end of the

paper.
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5.1 Notational Conventions.

Let �

0

= x

1

:K

0

1

; x

2

:K

0

2

; :::; x

n

:K

0

n

; �

00

= x

1

:K

00

1

; x

2

:K

00

2

; :::; x

n

:K

00

n

: We shall use

the abbreviation � ` �

0

= �

00

, meaning

� ` K

0

1

= K

00

1

; �; x

1

:K

00

1

` K

0

2

= K

00

2

; ::: �; x

1

:K

00

1

; :::; x

n�1

:K

00

n�1

` K

0

n

= K

00

n

:

We shall also consider equality between judgements of the same form (again

as abbreviation). It will include the equality between contexts introduced above

and the equality between corresponding parts of the right side. One should be

careful in what order these equalities are considered. For example, if we write

� ` k:K = �

0

` k

0

:K

0

it should be ` � = �

0

; if it is so, � ` K = K

0

makes sense

and it should be true. In its turn,� ` k = k

0

:K should be true.

De�nition 5.1 Let d; d

0

be some derivations. Then d � d

0

will mean that the

�nal judgements of d; d

0

are equal in the sense described above.

For inference rules, we shall use the abbreviation

�;�

0

` J � ` �

0

= �

00

�;�

00

` J

(3:3);

meaning the the following inference

�; x

1

:K

0

1

; x

2

:K

0

2

; :::; x

n

:K

0

n

` J � ` K

0

1

= K

00

1

�; x

1

:K

00

1

; x

2

:K

0

2

; :::; x

n

:K

0

n

` J

::::::::::::::: �; x

1

:K

00

1

; :::; x

n�1

:K

00

n�1

`K

0

n

= K

00

n

�; x

1

:K

00

1

; x

2

:K

00

2

; :::; x

n

:K

00

n

` J

(::: means an appropriate series of replacement of kinds by their equal using

\retyping" rule (3.3)).

Below, if not stated otherwise, equality means T-equality.

5.2 De�nition of �.

� is the transformation (coercion completion) that inserts coercions into ordi-

nary derivations (coercive rules disappear). The derivations may include substi-

tutions, wkn, context-retyping 3:3 etc. In general, how a judgement is modi�ed

depends on its derivation. �

d

(J) will denote the judgement J in d modi�ed by

�.

Note that we cannot require matching of the premises up to identity, since

inserted coercion terms from di�erent branches may be only equal (and not

identical) even if the places where they should be inserted coincide (that also

cannot be guaranteed in advance).

� is de�ned by structural induction, and the de�nition includes the assump-

tion (routinely veri�ed) that the form of the judgement is not changed.

� For all T [R]

0K

-derivations d, �(d) � d.
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� If d ends by rule R with one premise, d �

d

0

J

R(J)

, and �(d

0

) is de�ned,

then �(d) �

�(

d

0

J

)

R(�

d

0

(J))

. (One may check that R will be applicable, since

the structure of J is not changed.) This case embraces the rules 1.2, 1.3,

2.1, 2.2, 2.4, 2.5, 4.1-4.3, 5.1, 5.3, 5.8, SK.1, declarations of constants in

the type theory T etc.

� If d �

d

1

J

1

:::

d

k

J

k

R(J

1

; :::; J

k

)

where R is di�erent from CA:1; CA:2; CD and �(d

i

)

is de�ned (1 � i � k), then �(d) is de�ned using the following scheme:

�(d

1

)

�

d

1

(J

1

)

:::

�(d

k

)

�

d

k

(J

k

)

?(T � derivations)

Equalities

= �transitivity and retyping rules

J

0

1

:::::::J

0

k

R(J

0

1

:::::::J

0

k

)

This schema should be explained and some details should be �xed. (Il-

lustrations see below.) First of all, J

0

1

; :::; J

0

k

are obtained in certain

deterministic way from �

d

1

(J

1

); :::;�

d

k

(J

k

). Determinism is achieved

by using only the equalities between the constituents of the judgements

�

d

1

(J

1

); :::;�

d

k

(J

k

) and imposing certain order of preference (usually a

kind is changed to an equal kind from some judgement that is to the left).

The number of equalities to be considered is �nite. Their derivations

in T are to be found but the equalities themselves depend only on the

judgements.

The equalities are used to make possible application of the same rule R

as in d. If necessary equalities are not derivable in T, then �(d) is not

de�ned. Since the equalities whose T-derivations should be found are

determined by �

d

1

(J

1

); :::;�

d

k

(J

k

), the choice of T-derivations does not

a�ect the conclusion of R.

� Let d �

�

d

1

` f : (x:Q

0

)K �

d

2

` k:Q �

d

3

` Q<

c

Q

0

� ` f(k): [c(k)=x]K

CA:1. In this case we shall

write de�nition of � explicitly. (It may serve also as illustration of how

the equalities and retyping rules are used.)

Let �

1

;�

2

; ::: etc denote �

d

1

(�);�

d

2

(�); ::: respectively. Applying � to

the derivations d

1

; d

2

; d

3

, we obtain the derivations �

1

�(d

1

)

` f

1

: ((x:Q

0

1

)K

1

),
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�

2

�(d

2

)

` k

2

:Q

2

and �

3

�(d

3

)

` Q <

c

3

Q

0

3

. Let h be

co(�(d

3

))

�

3

` c

3

:(Q

3

)Q

0

3

?

1

` �

3

= �

1

�

1

` c

3

:(Q

3

)Q

0

3

�(d

2

)

�

2

` k

2

:Q

2

?

2

` �

2

= �

1

�

1

` k

2

:Q

2

?

3

�

1

` Q

2

= Q

3

�

1

` k

2

:Q

3

�

1

` c

3

(k

2

):Q

0

3

?

4

�

1

` Q

0

3

= Q

0

1

�

1

` c

3

(k

2

):Q

0

1

As �(d) we take

�

1

�(d

1

)

` f

1

:(x:Q

0

1

)K

1

�

1

h

` c

3

(k

2

):Q

0

1

�

1

` f

1

(c

3

(k

2

)):[c

3

(k

2

)=x]K

1

(Note the use of the algorithm co applied to T-derivation �(d

3

). The

question-marks correspond to T-derivations that should be found if � is

de�ned.)

� No principal di�erences in cases CA.2 and CD.

Lemma 5.2 If �(d) is de�ned it is de�ned for any subderivation d

0

of d.

5.3 Coercion Completion and Transformations of Deriva-

tions

Let us call constituents of a judgement � ` J

� the kinds of variables from �;

� the kinds of bound variables (i.e., for every occurrence of the binder [x:K]

or (x:K) the kind K is a constituent);

� if J � Kkind or J � K

1

= K

2

then the kind K, respectively K

1

;K

2

;

� if J � k:K or J � k

1

= k

2

:K, then k;K, respectively k

1

; k

2

;K;

� if J � A <

c

B:Type then c; A;B;Type;

� if J � K

1

<

c

K

2

then c;K

1

;K

2

;

� any subkinds of above mentioned kinds.

The A;B; c; k; k

1

; k

2

will be called term-constituents and the rest kind-constituents

of � ` J . These constituents will be considered as di�erent in di�erent occur-

rences (e.g., labelled by occurrences). Note that we do not consider proper

subterms as constituents.

In this paper the presupposed judgements are the principal example of the

judgements built of constituents of some main judgement.

When some derivation d of a judgement � ` J is given, and�(d) is de�ned, it

will determine also unique syntactic transformation of all constituents of � ` J .
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Let �

d

(� ` J) be the �nal judgement of �(d). Let �

0

` J

0

be any judgement

(not necessarily derivable) where �

0

is obtained by kinding of free variables by

kind-constituents of �, and J

0

one of possible forms of judgements built of kind

and/or term-constituents of � ` J . We shall denote by �

d

(�

0

` J

0

) the result

of replacement of each constituent of � ` J which was used in �

0

` J

0

by the

corresponding part of �

d

(� ` J).

Lemma 5.3 Let d be a derivation.

a) If �(d) is de�ned it ends by the same rule as d.

b) If d

0

is a subderivation of d, then �(d

0

) is de�ned.

c) If d

0

0

is some derivation of the same judgement as d

0

(say, J), d

0

is

obtained from d by replacement of d

0

by d

0

0

,�(d

0

0

) is de�ned and�(d

0

) � �(d

0

0

),

then �(d

0

) is de�ned and �(d) � �(d

0

).

Lemma 5.4 Let d be a derivation of �;�

0

` J , �; x:K;�

0

` J or � ` (x:K

1

)K

2

in T [R]

�

. If�(d) is de�ned then �(v

�

(d)), �(k

�

0

(d)), �(p

�

�

�(d)) are de�ned

and:

� �

v

�

(d)

(� ` valid) =

T

�

d

(� ` valid)

� �

k

�

(d)

(� ` Kkind) =

T

�

d

(� ` Kkind),

� �

p

�

�

(d)

(�; x:K

1

` K

2

kind) =

T

�

d

(�; x:K

1

` K

2

kind).

Theorem 5.5 Let d be a T [R]-derivation, and E be the elimination algorithm

from the theorem 3.1. If�(d) is de�ned, then �(E(d)) is, and �(E(d)) � �(d).

Proof. The proof follows the structure of the proof of the theorem 3.1

(see [JLS98]), where �rst the elimination of one wkn, one context-retyping etc

was considered. Let us consider as illustration one-rule elimination. There are

standard and special cases.

In standard case d has the form

d

1

:::d

k

J

r, where d

1

; :::; d

k

are the derivations

of the premises and the derivation d

1

itself may be written as

D

1

J

1

:::

D

m

J

m

J

0

R. Here

r is the rule to be eliminated and R is the last rule of d

1

. The derivations

d

1

; :::; d

k

belong to T [R]

�

.

In such a case one step of elimination is de�ned by

E(d) � E(

D

1

:::D

m

J

1

R d

2

:::d

k

J

) �

E(

D

1

d

2

:::d

k

J

1

r) :::E(

D

m

d

2

:::d

k

J

m

r)

J

R

This elimination step is divided naturally into two parts. Schematically,

d 7! d

0

�

D

1

d

2

:::d

k

J

1

r :::

D

m

d

2

:::d

k

J

m

r

J

7!

E(

D

1

d

2

:::d

k

J

1

r) :::E(

D

m

d

2

:::d

k

J

m

r)

J

R

19



First, we check that if �(d) is de�ned then �(d

0

) is, and the �nal judgements

of �(d) and �(d

0

) are equal

5

. Second, we apply I.H. to the premises of R in

d

0

and use lemma 5.3.

Special cases are those where the end of d is restructured in di�erent way.

Let us consider one standard and one special case as illustrations.

One wkn-elimination.d �

�;�

0

d

1

` J �;�

00

d

2

` valid

�;�

00

;�

0

` J

(wkn), d

1

; d

2

do not

contain wkn.

Assume that �(d) is de�ned. By de�nition of �, �

d

(�;�

00

;�

0

` J) �

�

d

1

(�);�

d

2

(�

00

);�

d

1

(�

0

) ` �

d

1

(J).

In general, d

1

�

�;�

0

1

e

1

` J

1

:::�;�

0

k

e

k

` J

k

�;�

0

` J

(r).

The modi�ed d is

d

0

�

�;�

0

1

e

1

` J

1

�;�

00

d

2

` valid

�;�

00

;�

0

1

` J

1

(wkn):::

�;�

0

k

e

k

` J

k

�;�

00

d

2

` valid

�;�

00

;�

0

k

` J

k

(wkn)

�;�

00

;�

0

` J

(r):

Since�(d

1

) is de�ned, (+)�

d

2

(�) =�

e

1

(�) = :::�

e

k

(�):Thus,�(e

0

i

) is de�ned

(1 � i � k), where e

0

i

�

�;�

0

i

e

i

` J

i

�;�

00

d

2

` valid

�;�

00

;�

0

i

` J

i

(wkn): �(e

0

i

) is

�(e

i

)

�

e

i

(�);�

e

i

(�

0

i

) ` �

e

i

(J)

�

d

2

(�);�

d

2

(�

00

)

�(d

2

)

` valid

h

i

` �

d

2

(�) = �

e

i

(�)

�

e

i

(�);�

d

2

(�

00

) ` valid

�

e

i

(�);�

d

2

(�

00

);�

e

i

(�

0

i

) ` �

e

i

(J)

:

Here h

i

denote appropriate T-derivations obtained from the T-derivation of

equalities (+).

Before r may be applied to the conclusions of �(e

0

i

), some T-equalities must

be incerted. They are obtained by modi�cation of the T-equalities used in

�(d

1

).

Those T-equalities are (a) the equality judgements used to change kinds of

the variables in �

e

i

(�) (their context is part of �

e

1

(�)) and (b) the equalities

of the form �

e

1

(�); ::: ` �

e

i

(K) = �

e

1

(K

0

). The equalities (a) may be used

without modi�cation. To the equalities of (b) wkn must be applied �rst:

�

e

1

(�); ::: ` �

e

i

(K) = �

e

1

(K

0

)

�

d

2

(�);�

d

2

(�

00

) ` valid `�

d

2

(�) = �

e

1

(�)

�

e

1

(�);�

d

2

(�

00

) ` valid

�

e

1

(�);�

d

2

(�

00

); ::: ` �

e

i

(K

0

)

and then they may be used as in �(d

1

)

Thus, �(d

0

) is de�ned. By I.H. �(e

0

i

) � �(E(e

0

i

)), and we use lemma 5.3,

c).

5

In most, but not all cases they are identical
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The only exceptional case for wkn is d

1

�

�

0

d

0

` Kkind

�

0

; x:K ` valid

(1:2), � � �

0

; x:K.

In this case the derivation d

2

is taken as E(d) . �(E(d)) is de�ned because d

2

is subderivation of d, and �(d) is de�ned (lemma 5.4). By the same lemma,

�

d

2

(�) = �

d

(�) and �

d

2

(�;�

00

) � �

d

2

(�);�

d

2

(�

00

) = �

d

1

(�);�

d

2

(�

00

) �

�

d

(�;�

00

).

It is one of the cases where equality (and not identity) of the conclusions of

original and modi�ed derivations arises. 2

Theorem 5.6 Let d be a T [R]-derivation of one of the judgements: 1: � `

K

1

= K

2

; 2: � ` k

1

= k

2

:K; 3: � ` �:K (� denotes a term or term equality).;

4: �

d

` A <

c

B:Type or �

d

` K <

c

K

0

If �(d) is de�ned then �(l

=

(d));�(r

=

(d)), �(l

�

=

(d));�(r

�

=

(d)), �(kd(d))

are de�ned and

1. �

d

(� ` K

1

kind) =

T

�

l

=

(d)

(� ` K

1

kind),

�

d

(� ` K

2

kind) =

T

�

r

=

(d)

(� ` K

2

kind);

2. �

d

(� ` k

1

:K) =

T

�

l

�

=

(d)

(� ` k

1

:K),

�

d

(� ` k

1

:K) =

T

�

r

�

=

(d)

(� ` k

1

:K);

3. �

d

(� ` Kkind) =

T

�

kd(d)

(� ` Kkind);

4. �

d

(� ` A:Type) =

T

�

l

<

(d)

(� ` A:Type),

�

d

(� ` Kkind) =

T

�

l

<

(d)

(� ` Kkind),

�

d

(� ` B:Type) =

T

�

r

<

(d)

(� ` B:Type),

�

d

(� ` Kkind) =

T

�

r

<

(d)

(� ` Kkind),

�

d

(� ` c:(El(A))El(B)) =

T

�

co(d)

(� ` c:(El(A))El(B)),

�

d

(� ` c:(K)K

0

) =

T

�

co(d)

(� ` c:(K)K

0

), respectively.

Proof. Structural induction, that follows the cases in the proof of the theo-

rem 3.2. As in theorem 5.5, one step of extraction of a proof of presupposed

judgement can be split (roughly) in two parts: restructuring of the end of d

(including use of the extraction algorithm on the subderivations) and use of

elimination algorithm to get rid of wkn, substitutions and other rules that may

appear. With respect to�, we should check that this preserves de�nedness of�

and the structure of the parts of �nal judgement (up to T-equality). Lemma 5.3

and theorem 5.5 (in connection with the elimination part) are used. Consider

as illustration one rule:

d �

�; x:K

1

d

1

` K

0

1

= K

0

2

�

d

2

` K

1

= K

2

� ` (x:K

1

)K

0

1

= (x:K

2

)K

0

2

(5:2);
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Consider more complex case of the derivation r

=

(d) (the construction of r

=

(d)

is taken from [JLS98]):

d 7! d

0

�

�; x:K

1

r

=

(d

1

)

` K

0

2

�

d

2

` K

1

= K

2

�; x:K

2

` K

0

2

(3:3)

� ` (x:K

2

)K

0

2

(5:1) 7!

7! r

=

(d) �

E(

�; x:K

1

r

�

=

(d

1

)

` K

0

2

�

d

2

` K

1

= K

2

�; x:K

2

` K

0

2

(3:3))

� ` (x:K

2

)K

0

2

(5:1)

We check, that if �(d) is de�ned then �(d

0

) is de�ned and �(d) �

T

�(d

0

)

(using de�nition of �, I.H. and lemma 5.3). Then we show the same for �(d

0

)

and �(r

=

(d)) using theorem 5.5 and again lemma 5.3. 2

5.4 � is total

Lemma 5.7 Assume that the coherence conditions for subtyping are satis�ed.

Let d; d

0

be the derivations in T [R]

�

of the same judgement: a)� ` valid;

b)� ` Kkind; c)or of two judgements � ` k:K and � ` k:K

0

. If�(d) and �(d

0

)

are de�ned, then: a)�

d

(� ` valid) =

T

�

d

0

(� ` valid); b)�

d

(� ` Kkind) =

T

�

d

0

(� ` Kkind); c)�

d

(� ` k:K) =

T

�

d

0

(� ` k:K

0

).

Proof. Induction on the sum of sizes of two derivations. Base is covered

by the case when d; d

0

are T-derivations. If d; d

0

end by the same rule with

the same premises, the inductive step presents no di�culty. Of the remaining

cases the principal cases are of two coercive applications with di�erent coercion

terms and of coercive application in one derivation and ordinary application in

another. It is of crucial importance that the second case is impossible. We shall

take it as illustration. Assume that

d �

�

d

1

` f :(x:Q)K �

d

2

` k:Q

� ` f(k):[k=x]K

5:5

d

0

�

�

d

0

1

` f :(x:Q

0

)K

0

�

d

0

2

` k:Q

0

0

�

d

0

3

` Q

0

0

<

c

Q

0

� ` f(k):[c(k)=x]K

0

CA:1:

In the following equalities and subtyping relations we omit the contexts. Using

I.H. and the fact that �(d);�(d

0

) are de�ned we obtain

(i)�

d

1

((x:Q)K) =

T

�

d

0

1

((x:Q

0

)K

0

) which implies �

d

1

(Q) =

T

�

d

0

1

(Q

0

);

(ii)�

d

2

(Q) =

T

�

d

0

2

(Q

0

0

);

(iii) �

d

0

3

(Q

0

0

) <

�

d

0

3

(c)

�

d

0

3

(Q

0

) in T [R]

�

0K

.

(iv) Since � is de�ned for d; d

0

, we have also �

d

0

2

(Q

0

0

) =

T

�

d

0

3

(Q

0

0

) and

�

d

1

(Q

0

) =

T

�

d

3

(Q

0

).
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This means the possibility to have at the same time equality and subtyping

relation for two kinds in T [R]

�

0K

, which contradicts corollary 3.6.

In case of d and d

0

ending by CA.1 with di�erent coercion terms c; c

0

in third

premises, using similar analysis we show that �

d

(c) = �

d

0

(c

0

) in T [R]

0K

and

this provides T-equality of the conclusions. 2

Theorem 5.8 If R is coherent, then the transformations � is de�ned for all

derivations in T [R] and if d; d

0

are derivations of the same judgement � ` J ,

then �(d) � �(d

0

). Moreover, if d is a derivation in T [R]

0K

(this includes the

derivations in T [R]

0

and T), its �nal judgement is not changed at all.

Proof. The proof that � is total goes by induction on the structure of

derivations. Main idea is to combine lemma 5.7 with theorem 5.6.The proof of

the inductive step (that is, the proof that if the derivation d ends by some rule

r with d

1

; ::; d

k

being the subderivations of the premises then the assumption

that �(d

1

); :::;�(d

k

) is de�ned implies�(d) is de�ned) may be reduced to the

question of T-equality between certain presupposed judgements of the premises

modi�ed by �. All presupposed judgements have one of the forms considered

in lemma 5.7. In the proof of the last statement of the theorem remark 3.3 has

to be taken into account. 2

6 Coercion completion and conservativity

Theorem 6.1 Let J be a judgement derivable in T [R]. If R is coherent, and J

is not subtyping or subkinding judgement, it is derivable in T i� there exists d

in T [R] such that �

d

(J) � J (by theorem 5.8 it implies �

f

(J) � J for every

derivation f). The last condition for the judgements of subtyping or subkinding

form is equivalent to their derivability in T [R]

0

(respectively, T [R]

0K

).

Proof. Let d be some derivation of J in T [R]. Implication from left to right

is trivial since the derivations that do not contain coercive rules are not changed.

Suppose now that there exists d such that �

d

(J) � J . It is enough to observe

that �(d) is a derivation in T (respectively in T [R]

0

; T [R]

0K

if the judgement

has the form of subtyping or subkinding). 2

Remark 6.2 This theorem solves obviously the problem of conservativity as it

was discussed in the subsection 4.1. Indeed, if J is derivable we have to take

any its derivation in T [R] and apply the algorithm �. Then J does not contain

coercive applications i� it is not changed. In this case it is derivable without

coercive rules.

Final remarks

To conclude it would be convenient to add some notes about the formulation of

the type theory with coercions that uses \placeholder" (the system with \dot"

from the remark 4.1).
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In addition to the problem of conservativity for this system its relationship

to the system without \dot" should be studied. In fact, it is far from obvious

that the two systems are equivalent. One may trivially transform a derivation in

the system with \dot" into derivation without \dot" (just erasing the \dots").

But it is not obvious that one may transform a derivation without \dots" into

a derivation with \dot". Similarly to the insertion of coercions described above

(the transformation �) it is to be proved that the premises of the rules will be

still matching if we insert \dots" marking coercive applications.

Let us denote by � the transformation that replaces ordinary coercive rules

by their version with \dot" (moving downwards the derivation). E.g.,

(CA:1)

� ` f : (x:K)K

0

� ` k:K

0

� ` K

0

<

c

K

� ` f(k):[c(k)=x]K

0

is replaced by

(CA:1)

� ` f : (x:K)K

0

� ` k:K

0

� ` K

0

<

c

K

� ` f � (k):[c(k)=x]K

0

etc. The transformation �

�

would insert coercions in the derivation where the

places to insert coercions are marked by \dots".

If it is proved that � is total, then it is easy to prove that the calculus where

coercive applications are distinguished syntactically from ordinary applications

is equivalent to the calculus where they are not. In fact, the totality of � can be

proved, but it turns out that the proof uses the whole apparatus that we have

already developed for �. It is based on the following (easy) lemma.

Lemma 6.3 If �(d) and �(d) are de�ned, then �

�

(�(d)) is de�ned and the

�nal judgements of �(d) and �

�

(�(d)) coincide. If J is the �nal judgement of

d, then �

d

(J) is the result of replacement of \dots" in �

d

(J) by coercion terms.

This lemma \binds" the problem of totality of � to the problem of totality of�

and, in our view, justi�es the priority we have given to the consideration of �.

The proof of totality of � provides as its corollary the proof of totality of �

and equivalence (one-to-one correspondence between derivations) of the systems

with and without \dot".

The notation with \dot" marking coercive applications makes it possible to

formulate conservativity problem in traditional way: if the judgement J does

not contain \dot" then it is derivable in the system with coercive rules CA.1',

CA.2', CD' i� it is derivable in the system without these rules.
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Appendix

The following �gure contains the rules of the typed logical framework LF

with minor modi�cations. The main modi�cation is that we included (to sim-

plify some formulations) the rules of weakeningwkn and context-retyping, which

may be eliminated.

For the reference purposes the rules are given numbers. The rules may

be divided into several groups: 1.1-1.3 and the weakening wkn are related to

contexts and assumptions; 2.1-2.6 are general equality rules; 3.1 - 3.3 equality

typing rules; 4.1 - 4.3 describe the kind Type; 5.1 - 5.8 are related to dependent

product kinds; and 6.1 - 6.7 are substitutions.

Note that in the expressions like [x:K]k and (x:K)K

0

[x:K] and (x:K) play

the role of binders (bind all free x in k, respectively K

0

). This notation is

commonly used in the literature on proof assistants.
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(1:1)

<>` valid

(1:2)

� ` Kkind x 62 FV (�)

�; x:K ` valid

(1:3)

�;x:K;�

0

` valid

�; x:K;�

0

` x:K

�

1

;�

2

` J �

1

;�

3

` valid

�

1

;�

3

;�

2

` J

(wkn)

(where FV (�

2

) \ FV (�

3

) = ;).

(2:1)

� `Kkind

� `K = K

(2:2)

� ` K = K

0

� ` K

0

= K

(2:3)

� `K = K

0

� `K

0

= K

00

� `K = K

00

(2:4)

� ` k:K

� ` k = k:K

(2:5)

� ` k = k

0

:K

� ` k

0

= k:K

(2:6)

� ` k = k

0

:K � ` k

0

= k

00

:K

� ` k = k

00

:K

(3:1)

� ` k:K � ` K = K

0

� ` k:K

0

(3:2)

� ` k = k

0

:K � ` K = K

0

� ` k = k

0

:K

0

(3:3)

�;x:K;�

0

` J � `K = K

0

�; x:K

0

;�

0

` J

(4:1)

� ` valid

� ` Typekind

(4:2)

� ` A:Type

� ` El(A)kind

(4:3)

� ` A = B:Type

� ` El(A) = El(B)

(5:1)

�; x:K `K

0

kind

� ` (x:K)K

0

kind

(5:2)

�; x:K

1

`K

0

1

= K

0

2

� `K

1

= K

2

� ` (x:K

1

)K

0

1

= (x:K

2

)K

0

2

(5:3)

�; x:K ` k:K

0

� ` [x:K]k:(x:K)K

0

(5:4)

�; x:K

1

` k

1

= k

2

:K � `K

1

= K

2

� ` [x:K

1

]k

1

= [x:K

2

]k

2

: (x:K

1

)K

(5:5)

� ` f : (x:K)K

0

� ` k:K

� ` f(k):[k=x]K

0

(5:6)

� ` f = f

0

: (x:K)K

0

� ` k

1

= k

2

:K

� ` f(k

1

) = f

0

(k

2

):[k

1

=x]K

0

(5:7)

�; x:K ` k

0

:K

0

� ` k:K

� ` ([x:K]k

0

)k = [k=x]k

0

: [k=x]K

0

(5:8)

� ` f : (x:K)K

0

x 62 FV (�)

� ` [x:K]f(x) = f : (x:K)K

0

(6:1)

�; x:K;�

0

` valid � ` k:K

�; [k=x]�

0

` valid

(6:2)

�; x:K;�

0

`K

0

kind � ` k:K

�; [k=x]�

0

` [k=x]K

0

kind

(6:3)

�; x:K;�

0

` k

0

:K

0

� ` k:K

�; [k=x]�

0

` [k=x]k

0

: [k=x]K

0

(6:4)

�; x:K;�

0

`K

0

= K

00

� ` k:K

�; [k=x]�

0

` [k=x]K

0

= [k=x]K

00

(6:5)

�;x:K;�

0

` k

0

= k

00

:K

0

� ` k:K

�; [k=x]�

0

` [k=x]k

0

= [k=x]k

00

:K

0

(6:6)

�; x:K;�

0

`K

0

kind � ` k

1

= k

2

:K

�; [k

1

=x]�

0

` [k

1

=x]K

0

= [k

2

=x]K

0

(6:7)

�; x:K;�

0

` k

0

:K

0

� ` k

1

= k

2

:K

�; [k=x]�

0

` [k

1

=x]k

0

= [k

1

=x]k

0

: [k=x]K

0

Figure 1: Inference rules of LF.
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