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Abstract. Manifest fields in a type of modules are shown to be express-
ible in intensional type theory without strong extensional equality rules.
These intensional manifest fields are made available with the help of
coercive subtyping. It is shown that, for both Σ-types and dependent
record types, the with-clause for expressing manifest fields can be intro-
duced by means of the intensional manifest fields. This provides not only
a higher-order module mechanism with ML-style sharing, but a power-
ful modelling mechanism in formalisation and verification of OO-style
program modules.

1 Introduction

A type of modules may be expressed in type theory as a Σ-type or a dependent
record type. A field in such a type is usually abstract (of the form ‘v : A’) in the
sense that the data in that field can be any object of a given type. In contrast,
a field is manifest (of the form ‘v = a : A’) if the data in that field is not only
of a given type but the ‘same’ as some specific object of that type. Intuitively,
manifest fields allow internal expressions of definitional entries and are hence very
useful in expressing various powerful constructions in a type-theoretic setting.
For example, one can use Σ-types or dependent record types with manifest fields
to express the powerful module mechanism with the so-called ML-style sharing
(or sharing by equations) [31,20].

For a manifest field v = a : A, the ‘sameness’ of the data as object a may
be interpreted as judgemental equality in type theory, as is done in all of the
previous studies on manifest fields in type theory [16,37,13]. If so, this gives rise
to an extensional notion of judgemental equality and such manifest fields may
be called extensional manifest fields. In type theory, such extensional manifest
fields may also be obtained by means of other extensional constructs such as the
singleton type [5,17] and the extensional equality [32,11]. It is known, however,
such an extensional notion of equality is meta-theoretically difficult (in the cases
of the extensional manifest fields and the singleton types) or even lead to outright
undecidability (in the case of the extensional equality).
� This work is partially supported by the research grant F/07-537/AA of the Lever-

hulme Trust in U.K. and the TYPES grant IST-510996 of EU.

S. Berardi, F. Damiani, and U. de’Liguoro (Eds.): TYPES 2008, LNCS 5497, pp. 237–255, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



238 Z. Luo

As shown in this paper, the ‘sameness’ in a manifest field does not have to
be interpreted by means of an extensional equality. With the help of coercive
subtyping [25], manifest fields are expressible in intensional type theories such as
Martin-Löf’s intensional type theory [35] and UTT [23]. The idea is very simple:
for a of type A, a manifest field v = a : A is simply expressed as the shorthand
of an ordinary (abstract) field v : 1(A, a), where 1(A, a) is the inductive unit
type parameterised by A and a. Then, with a coercion that maps the objects
of 1(A, a) to a, v stands for a in a context that requires an object of type A.
This achieves exactly what we want with a manifest field. Such a manifest field
may be called an intensional manifest field (IMF) and, to distinguish it from an
extensional manifest field, we use the notation v ∼ a : A to stand for v : 1(A, a).

Manifest fields may be introduced using the with-clause that intuitively ex-
presses that a field is manifest rather than abstract. For both Σ-types and depen-
dent record types, with-clauses can be introduced by means of IMFs and used
as expected in the presence of the component-wise coercion that propagates
subtyping relations. For Σ-types, it is shown that the employed coercions are
coherent together and that the IMF-representation of with-clauses is adequate.

Our work on IMFs in record types is based on a novel formulation of de-
pendent record types (without manifest fields), which is different from those in
the previous studies [16,37,13] and has its own merits. Among other things, our
formulation is independent of structural subtyping (as in [37]), allowing more
flexible subtyping relations to be adopted in formalisation, and introduces kinds
of record types, giving a satisfactory solution to the problem of how to ensure
label distinctness in record types.

Intensional manifest fields can be used to express definitional entries and
provide not only a higher-order module mechanism with ML-style sharing1 but
also a powerful modelling mechanism in formalisation and verification of OO-
style programs. Using the record macro in Coq [12], we give examples to show,
with IMFs, how ML-style sharing can be captured and how classes in OO-style
programs can be modelled. Since intensional type theories are implemented in
the current proof assistants, many of which support the use of coercions, the
module mechanism supported by IMFs can also be used for modular development
of proofs and dependently-typed programs.

The following subsection briefly describes the logical framework LF and co-
ercive subtyping, establishing the notational conventions. In Section 2, we in-
troduce manifest fields and explain how they may be expressed in extensional
type theories. The IMFs in Σ-types are studied in Section 3. In Section 4, we
formulate dependent record types, introduce the IMFs in record types, and il-
lustrate their uses in expressing the module mechanism with ML-style sharing
and in modelling OO-style classes in formalisation and verification. Some of the
related and future work is discussed in the conclusion.

1 Historically, expressing ML-style sharing is the main motivation behind the studies
of manifest fields [16,20,37]. In fact, it has long been believed that, to express ML-
style sharing in type theory, it is essential to have some construct with an extensional
notion of equality. As shown in this paper, this is actually unnecessary.
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1.1 The Logical Framework and Coercive Subtyping

The Logical Framework LF. LF [23] is the typed version of Martin-Löf’s
logical framework [35]. It is a dependent type system for specifying type theories
such as Martin-Löf’s intensional type theory [35] and the Unifying Theory of
dependent Types (UTT) [23]. The types in LF are called kinds, including:

– Type – the kind representing the universe of types (A is a type if A : Type);
– El(A) – the kind of objects of type A (we often omit El); and
– (x:K)K ′ (or simply (K)K ′ when x �∈ FV (K ′)) – the kind of dependent

functional operations such as the abstraction [x:K]k′.

The rules of LF can be found in Chapter 9 of [23]. We sometimes use M [x]
to indicate that x may occur free in M and subsequently write M [a] for the
substitution [a/x]M .

When a type theory is specified in LF, its types are declared, together with
their introduction/elimination operators and the associated computation rules.
Examples include inductive types such as Nat of natural numbers, inductive
families of types such as V ect(n) of vectors of length n, and families of inductive
types such as Π-types Π(A, B) of functions λ(x:A)b and Σ-types Σ(A, B) of
dependent pairs (a, b).2 In a non-LF notation, Σ(A, B), for example, will be
written as Σx:A.B(x). A nested Σ-type can be seen as a type of tuples/modules.

Notation. We shall use
∑

[x1 : A1, x2 : A2, ..., xn : An] to stand for Σx1 :
A1Σx2 : A2 ... Σxn−1 : An−1. An, where n ≥ 1. (When n = 1,

∑
[x:A] =df A.)

Similarly, (a1, a2, ..., an) stands for (a1, (a2, ..., (an−1, an)...)). Furthermore,
for any a of type

∑
[x1 : A1, x2 : A2, ..., xn : An],

– a.i =df π1(π2(...π2(π2(a))...), where π2 occurs i − 1 times (1 ≤ i < n), and
– a.n =df π2(...π2(π2(a))...), where π2 occurs n − 1 times.

For instance, when n = 3, a.2 ≡ π1(π2(a)) and a.3 ≡ π2(π2(a)). �	
Types can be parameterised. For example, the unit type 1(A, x) is parameterised
by A : Type and x : A and can be formally introduced by declaring:

1 : (A:Type)(x:A) Type

∗ : (A:Type)(x:A) 1(A, x)
E : (A:Type)(x:A) (C : (1(A, x))Type)(c : C(∗(A, x))(z : 1(A, x))C(z)

with the computation rule E(A, x, C, c, ∗(A, x)) = c.

Remark 1. The type theories thus specified are intensional type theories as those
implemented in the proof assistants Agda [3], Coq [12], Lego [29] and Matita
[33]. They have nice meta-theoretic properties including Church-Rosser, Subject
Reduction and Strong Normalisation. (See Goguen’s thesis on the meta-theory
of UTT [15].) In particular, the inductive types do not have the η-like equality
rules. As an example, the above unit type is different from the singleton type [5]
in that, for a variable x : 1(A, a), x is not computationally equal to ∗(A, a). �	
2 We use A → B and A × B for the non-dependent Π-type and Σ-type, respectively.

Also, see Appendix A for a further explanation for the notation of untyped pairs.
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Coercive Subtyping. Coercive subtyping for dependent type theories was first
considered in [2] for overloading and has been developed and studied as a general
approach to abbreviation and subtyping in type theories with inductive types
[24,25]. Coercions have been implemented in the proof assistants Coq [12,39],
Lego [29,6], Plastic [9] and Matita [33]. Here, we explain the main idea and
introduce necessary terminologies. For a formal presentation with complete rules,
see [25].

In coercive subtyping, A is a subtype of B if there is a coercion c : (A)B,
expressed by Γ � A ≤c B : Type.3 The main idea is reflected by the following
coercive definition rule, expressing that an appropriate coercion can be inserted
to fill up the gap in a term:

Γ � f : (x:B)C Γ � a : A Γ � A ≤c B : Type

Γ � f(a) = f(c(a)) : [c(a)/x]C

In other words, if A is a subtype of B via coercion c, then any object a of type
A can be regarded as (an abbreviation of) the object c(a) of type B.

Coercions may be declared by the users. They must be coherent to be em-
ployed correctly. Essentially, coherence expresses that the coercions between any
two types are unique. Formally, given a type theory T specified in LF, a set R
of coercion rules is coherent if the following rule is admissible in T [R]0:4

Γ � A ≤c B : Type Γ � A ≤c′ B : Type

Γ � c = c′ : (A)B

Coherence is a crucial property. Incoherence would imply that the extension
with coercive subtyping is not conservative in the sense that more judgements of
the original type theory T can be derived. In most cases, coherence does imply
conservativity (e.g., the proof method in [40] can be used to show this). When the
employed coercions are coherent, one can always insert coercions correctly into
a derivation in the extension to obtain a derivation in the original type theory.
For an intensional type theory, coercive subtyping is an intensional extension.
In particular, for an intensional type theory with nice meta-theoretic properties,
its extension with coercive subtyping has those nice properties, too.

Remark 2. Coercive subtyping corresponds to the view of types as consisting of
canonical objects while ‘subsumptive subtyping’ (the more traditional approach
with the subsumption rule) to the view of type assignment [28]. Coercive subtyp-
ing can be introduced for inductive types in a natural way [28,27], but this would
be difficult, if not impossible, for subsumptive subtyping. Furthermore, coercive
3 In this paper, we use ≤c, rather than the strict relation <c, for coercion judgements

and assume that the identity is always a coercion: if Γ � A : Type, then Γ �
A ≤idA

A : Type, where idA ≡ [x:A]x. This does not make an essential difference
but simplifies the component-wise coercion rules in Sections 3.1 and 4.2.

4 T [R]0 is an extension of T with the subtyping rules in R together with the congru-
ence, substitution and transitivity rules for the subtyping judgements, but without
the coercive definition rule. See [25] for formal details.
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subtyping is not only suitable for structural subtyping, but for non-structural
subtyping. The use in this paper of the coercion concerning the unit type is such
an example. �	

2 Manifest Fields via Extensional Constructs

Σ-types or dependent record types can be used to represent types of modules.
For instance, a type of some kind of abstract algebras may be represented as

M ≡ ∑
[S : U, op : S → S, ...],

where S stands for (the type of) the carrier set with U being a type universe.
(For simplicity, we omit the details such as the equality over S etc.) Sometimes,
one may use manifest fields [20] to specify that the data in a field is not only of
a given type, but a specific object of that type. For instance, for m : M , we want
to define a subtype of M the carrier set of whose objects must be the same as
that of m (i.e., m.1 – see Section 1.1). This module type can be defined as

∑
[S = m.1 : U, op : S → S, ...],

which is the same as M except that the first field is manifest, specifying that
the data in that field must be the same as m.1.

Traditionally,whenmanifest fields are considered, they introduce an extensional
notion of equality: in the above example, (the variable) S and m.1 are judgemen-
tally equal and, in particular, they are interchangeable in type-checking. Such ex-
tensional manifest fields can be introduced directly [16,37,13] and the associated
notion of equality is a strong form of η-like equalitywhich makes the meta-theoretic
studies rather difficult.

Manifest fields can be coded by means of other extensional constructs, in-
cluding the extensional equality Eq, which was first introduced in Martin-Löf’s
extensional type theory (ETT) [32] and adopted by NuPRL [10]. In ETT, the
propositional equality Eq(A, a, b) is equivalent to the judgemental equality: Γ �
p : Eq(A, a, b) if and only if Γ � a = b : A. With Eq, one may express a manifest
field v = a : A with two fields: ‘v : A, x : Eq(A, v, a)’, where the second guaran-
tees that v is judgementally equal to a [11]. As is known, because of the strength
of Eq, the judgemental equality and type checking in ETT are undecidable.

Another extensional construct that can be used to express manifest fields
is the singleton type [5,17]. For a : A, M is an object of the singleton type
{a}A if and only if M and a are judgementally equal. With this, a manifest
field v = a : A can simply be represented as the field v : {a}A. The singleton
types also introduce a strong form of η-like equality (among other things such
as subtyping) and are difficult in meta-theory. (See [14] for a sophisticated proof
of strong normalisation of a simple type system with singleton types.)

It has been thought that it would be difficult, if not impossible, to have
manifest fields in type theory without such extensional constructs. This is partly
because that, in an intensional type theory, the propositional equality is not
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equivalent to the computational (judgemental) equality in a non-empty context
and, therefore, to express v = a : A, it is not enough to just have a proof that v
is propositionally equal to a; we would need a way to make them judgementally
equal (for example, for type-checking).

However, we shall show that manifest fields can be expressed in an intensional
type theory, with the help of coercive subtyping.

3 Intensional Manifest Fields in Σ-Types

An intensional manifest field (IMF) in a Σ-type is a field of the form

x : 1(A, a),

where 1(A, a) is the unit type parameterised by A : Type and a : A. It will be
written by means of the following notation:

x ∼ a : A.

In other words, we write
∑

[... x ∼ a : A, ...] for
∑

[... x : 1(A, a), ...].
The IMFs (and the Σ-types involved) are well-defined and behave as intended

with the help of the following two coercions:

– ξA,a, associated with 1(A, a), maps the objects of 1(A, a) to a. In a context
where an object of type A is required (e.g., in the Σ-type but after the field
v ∼ a : A), v is coerced into a and behaves as an abbreviation of a.

– The component-wise coercion dΣ propagates subtyping relations, including
those specified by ξ, through Σ-types so that the IMFs can be used properly
in larger contexts.

Example 1. Here is an example of how the coercion ξ is used to support IMFs.
Consider the module type M in Section 2, repeated here:

M ≡ ∑
[S : U, op : S → S, ...].

For m : M , we can change its first field into an IMF by specifying that the carrier
set must be ‘the same’ as (or, more precisely, abbreviate) the carrier set of m:

Mw ≡ ∑
[S ∼ m.1 : U, op : S → S, ...].

Note that S is now of type 1(U, m.1) and is not a type. The reason that S → S
is well-typed is that S is now coerced into the type ξU,m.1(S) = m.1. �	

3.1 Coercions ξ and dΣ and Their Coherence

The coercion rule for ξ concerning the unit type is:

(ξ)
Γ � A : Type Γ � a : A

Γ � 1(A, a) ≤ξA,a
A : Type

where ξA,a(x) = a for any x : 1(A, a).



Manifest Fields and Module Mechanisms in Intensional Type Theory 243

The component-wise coercion expresses the idea that the subtyping relations
propagate through the module types. For Σ-types, if A is a subtype of A′ and
B is a ‘subtype’ of B′, then Σ(A, B) is a subtype of Σ(A′, B′). Formally, this is
formulated by means of the following rule:

(dΣ)

Γ � B : (A)Type Γ � B′ : (A′)Type
Γ � A ≤c A′ : Type Γ, x:A � B(x) ≤c′[x] B′(c(x)) : Type

Γ � Σ(A, B) ≤dΣ
Σ(A′, B′) : Type

where dΣ maps (a, b) to (c(a), c′[a](b)) and is formally defined as dΣ(z) =
(c(π1(z)), c′[π1(z)](π2(z))), for any z : Σ(A, B).

Remark 3. In the literature, the component-wise rules for Σ-types are usually
formulated by means of <c, rather than ≤c. Similar rules can be recovered. For
instance, when B ≡ B′ ◦ c and c′[x] ≡ idB′(c(x)) and if we omit the coercion
judgement for the identity coercion c′[x], the above rule becomes

Γ � B′ : (A′)Type Γ � A ≤c A′ : Type

Γ � Σ(A, B′ ◦ c) ≤d1 Σ(A′, B′) : Type

where d1 maps (a, b) to (c(a), b). �	
Proposition 1 (Coherence). Let R = {(ξ), (dΣ)}. Then R is coherent.

Proof. By induction on derivations, we prove the more general statement:

– if Γ � A ≤c B : Type and Γ � A′ ≤c′ B′ : Type, where Γ � A = A′ : Type
and Γ � B = B′ : Type, then Γ � c = c′ : (A)B.

For example, in the case that the last rules to derive A ≤c B and A′ ≤c′ B′ are
both (ξ) with c ≡ ξC,a and c′ ≡ ξC′,b, we have that 1(C, a) ≡ A = A′ ≡ 1(C′, b).
Then, by Church-Rosser, C = C′, a = b, and ξC,a(x) = a = b = ξC′,b(x) for any
x : 1(C, a). Therefore, ξC,a = ξC′,b by the ξ-rule and η-rule in LF (see Chapter
9 of [23]). �	

3.2 with-Clauses and Properties

Manifest fields can be introduced by means of the with-clauses (see, e.g., [37]).
Usually, they introduce extensional manifest fields with new computation rules.
We shall instead consider them with the intensional manifest fields.

Intuitively, given a Σ-type with a field v : A, a with-clause modifies it into
the same Σ-type except that the corresponding field becomes manifest: v ∼ a :
A (i.e., v : 1(A, a)). For instance, the module type Mw in Example 1 can be
obtained from M as follows: Mw = M with field 1 as m.1.

Definition 1 (with-clause for Σ-types). Let M ≡ ∑
[x1 : A1, ..., xn : An],

i ∈ {1, ..., n} and x1 : A1, ..., xi−1 : Ai−1 � a : Ai. Then,

M with field i as (x1, ..., xi−1)a
=df

∑
[ x1 : A1, ..., xi−1 : Ai−1, xi ∼ a : Ai, xi+1 : Ai+1, ..., xn : An ].
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When xj �∈ FV (a) (j = 1, ..., i − 1), we omit the variables xj and simply write
(M with field i as a) for (M with field i as (x1, ..., xi−1)a). �	

The fields in tuples (objects of Σ-types) can be modified similarly.

Definition 2 (|-operation for Σ-types). Let M ≡ ∑
[x1 : A1, ..., xn : An]

and m : M . Then m|i =df (m.1, ..., m.(i − 1), ∗(A′
i, m.i), m.(i + 1), ..., m.n),

where A′
i ≡ [m.1, ..., m.(i − 1)/x1, ..., xi−1]Ai. �	

Remark 4. It is obvious that with-clauses can be nested. For instance, M
with (field i as a and field j as b) is (M with field i as a) with field j as b.
This is similar for |-operations. E.g., m|i,j is (m|i)|j . �	

The above definitions are adequate as the following proposition shows.

Proposition 2. Let M ≡ ∑
[x1 : A1, ..., xn : An] and m : M . Then,

1. For i = 1, ..., n, if Mi ≡ (M with field i as m.i) is well-typed, then
m|i : Mi, and

2. If x1, ..., xi−1 �∈ FV (a), then m.i = a if and only if m|i : (M with field i as a).

Proof. (1) is proved by induction on n, using the coercion ξ. (2) is a corollary of
(1) and proved using the fact that, by type uniqueness, m.i = a if and only if
M with field i as m.i = M with field i as a. �	
The following proposition shows that, if we modify a Σ-type by a with-clause
appropriately, we obtain a subtype and, therefore, Σ-types with IMFs can be
used adequately in any context.

Proposition 3. Let M and Mw ≡ (M with field i as a) be Σ-types. Then,
Mw ≤ M (i.e., Mw ≤c M for some c).

Proof. The proof uses both coercions ξ and dΣ . �	

4 Dependent Record Types and Intensional Manifest
Fields

Dependent record types are labelled Σ-types. For instance, 〈n : Nat, v : V ect(n)〉
is the dependent record type with objects (called records) such as 〈n = 2, v =
[5, 6]〉, where the dependency has to be respected: [5, 6] must be of type V ect(2). It
can be argued that record types are more natural than Σ-types to be considered
as types of modules.

In this section, we shall give a new formulation of dependent record types, study
intensional manifest fields in record types and illustrate their uses in expressing the
module mechanism with ML-sharing and in modelling OO-programs.
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Formation rules

Γ valid

Γ � 〈〉 : RType[∅]
Γ � R : RType[L] Γ � A : (R)Type l 	∈ L

Γ � 〈R, l : A〉 : RType[L∪ {l}]
Introduction rules

Γ valid

Γ � 〈〉 : 〈〉
Γ � 〈R, l : A〉 : RType Γ � r : R Γ � a : A(r)

Γ � 〈r, l = a : A〉 : 〈R, l : A〉
Elimination rules

Γ � r : 〈R, l : A〉
Γ � [r] : R

Γ � r : 〈R, l : A〉
Γ � r.l : A([r])

Γ � r : 〈R, l : A〉 Γ � [r].l′ : B l 	= l′

Γ � r.l′ : B

Computation rules

Γ � 〈r, l = a : A〉 : 〈R, l : A〉
Γ � [〈r, l = a : A〉] = r : R

Γ � 〈r, l = a : A〉 : 〈R, l : A〉
Γ � 〈r, l = a : A〉.l = a : A(r)

Γ � 〈r, l = a : A〉 : R Γ � r.l′ : B l 	= l′

Γ � 〈r, l = a : A〉.l′ = r.l′ : B

Fig. 1. The main inference rules for dependent record types

4.1 Dependent Record Types

Formally, we formulate dependent record types as an extension of the intensional
type theory such as Martin-Löf’s type theory or UTT, as specified in the logical
framework LF. The syntax is extended with record types 〈〉 and 〈R, l : A〉 and
records 〈〉 and 〈r, l = a : A〉, where we overload 〈〉 to stand for both the empty
record type and the empty record. Records are associated with two operations:
restriction (or first projection) [r] that removes the last component of record r
and field selection r.l that selects the field labelled by l.

For every finite set of labels L, we introduce a kind RType[L], the kind of the
record types whose (top-level) labels are all in L. We shall also introduce the kind
RType of all record types. These kinds obey obvious subkinding relationships:

Γ � R : RType[L] L ⊆ L′

Γ � R : RType[L′]
Γ � R : RType[L]
Γ � R : RType

Γ � R : RType

Γ � R : Type

Equalities are also inherited by superkinds in the sense that, if Γ � k = k′ : K
and K is a subkind of K ′, then Γ � k = k′ : K ′. The obvious rules are omitted.

The main inference rules for dependent record types are given in Figure 1.
Note that, in record type 〈R, l : A〉, A is a family of types, indexed by the
objects of R, and this is how dependency is embodied in the formulation.

Notation. For record types, we write 〈l1 : A1, ..., ln : An〉 for 〈〈〈〉, l1 :
A1〉, ..., ln : An〉 and often use label occurrences and label non-occurrences
to express dependency and non-dependency, respectively. For instance, we write
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〈n : Nat, v : V ect(n)〉 for 〈n : [ :〈〉]Nat, v : [x:〈n : [ :〈〉]Nat〉]V ect(x.n)〉 and
〈R, l : V ect(2)〉 for 〈R, l : [ :R]V ect(2)〉.

For records, we often omit the type information to write 〈r, l = a〉 for either
〈r, l = a : [ :R]A(r)〉 or 〈r, l = a : A〉. Such a simplification is available thanks
to coercive subtyping. A further explanation is given in Appendix A. �	
The notion of equality between records is weakly extensional in the sense that
two records are equal if their components are. This is reflected in the following
two rules (similar rules are used in [7]):

Γ � r : 〈〉
Γ � r = 〈〉 : 〈〉

Γ � r : 〈R, l : A〉 Γ � r′ : 〈R, l : A〉
Γ � [r] = [r′] : R Γ � r.l = r′.l : A([r])

Γ � r = r′ : 〈R, l : A〉
For example, for any r : 〈R, l : A〉 (r can be a variable), we have, by the second
rule above, that r = 〈[r], l = r.l : A〉 : 〈R, l : A〉.

There are also congruence rules for record types and their objects, which we
omit here. However, it is worth remarking that we pay special attention to the
equality between record types. In particular, record types with different labels
are not equal. For example, 〈n : Nat〉 �= 〈n′ : Nat〉 if n �= n′.

Remark 5. These remarks are mainly for people who are familiar with previous
work on dependent records. First, it is worth pointing out that, as in [37], our for-
mulation of record types is independent of structural subtyping; this is different
from the other previous formulations [16,7,13], which have all made an essen-
tial use of structural subtyping. We consider this independence as a significant
advantage, mainly because it allows one to adopt more flexible subtyping rela-
tions in formalisation and modelling. We also comment that, although it might
have its own advantages (e.g., the economy in some rule formulations), mixing
subtyping with dependent records is not an easy matter: it is meta-theoretically
difficult and sometimes may lead to undecidability [16].

Our formulation is different from that in [37] which allows label repetitions
(‘label shadowing’). We have introduced kinds RType[L] and this gives a satisfac-
tory solution to the problem of how to ensure label distinctness (or to avoid label
repetition) in record types. For example, this is used essentially in Appendix A
when notational coercions are defined. Also, ensuring label distinctness makes it
possible for us to employ structural coercions such as projections coherently in
some applications such as OO-modelling discussed in Section 4.3.

Note that we have formulated record types, not record kinds. In the termi-
nology used in this paper, both [7] and [13] study record kinds – their ‘record
types’ are studied at the level of kinds in the logical framework. Since kinds have
a much simpler structure than types, it is easier to add record kinds (e.g., to
ensure label distinctness) than record types, while the latter is more powerful.

Finally, we should mention that, in the context of extensional type theory,
people have studied encodings of record types by means of other constructs. For
example, in NuPRL, ‘very dependent function types’ and intersection types have
been studied to encode dependent record types [11,4]. However, it is difficult to
see how this can be done in intensional type theories. �	
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4.2 Intensional Manifest Fields in Record Types

Intensional manifest fields can be defined for record types similarly as we did for
Σ-types in Section 3. In record types, for A : (R)Type and a : (r:R)A(r),

l ∼ a : A stands for l : [r:R]1(A(r), a(r)).

In the simpler situation, for A : Type and a : A, l ∼ a : A stands for l : 1(A, a).
In records, for b : B,

l ∼B b stands for l = ∗(B, b).

Example 2. For R = 〈S : U, op : S → S〉 and r : R, the S-field of the record
type 〈S ∼ r.S : U, op : S → S〉 is manifest; intuitively, it insists that, for any
record of this type, its S-field must be the same as the S-field of r. �	
The component-wise coercion dR for record types is given by the rule

Γ � R : RType[L] Γ � R′ : RType[L] Γ � R ≤c R′ : RType
Γ � A : (R)Type Γ � A′ : (R′)Type Γ, x:R � A(x) ≤c′[x] A′(c(x)) : Type

Γ � 〈R, l : A〉 ≤dR
〈R′, l : A′〉 : RType

(l �∈ L)

where dR maps 〈r, l = a〉 to 〈c(r), l = c′[r](a)〉 and is formally defined as, for
any r′ : 〈R, l : A〉, dR(r′) =df 〈c(r0), l = c′[r0](r′.l)〉, where r0 ≡ [r′].

Remark 6. Note that a component-wise coercion only exists between the record
types that have the same corresponding labels. For example, if l �= l′, there is
no component-wise coercion between 〈l : A〉 and 〈l′ : B〉 even if A ≤c B. �	
Note that different applications employ different coercions and, thanks to the
independence of the formulation of record types with subtyping, it is flexible to
use different coercions. For example, in OO-modelling as illustrated in Section 4.3
below, we also employ the projections as coercions, with the following rules:

Γ � 〈R, l : A〉 : RType

Γ � 〈R, l : A〉 ≤[ ] R : RType

Γ � A : Type Γ � 〈R, l : A〉 : RType

Γ � 〈R, l : A〉 ≤Snd 〈l : A〉 : RType

where, in the second rule, A is a type, 〈R, l : A〉 stands for 〈R, l : [ :R]A〉, and the
kind of the second projection Snd is the non-dependent kind (〈R, l : A〉)〈l : A〉.5

Remark 7. Assuming that the extension with dependent record types has nice
meta-theoretic properties such as Church-Rosser, we can show that the coer-
cions ξ, dR, [ ] and Snd are coherent together. It is worth remarking that the
5 In general, Snd : (r:〈R, l : A〉)〈l : A([r])〉 maps r to 〈l = r.l〉. First, note that

the kind of Snd is different from that of field selection: the codomain of Snd is
〈l : A([r])〉, rather than simply A([r]). This makes an important difference: Snd
is coherent with the first projection and the component-wise coercion, while field
selection is not. Secondly, only non-dependent coercions (and, in this case, the non-
dependent second projection) are studied in this paper. (Dependent coercions, where
the codomain of a coercion may depend on its argument, are studied in [30].)
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labels in record types play an important role for this coherence – the projections
together are not coherent coercions for Σ-types [21]. Also, if one allowed label
repetitions in record types, as in [37], the projection coercions [ ] and Snd would
be incoherent together. �	
As for Σ-types, we can modify a record type by means of a with-clause. For
R ≡ 〈l1 : A1, ..., ln : An〉, i ∈ {1, ..., n} and a : (x : Ri−1)Ai(x), where Ri−1 ≡
〈l1 : A1, ..., li−1 : Ai−1〉,

R with li as a

=df 〈 l1 : A1, ..., li−1 : Ai−1, li ∼ a : Ai, li+1 : Ai+1, ..., ln : An 〉.

And, for r : R,

r|li =df 〈l1 = r.l1, ..., li−1 = r.li−1, li ∼Ai(ri−1) r.li, li+1 = r.li+1, ..., ln = r.ln〉,

where ri−1 ≡ 〈l1 = r.l1, ..., li−1 = r.li−1〉.
Remark 8. Similar propositions as Propositions 2 and 3 would show that the
above definitions are adequate. It is also easy to see that the with-clauses and
the |-operations can be nested. �	

4.3 Modules and OO-Modelling in Intensional Type Theory

In this subsection, we show how to use the module types with intensional man-
ifest fields to capture ML-style sharing [31,20] and to model classes in OO-style
programs. We shall use record types in our examples.

Modules with ML-Style Sharing. In the language design for programming
and formalisation, the topic of developing a suitable and powerful module mech-
anism has been attracting a lot of interests. A module mechanism that supports
structure sharing has been of particular interest. For example, one may want
to share a point of a circle and a point of a rectangle in developing a facility
for bit-mapped graphics or to share the carrier set of a semigroup and that of
an abelian group when constructing rings in a formal development of abstract
mathematics.

For functional programming languages, two approaches to sharing have been
studied: one is sharing by parameterisation or the Pebble-style sharing [8,19]
and the other sharing by equations or the ML-style sharing [31,34]. Both have
been studied in the context of formalisation of mathematics as well, especially
in designing and using type theory based proof assistants.

It is known that ML-style sharing cannot be captured in an intensional type
theory by the propositional equality, since it is not equivalent to the compu-
tational equality in a non-empty context [22]. Contrary to the common belief
(cf., Section 2), however, ML-style sharing can be captured using the IMFs in
intensional type theory, as the following example illustrates.
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class inc_cell is subclass re_inc_cell of inc_cell is

var contents : Integer; var backup : Integer;

method get(): Integer is method restore() is

return contents end; contents := backup end;

method set(n:Integer) is override set(n:Integer) is

if get() < n if get() < n

then contents := n end; then { backup := contents;

end; contents := n } end;

end;

Fig. 2. The class inc cell and its subclass re inc cell

Example 3. A ring R is composed of an abelian group (R, +) and a semigroup
(R, ∗), with extra distributive laws. One can construct a ring from an abelian
group and a semigroup. When doing this, one must make sure that the abelian
group and the semigroup share the same carrier set. One of the ways to specify
such sharing is to use an ‘equation’ to indicate that the carrier sets are the same.
This example shows that this can be done by means of the IMFs.

The signature types of abelian groups, semigroups and rings can be repre-
sented as the following record types, respectively, where U is a type universe:

AG ≡ 〈A : U, + : A → A → A, 0 : A, inv : A → A〉
SG ≡ 〈B : U, ∗ : B → B → B〉

Ring ≡ 〈C : U, + : C → C → C, 0 : C, inv : C → C, ∗ : C → C → C〉
Note that an abelian group and a semigroup do not have to share their carrier
sets. In order to make this happen, we introduce the following record type, which
is parameterised by an AG-signature and defined by means of a with-clause that
specifies an IMF to ensure the sharing of the carrier sets:

SGw(ag) = SG with B as ag.A

= 〈B ∼ ag.A : U, ∗ : B → B → B〉,
where ag : AG. Then, the function that generates the Ring-signature from those
of abelian groups and semigroups can now be defined as:

ringGen(ag, sg)
=df 〈C = ag.A, + = ag.+, 0 = ag.0, inv = ag.inv, ∗ = sg.∗〉,

where the arguments ag : AG and sg : SGw(ag) share their carrier set. �	

Modelling OO-Style Classes. Since definitional entries can be specified by
means of IMFs, record types can be used to model the modular entities like
classes in an object-oriented language, where methods are modelled as IMFs.

Example 4. Consider the class inc_cell in Figure 2, representing a memory cell
whose content only increases. inc_cell can be interpreted as:

Cell0 = 〈 c : Scell, get ∼ fg : Tg, set ∼ fs : Ts 〉
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where

– Scell ≡ 〈 contents : Int 〉 interprets the states of inc_cell;
– fg ≡ λ(s:Scell)s.contents, of type Tg ≡ Scell → Int, interprets get; and
– fs ≡ λ(n:Int, s:Scell) if get(s) < n then 〈contents = n〉 else s, of type

Ts ≡ Int → Scell → Scell, interprets set.

Note that, in fs, get can be applied to s : Scell because that it is coerced into
ξTg,fg (get) = fg of type Tg ≡ Scell → Int. �	
The interpretation in the above example follows the basic idea in functional
interpretations of OO-languages [18,36]. In particular, when a method is in-
terpreted, the type of states (Scell in the above example) is used as argument
and result types to model the effect of retrieving from and modifying the mem-
ory. There is a known problem with such a way of using state types in the
interpretation when subclasses are considered [1]: the contravariance of sub-
typing does not lead to the natural subtyping relations between the interface
types. For instance, if the subclass re_inc_cell in Figure 2 is interpreted sim-
ilarly as in Example 4, the states of re_inc_cell would be interpreted as
Srecell ≡ 〈 contents : Int, backup : Int 〉 and, for example, the method set
as a function of type T ′

s ≡ Int → Srecell → Srecell. Although Srecell ≤ Scell (via
projection coercions), T ′

s is not a subtype of Ts (‘the problem of contravariance’).
As a consequence, the interface type of re_inc_cell is not a subtype of that of
its superclass inc_cell. However, this would be very desirable and the problem
can be solved in our setting by introducing a notion of universal state.

The universal state Ω. Given an object-oriented program, its classes form a DAG
(directed acyclic graph), where an arrow from C to C’ means that C’ is a subclass
of C. Let C1, ..., Cn be the leaves of the DAG and their states be interpreted as
types S1, ..., Sn, respectively. Then, the universal state (or, more precisely, the
universal type of states) Ω is defined as the following (non-dependent) record
type:

Ω =df 〈 s1 : S1, ..., sn : Sn 〉.
Now, with Ω, a method is interpreted as a function that takes a value from

Ω and, if it modifies the state, returns a value to Ω. For instance, the method
set in inc_cell is interpreted as a function of type Int → Ω → Ω (rather than
Int → Scell → Scell) and set in re_inc_cell as a (different) function of the
same type. Therefore, the subtyping relationships between the interface types of
inc_cell and re_inc_cell are as expected.

In general, the model enjoys desirable subtyping relationships between classes
and their interface types. If a class C is interpreted as C = 〈 c : SC , m1 ∼ a1 :
A1, ..., mn ∼ an : An 〉, where SC interprets the states of C, its interface type
I_C is interpreted as IC = 〈 c : SC , m1 : A1, ..., mn : An 〉. Therefore, we
have C ≤c IC , where the coercion c is derived from ξ and dR. Furthermore, if C’
is a subclass of C, then SC′ is a subtype of SC (via projection coercions), and:
IC′ ≤c IC , where the coercion c is derived from the structural coercions (the
projection and component-wise coercions) for record types.
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Remark 9. In the model construction of OO-classes as sketched above, subtype
polymorphism is correctly captured and methods are invoked according to dy-
namic dispatch. We omit the detailed explanations here. �	

Experiments in Proof Assistants. Experiments on the above applications
have been done in the proof assistants Plastic [9] and Coq [12], both supporting
the use of coercions. In Plastic, one can define parameterised coercions such as
ξ and coercion rules for the structural coercions: we only have to declare ξ and
the component-wise coercion (and the projection coercions for the application of
OO-modelling), then Plastic obtains automatically all of the derivable coercions,
as intended. However, Plastic does not support record types; so Σ-types were
used for our experiments in Plastic, at the risk of incoherence of the coercions!

Coq supports a macro for dependent record types6 and a limited form of
coercions. In Coq, we have to use the identity ID(A) = A on types to force
Coq to accept the coercion ξ and to use type-casting as a trick to make it
happen. Also, since Coq does not support user-defined coercion rules, we cannot
implement the rule for the component-wise coercion; instead, we have to specify
its effects on the record types individually. The Coq code for the Ring example
in Example 3 can be found in Appendix B.

In the proof assistants such as Coq, verification of object-oriented programs
can be done based on the formalisation of the model sketched above. For instance,
one can show that, for the class re_inc_cell, it is an invariant that the backup
value is always smaller than or equal to the contents value; formally, we prove
in Coq, for every method m,

∀s : Ω. Pre(m) ⇒ s.(backup) ≤ s.(contents)
⇒ S(m, s).(backup) ≤ S(m, s).(contents),

where Pre(m) stands for the precondition of m, S(m, s) for the resulting state
obtained from executing m with the initial state s, and s.( ) is the Coq-notation
for field selection. Currently, we can only do small examples in formalisation and
verification, partly because the manual encoding is rather tedious (and error-
prone). We are working on the automated translations that will generate the
Coq models of object-oriented programs and the Coq propositions of the speci-
fications, and this will hopefully make the whole process much easier.

5 Conclusion

We have shown that manifest fields can be expressed in intensional type theory
with the help of coercive subtyping. The intensional manifest fields strengthen

6 It is a macro in the sense that dependent record types are actually implemented
as inductive types with labels defined as global names (and, therefore, the labels of
different ‘record types’ must be different). Coq [12] also supports a preliminary (but
improper) form of ‘manifest fields’ by means of the let-construct, which we do not
use in our experiments.
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the module types such as record types and provide higher-order module mecha-
nisms for modular development of proofs and dependently-typed programs and
powerful representation mechanisms for, for example, formalisation and verifi-
cation of OO-style programs.

Recently, it has come to our attention that, studying formalisation of math-
ematical structures, Sacerdoti-Coen and Tassi [38] have attempted to represent
R with l as a by means of Σr : R. (r.l = a), where = is the Leibniz equal-
ity, and to employ the so-called ‘manifesting coercions’ in order to approximate
manifest fields. We remark that using an equality relation in this way is not
completely satisfactory and seems unnecessarily complicated. Our notion of in-
tensional manifest field is simple and desirable and, coupled with the record
types as formulated in this paper, provides us a powerful tool in intensional type
theory.

As to future work, we mention that our formulation of dependent record types
forms a promising basis for investigations on the meta-theory of dependent record
types. We also hope that the proof assistants will implement dependent record
types properly so that they can be used effectively in practice.

Acknowledgement. I am grateful to Robin Adams who, among other things,
has suggested the phrase ‘intensional manifest field’ to me.
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A Untyped Notations for Pairs and Records

Coercive subtyping can be used to explain and facilitate overloading [25,6,26].
The adoption of the untyped notations for pairs and records is a typical example.

Formally, the notations for pairs in Martin-Löf’s type theory or UTT and for
records in Section 4.1 are fully annotated with type information: they are of the
‘typed’ forms pair(A, B, a, b) and 〈r, l = a : A〉, rather than the ‘untyped’ (a, b)
and 〈r, l = a〉, respectively. A reason for this is that, in a dependent type theory,
a pair or a record without type information may have two or more incompatible
types. For example, the record 〈n = 2, v = [5, 6]〉 has both 〈n : Nat, v : V ect(2)〉
and 〈n : Nat, v : V ect(n)〉 as its types. The presence of the type information in
the typed forms allows a straightforward algorithm for type-checking, but it is
clumsy and impractical.

Can we use the simpler untyped notations instead? The answer is yes: this
can be done with the help of coercive subtyping. We illustrate it for records (see
Section 5.4 of [25] for a treatment of pairs). Let r′ be the ‘intended typed version’
of r. We want to use 〈r, l = a〉 to stand for either of the following records:

r1 ≡ 〈r′, l = a : [ :R]A(r′)〉 : 〈R, l : [ :R]A(r′)〉
r2 ≡ 〈r′, l = a : A〉 : 〈R, l : A〉

and to be able to decide which it stands for in the context. This can be done as
follows. Let L be any finite set of labels such that l �∈ L. Consider the family

UL : (R : RType[L])(A : (R)Type)(x : R)(a : A(x))Type

of inductive unit types UL(R, A, x, a) with the only object uL(R, A, x, a). We
then declare coercions δL

1 and δL
2 :

UL(R, A, x, a) ≤δL
1
〈R, l : [ :R]A(x)〉

UL(R, A, x, a) ≤δL
2
〈R, l : A〉

inductively defined as: δL
1 (uL(R, A, x, a)) = 〈x, l = a : [ :R]A(x)〉 and

δL
2 (uL(R, A, x, a)) = 〈x, l = a : A〉. Then the notation 〈r, l = a〉 can be used

to denote the object uL(R, A, r′, a) and, in a context, it will be coerced into the
appropriate record r1 or r2 according to the contextual typing requirement.

B Coq Code for the Ring Example

The following is the Coq code for the Ring example – the construction of rings
from abelian groups and semi-groups that share the domains. Note that we have
only formalised the signatures of the algebras, omitting their axiomatic parts.

(* The parameterised unit type -- Unit/unit for 1/* *)

Inductive Unit (A:Type)(a:A) : Type := unit : Unit A a.

(* Coercion for the unit type; Use ID as trick to define it in Coq *)
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Definition ID (A:Type) : Type := A.

Coercion unit_c (A:Type)(a:A)(_:Unit A a) := a : ID A.

(* Abelian Groups, Semi-groups and Rings -- signatures only *)

Record AG : Type := mkAG

{ A : Set; plus : A->A->A; zero : A; inv : A->A }.

Record SG : Type := mkSG

{ B : Set; times : B->B->B }.

Record Ring : Type := mkRing

{ C : Set; plus’ : C->C->C; zero’ : C; inv’ : C->C; times’ : C->C->C }.

(* Domain-sharing semi-groups; type-casting to make unit_c happen in Coq *)

Record SGw (ag : AG) : Type := mkSGw

{ B’ : Unit Set ag.(A); times’’ : let B’ := (B’ : ID Set) in B’->B’->B’ }.

Implicit Arguments B’. Implicit Arguments times’’.

(* function to generate rings from abelian/semi-groups with shared domain *)

Definition ringGen (ag : AG)(sg : SGw ag) : Ring :=

mkRing ag.(A) ag.(plus) ag.(zero) ag.(inv) sg.(times’’).
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