
Intensional Manifest Fields in Module TypesI

Zhaohui Luo

Department of Computer Science
Royal Holloway, University of London

Egham, Surrey TW20 0EX, U.K.

Abstract

A manifest field in a type of modules is a field whose expected data is not
only of a certain type but the same as a specific object of that type. All of
the previous approaches to manifest fields in type theory are based on some
extensional notions of computational equality. In this paper, we show that
this is unnecessary: manifest fields are expressible in intensional type theo-
ries without extensional equality rules. These intensional manifest fields are
made available with the help of coercive subtyping. It is shown that, for both
Σ-types and dependent record types, the with-clause for expressing manifest
fields can be introduced by means of the intensional manifest fields. This
provides an internal mechanism in intensional type theories to express defi-
nitional entries in module types, which has useful applications including, for
example, the representation of higher-order modules with ML-style sharing.

Keywords: Manifest field, Intensional type theory, Module, Σ-type,
Dependent record type

1. Introduction

Modularity is important in programming and proving in the large and the
module mechanism is essential in both programming and proof languages. In
type theory, a type of modules may be expressed as a Σ-type of unlabelled
tuples or a dependent record type of labelled tuples. A field in such a type is
usually abstract (of the form ‘v : A’) in the sense that the data expected in
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that field can be any object of a given type. In contrast, a field is manifest (of
the form ‘v = a : A’) if the data expected in that field is not only of a given
type but the ‘same’ as some specific object of that type. If available, manifest
fields provide a powerful representation mechanism which intuitively allows
an internal expression of definitional entries at the level of types: one can use
it to express the typing constraint that a field expects a particular object of
a type rather than anyone of that type. For instance, one can use Σ-types or
dependent record types with manifest fields to express the powerful module
mechanism with the so-called ML-style sharing (or sharing by equations)
[35, 22].

For a manifest field v = a : A, the ‘sameness’ of the expected data as
a may be interpreted as that it is computationally equal to a, as is done
in most, if not all, of the previous studies on manifest fields in type theory
(see, for example, [18, 40, 12]). This gives rise to an extensional notion of
equality: the data in a manifest field v = a : A, even when it is a variable,
is expected to be computationally equal to a. Such manifest fields may
be called extensional manifest fields. In type theory, extensional manifest
fields may also be obtained by means of other extensional constructs such
as the singleton type [3, 19, 44] and the (strong) extensional equality [36,
8]. It is known, however, such an extensional notion of equality is meta-
theoretically difficult (in the cases of the extensional manifest fields and the
singleton types) or even leads to an outright undecidability (in the case of
the extensional equality).

As shown in this paper, the ‘sameness’ for a manifest field does not have
to be interpreted by means of an extensional equality. With the help of
coercive subtyping [27], manifest fields are expressible in intensional type
theories such as Martin-Löf’s intensional type theory [39] and UTT [25].
The idea is very simple: a manifest field v = a : A is simply expressed as
the shorthand of an ordinary (abstract) field v : 1(A, a), where 1(A, a) is
the inductive unit type parameterised by A and a. Then, with a coercion
that maps the objects of 1(A, a) to a, v stands for a in any context that
requires an object of type A. This achieves exactly what we want with a
manifest field. Such a manifest field may be called an intensional manifest
field and, to distinguish it from an extensional manifest field, we use the
notation v ∼ a : A to stand for v : 1(A, a).

Intensional manifest fields (IMFs for short) can be introduced for both
Σ-types and dependent record types. This paper develops IMFs for both
kinds of the module types. It also shows how the so-called with-clause [40],
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that intuitively expresses that a field is manifest rather than abstract, can
be defined by means of IMFs and used as expected in the presence of the
component-wise coercions that propagate subtyping relations through the
module types. In order to study IMFs for dependent record types, we con-
sider an improved formulation based on that of record types [40] rather than
record kinds [5, 12].1 The formulation of dependent record types has its own
merits but can only be discussed briefly in this paper (see [29] for further
information).

Intensional manifest fields can be used to express definitional entries and
provide a higher-order module mechanism with ML-style sharing2. Using the
record macro in Coq [10], we give examples to show how ML-style sharing can
be captured with IMFs in a proof assistant that implements an intensional
type theory. Since many of the current proof assistants support the use of
coercions, the module mechanism supported by IMFs can be used for modular
development of proofs and dependently-typed programs.

The following subsection describes briefly the background and notational
conventions. In Section 2, after introducing manifest fields, we show how
IMFs can be introduced for Σ-types in an intensional type theory. In Sec-
tion 3, we formulate dependent record types, introduce the IMFs in record
types, and illustrate their use in expressing the module mechanism with ML-
style sharing. The related and future work is discussed in the conclusion.

1.1. Background and Notational Conventions: LF and Coercive Subtyping

In this subsection, we give a brief description of the logical framework LF
and the framework of coercive subtyping, partly to introduce the background
and partly to fix notational conventions.

The logical framework LF. LF [25] is the typed version of Martin-Löf’s
logical framework [39]. It is a dependent type system for specifying type
theories such as Martin-Löf’s intensional type theory [39], the Calculus of
Constructions (CC) [11] and the Unifying Theory of dependent Types (UTT)
[25]. The types in LF are called kinds, including:

1Types in the terminology of Martin-Löf’s type theory are what we call kinds in this
paper. Therefore, the so-called record types in [5] and [12] are really record kinds.

2Historically, expressing ML-style sharing was a main motivation behind the studies
of manifest fields [18, 22, 40]. In fact, many people have long believed that, to express
ML-style sharing in type theory, it is essential to have some construct with an extensional
notion of equality. As shown in this paper, this is actually unnecessary.
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• Type – the kind representing the universe of types (A is a type if
A : Type);

• El(A) – the kind of objects of type A (we often omit El); and

• (x:K)K ′ (or simply (K)K ′ when x ̸∈ FV (K ′)) – the kind of dependent
functional operations such as the abstraction [x:K]k′.

The rules of LF can be found in Appendix A.

Notations We shall adopt the following conventions.

• Substitution: We sometimes use M{x} to indicate that x may occur
free in M and subsequently write M{a} for the substitution [a/x]M .

• Functional composition: For f : (K1)K2 and g : (K2)K3, g ◦ f =
[x:K1]g(f(x)) : (K1)K3, where x does not occur free in f or g.

When a type theory is specified in LF, its types are declared, together
with their introduction/elimination operators and the associated computa-
tion rules. Examples of types include

• inductive types such as Nat of natural numbers,

• inductive families of types such as V ect(n) of vectors of length n, and

• families of inductive types such as Π-types and Σ-types.

A Π-type Π(A,B) is the type of functions λ(x:A)b and a Σ-type Σ(A,B) of
dependent pairs (a, b). (We use A → B and A × B for the non-dependent
Π-type and Σ-type, respectively. Also, see Appendix B for a further expla-
nation for the notation of untyped pairs.) In a non-LF notation, Σ(A,B),
for example, will be written as Σx:A.B(x).

A nested Σ-type can be seen as a type of tuples/modules. We shall adopt
the following notational convention.

Notation For n ≥ 1, we shall use∑
[x1 : A1, x2 : A2, ..., xn : An]

to stand for the following Σ-type:

Σx1 : A1Σx2 : A2 ... Σxn−1 : An−1. An.
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When n = 1,
∑

[x:A] =df A. Also, we shall use the tuple

(a1, a2, ..., an)

to stand for the nested pair

(a1, (a2, ..., (an−1, an)...)).

Furthermore, for any a of type
∑

[x1 : A1, x2 : A2, ..., xn : An],

• a.i =df π1(π2(...π2(a)...), where π2 occurs i− 1 times (1 ≤ i < n), and

• a.n =df π2(...π2(a)...), where π2 occurs n− 1 times.

For instance, when n = 3, a.2 ≡ π1(π2(a)) and a.3 ≡ π2(π2(a)). �

Types can be parameterised. For example, one may introduce the induc-
tive unit types 1(A, a): it is an inductive type with only one object ∗(A, a)
and parameterised by a type A and an object a of type A. (See Section 2.2.1
for more details on the parameterised unit types.)

One may also introduce type universes to collect (the names of) some
types into types [36]. This can be considered as a reflection principle: such
a universe reflects those types whose names are its objects. For instance, in
Martin-Löf’s type theory or UTT, we can introduce a universe U : Type,
together with T : (U)Type, to reflect the types in Type introduced before
U (see [36] or §9.2.3 of [25]). For example, for Σ-types, we introduce their
names in U as follows

Γ ⊢ a : U Γ ⊢ b : (T (a))U

Γ ⊢ σ(a, b) : U

Γ ⊢ a : U Γ ⊢ b : (T (a))U

Γ ⊢ T (σ(a, b)) = Σ(T (a), [x:T (a)]T (b(x))) : Type

Note that such a universe is predicative: for example, U and Nat → U do
not have names in U .

Remark The type theories thus specified in LF are intensional type theories
as implemented in the proof assistants Agda [1], Coq [10], Lego [33] and
Matita [37].3 They have nice meta-theoretic properties including Church-
Rosser, Subject Reduction and Strong Normalisation. (See Goguen’s thesis

3In some systems (Agda, for example), there may be some experimental features that
are extensional, but the cores of these proof assistants are all intensional.
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on the meta-theory of UTT [16].) In particular, the inductive types do
not have the extensional η-like equality rules. As an example, the above
inductive unit type is different from the singleton type [3] in that, for a
variable x : 1(A, a), x is not computationally equal to ∗(A, a). �

Coercive subtyping. Coercive subtyping for dependent type theories has
been developed and studied as a general approach to abbreviation and sub-
typing in type theories with inductive types [26, 27]. Coercions have been
implemented in the proof assistants Coq [10, 42], Lego [33, 4], Plastic [7]
and Matita [37]. Here, we explain the main idea and introduce necessary
terminologies. For a formal presentation with complete rules, see [27].

In coercive subtyping, A is a subtype of B if there is a coercion c :
(A)B, expressed by Γ ⊢ A <c B : Type. The main idea is reflected by the
following coercive definition rule, expressing that an appropriate coercion can
be inserted to fill up the gap in a term:

Γ ⊢ f : (x:B)C Γ ⊢ a : A Γ ⊢ A <c B : Type

Γ ⊢ f(a) = f(c(a)) : [c(a)/x]C

In other words, if A is a subtype of B via coercion c, then any object a of
type A can be regarded as (an abbreviation of) the object c(a) of type B.

Coercions may be declared by the users. They must be coherent to be
employed correctly. Essentially, coherence expresses that the coercions be-
tween any two types are unique (and that there are no coercions between
the same types). Formally, given a type theory T specified in LF, a set R of
coercion rules is coherent if the following rule is admissible in T [R]0:

4

Γ ⊢ A <c B : Type Γ ⊢ A <c′ B : Type

Γ ⊢ c = c′ : (A)B

Coherence is a crucial property. Incoherence would imply that the extension
with coercive subtyping is not conservative in the sense that more judgements
of the original type theory T can be derived. In most cases, coherence does
imply conservativity (e.g., the proof method in [43] can be used to show this).
When the employed coercions are coherent, one can always insert coercions

4T [R]0 is an extension of T with the subtyping rules in R together with the congruence,
substitution and transitivity rules for the subtyping judgements, but without the coercive
definition rule. See [27] for formal details.
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correctly into a derivation in the extension to obtain a derivation in the
original type theory. For an intensional type theory, coercive subtyping is an
intensional extension. In particular, for an intensional type theory with nice
meta-theoretic properties, its extension with coercive subtyping has those
nice properties, too.

Remark Coercive subtyping corresponds to the view of types as consisting
of canonical objects while ‘subsumptive subtyping’ (the more traditional ap-
proach with the subsumption rule) to the view of type assignment [32]. These
two notions of subtyping are suitable for different kinds of type systems: sub-
sumptive subtyping for type assignment systems such as the polymorphic
calculi in programming languages and coercive subtyping for the type theo-
ries with canonical objects such as Martin-Lofs type theory implemented in
proof assistants. It is worth noting that subsumptive subtyping is incompat-
ible with the idea of canonical object and cannot be employed adequately for
type theories with canonical objects, while coercive subtyping can be used to
do so satisfactorily [31]. Furthermore, coercive subtyping is not only suitable
for structural subtyping, but for non-structural subtyping. The use in this
paper of the coercion ξ concerning the unit type (see Sections 2.2.2 and 2.2.3)
is such an example. �

2. Manifest Fields and Intensional Manifest Fields in Σ-types

We shall first give a brief introduction to manifest fields and how they may
be introduced with some notions of extensional equality, and then consider
how to introduce them for Σ-types in an intensional way by means of coercive
subtyping.

2.1. Manifest Fields with Extensional Notions of Equality
Σ-types or dependent record types can be used to represent types of

modules. For instance, a type of some kind of abstract algebras may be
represented as (cf., the notational convention for Σ-types in Section 1.1)

M ≡
∑

[S : U, op : S → S, ...],

where S stands for (the type of) the carrier set with U being a type universe.
(For simplicity, we omit the details such as the equality over S etc.)

In the following, we shall give an example to show how manifest fields [22]
in a type of modules may be used and then explain how they are traditionally
associated with extensional notions of equality.
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An example of manifest fields. One may use a manifest field to specify that
the data expected in a field is not only of a given type, but the same as
a specific object of that type. For instance, consider the above Σ-type M .
For m : M , we want to define a subtype of M such that the carrier set of
any object of the subtype must be the same as that of m (i.e., m.1 – see
the notational convention in Section 1.1). This subtype of modules can be
defined as ∑

[S = m.1 : U, op : S → S, ...],

which is the same as M except that the first field is manifest, specifying that
the data in that field must be the same as m.1.

Extensional manifest fields. When manifest fields are introduced in a direct
way, they introduce an extensional notion of equality [18, 40, 12]. For in-
stance, in the above example, (the variable) S and m.1 are computationally
equal and, in particular, they are interchangeable in type-checking. Exten-
sional manifest fields are associated with such an equality that is a strong
form of η-like equality which makes the meta-theoretic studies rather difficult.

Extensional encodings of manifest fields. Manifest fields can be coded by
means of other extensional constructs, including the extensional equality
I(A, a, b), which was first introduced in Martin-Löf’s extensional type theory
(ETT) [36] and adopted by NuPRL [9]. In ETT, the propositional equality
I(A, a, b) is equivalent to the judgemental equality:

Γ ⊢ p : I(A, a, b)

Γ ⊢ a = b : A

With this strong extensional equality, one may express a manifest field v =
a : A by means of the following two (abstract) fields [8]:

v : A, x : I(A, v, a),

where the second guarantees that v is judgementally equal to a. As is known,
because of the strength of I(A, a, b), strong normalisation fails and type
checking is undecidable (for a proof of the latter, see [20]).

Another extensional construct that can be used to encode manifest fields
is the singleton type [3, 19, 44]. For a : A, b is an object of the singleton type
{a}A if and only if b and a are judgementally equal. With this, a manifest
field v = a : A can simply be represented as the field v : {a}A, because then v
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is judgementally equal to a. The singleton types also introduce a strong form
of η-like equality (among other things such as subtyping) and are difficult in
meta-theory. (See [13] for a sophisticated proof of strong normalisation of a
simple type system with singleton types.)

Remark It has been thought that it would be difficult, if not impossible,
to have manifest fields in type theory without the help of some extensional
notion of equality. This is partly because that, in an intensional type theory,
the propositional equality is not equivalent to the computational (judgemen-
tal) equality in a non-empty context and, therefore, to express v = a : A, it
is not enough to just have a proof that v is propositionally equal to a; we
would need a way to make them judgementally equal (for example, for type-
checking). However, as we shall show below, manifest fields can be expressed
in an intensional type theory, with the help of coercive subtyping. �

2.2. Intensional Manifest Fields in Σ-types

We shall now introduce manifest fields in Σ-types in an intensional type
theory. This is made possible by means of a special form of coercive subtyp-
ing.

2.2.1. Unit Types

An inductive unit type is one that has only one object and its induction
principle says that, if one can prove that some property holds for its only
object, that property holds for all of its objects (including variables). A type
can be parameterised and so can a unit type. We shall use a special form of
unit type:

1(A, a),

which is parameterised by a type A and an object a of type A. It can be
introduced formally by declaring the following constants in LF:

1 : (A:Type)(x:A) Type

∗ : (A:Type)(x:A) 1(A, x)

E : (A:Type)(x:A)

(C : (1(A, x))Type)(c : C(∗(A, x))(z : 1(A, x))C(z)

with the following computation rule for the elimination operator E :

E(A, x, C, c, ∗(A, x)) = c,
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where A : Type, x : A, C : (1(A, x))Type and c : C(∗(A, x)).

Remark Inductive types in an intensional type theory do not have the η-
like equality rules. For example, if variable x is of type 1(A, a), x is not
computationally equal to ∗(A, a). This is different from the singleton type
[3] where, if x : {a}A, x is computationally equal to a. �

2.2.2. IMFs in Σ-types

An intensional manifest field (IMF for short) in a Σ-type is a field of the
form

x : 1(A, a).

It will be written by means of the following notation:

x ∼ a : A.

In other words, we write
∑

[... x ∼ a : A, ...] for
∑

[... x : 1(A, a), ...].
The intention is that, for an IMF x ∼ a : A, the variable x stands for the

object a of type A. Here is the example considered in Section 2.1, except
that we use IMFs rather than extensional manifest fields.

Example 2.1. Consider the type M of algebras in Section 2.1, repeated here:

M ≡
∑

[S : U, op : S → S, ...],

Let m : M and we want to define a subtype Mw of M to express the idea
that any module of type Mw has the same carrier type as that of m. Such a
subtype of modules may be expressed as follows:

Mw ≡
∑

[S ∼ m.1 : U, op : S → S, ...].

where the first field is an IMF. Intuitively, we want S to stand for the type
m.1. In reality, however, S is an object of type 1(U,m.1) – it is not a type!
How can S be used as m.1 so that, for example, S → S be well-typed? It is
here that coercive subtyping plays a crucial role as explained below. �

The Σ-types involving IMFs are well-defined and behave as intended with
the help of the following two coercions, whose formal definitions and proper-
ties such as coherence are considered in Section 2.2.3:
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• ξA,a is from 1(A, a) to A and maps every object of 1(A, a) to a. In a
context where an object of type A is required after the IMF x ∼ a : A
(e.g., in the field op : S → S in the above Example 2.1), x is coerced
into a and behaves as an abbreviation of ξA,a(x) = a.

• The component-wise coercions for Σ-types diΣ (i = 1, 2, 3) propagate
subtyping relations, including those specified by ξ, through Σ-types so
that the IMFs can be used properly in larger contexts.

Example 2.2. We continue the above Example 2.1 to show how the coercion
ξ is used to support IMFs. With coercion ξ, the type Mw is well-typed: S → S
is well-typed because S is now coerced into the type ξU,m.1(S) = m.1.5 �

In the following, we formally define ξ and diΣ, show that they are coherent
together and, then, study the with-clauses for specifying IMFs in Σ-types.

2.2.3. Coercions ξ and Component-wise Coercions

The rules for coercion ξ and the component-wise coercions for Σ-types are
given in Figure 1. The component-wise rules express the idea that subtyping
relations propagate through the Σ-types: informally, if A is a subtype of A′

and B is a family of subtypes of B′, then Σ(A,B) is a subtype of Σ(A′, B′).
For example, when

A <c A
′ and B(x) <c′{x} B′(c(x)),

we have
Σ(A,B) <d3Σ

Σ(A′, B′),

where d3Σ maps (a, b) to (c(a), c′{a}(b)).
The coercion rules in Figure 1 are coherent when put together, as the

following proposition shows.

Proposition 2.3 (Coherence). Let R = {(ξ), (d1Σ), (d2Σ), (d3Σ)}. Then R
is coherent.

Proof. By induction on derivations, we prove the more general statement:

5One may notice that this is an example of the so-called ‘kind coercion’ [4, 42], which
is a special case of argument coercions in an LF formulation of coercive subtyping (see,
for example, [27]).
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Coercion ξ

(ξ)
Γ ⊢ A : Type Γ ⊢ a : A

Γ ⊢ 1(A, a) <ξA,a
A : Type

where ξA,a = [x : 1(A, a)]a.

Component-wise coercions for Σ-types

(d1Σ)
Γ ⊢ B′ : (A′)Type Γ ⊢ A <c A

′ : Type

Γ ⊢ Σ(A,B′ ◦ c) <d1Σ
Σ(A′, B′) : Type

where d1Σ = [z : Σ(A,B′ ◦ c)](c(π1(z)), π2(z)).

(d2Σ)

Γ ⊢ B : (A)Type Γ ⊢ B′ : (A)Type
Γ, x:A ⊢ B(x) <c′{x} B′(x) : Type

Γ ⊢ Σ(A,B) <d2Σ
Σ(A,B′) : Type

where d2Σ = [z : Σ(A,B)](π1(z), c
′{π1(z)}(π2(z))).

(d3Σ)

Γ ⊢ B : (A)Type Γ ⊢ B′ : (A′)Type
Γ ⊢ A <c A

′ : Type Γ, x:A ⊢ B(x) <c′{x} B′(c(x)) : Type

Γ ⊢ Σ(A,B) <d3Σ
Σ(A′, B′) : Type

where d3Σ = [z : Σ(A,B)](c(π1(z)), c
′{π1(z)}(π2(z))).

Figure 1: Basic subtyping rules (ξ) and (diΣ)
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• if Γ ⊢ A <c B : Type and Γ ⊢ A′ <c′ B
′ : Type, where Γ ⊢ A = A′ :

Type and Γ ⊢ B = B′ : Type, then Γ ⊢ c = c′ : (A)B.

For example, in the case that the last rules to derive A <c B and A′ <c′ B
′

are both (ξ) with c ≡ ξC,a and c′ ≡ ξC′,b, we have that 1(C, a) ≡ A = A′ ≡
1(C ′, b). Then, by Church-Rosser, C = C ′, a = b, and ξC,a(x) = a = b =
ξC′,b(x) for any x : 1(C, a). Therefore, ξC,a = ξC′,b by the LF-rules (∗) and
(η) in Appendix A. �

2.3. with-clauses

Manifest fields can be introduced by means of the with-clauses (see, e.g.,
[40]). Usually, they introduce extensional manifest fields with new compu-
tation rules. We shall instead consider them with the intensional manifest
fields.

Intuitively, given a Σ-type with a field v : A, a with-clause modifies it
into the same Σ-type except that the corresponding field becomes manifest:
v ∼ a : A (i.e., v : 1(A, a)). For instance, the module typeMw in Example 2.1
can be obtained from M as follows:

Mw = M with field 1 as m.1.

Here is the definition of the with-clauses for Σ-types.

Definition 2.4 (with-clause for Σ-types). Let M ≡
∑

[x1 : A1, ..., xn :
An], i ∈ {1, ..., n} and x1 : A1, ..., xi−1 : Ai−1 ⊢ a : Ai. Then,

M with field i as (x1, ..., xi−1)a
=df

∑
[ x1 : A1, ..., xi−1 : Ai−1, xi ∼ a : Ai, xi+1 : Ai+1, ..., xn : An ].

When xj ̸∈ FV (a) (j = 1, ..., i − 1), we omit the variables xj and simply
write (M with field i as a) for (M with field i as (x1, ..., xi−1)a). �

Remark Note that the Σ-type M in the above definition may already have
intensional manifest fields, which after all are just notations for abstract fields
whose types are special unit types. �

The fields in tuples (objects of Σ-types) can be modified similarly.
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Definition 2.5 (|-operation for Σ-types). Let M ≡
∑

[x1 : A1, ..., xn :
An] and m : M . Then m|i =df (m.1, ...,m.(i − 1), ∗(A′

i,m.i), m.(i +
1), ...,m.n), where A′

i ≡ [m.1, ...,m.(i− 1)/x1, ..., xi−1]Ai. �

Remark It is obvious that with-clauses can be nested. For instance,

M with (field i as a and field j as b)

is
(M with field i as a) with field j as b.

This is similar for |-operations. E.g., m|i,j is (m|i)|j. �

The following proposition shows that the above definitions are adequate
in the sense that they behave as intended and that, if we modify a Σ-type
by a with-clause appropriately, we obtain a subtype and, therefore, Σ-types
with IMFs can be used adequately in any context.

Proposition 2.6. Assume that M ≡
∑

[x1 : A1, ..., xn : An] be a Σ-type.

1. Let m : M and i ∈ {1, ..., n}.
(a) If Mi ≡ (M with field i as m.i) is well-typed, then m|i : Mi.
(b) If x1, ..., xi−1 ̸∈ FV (a), then we have that m.i = a if and only if

m|i : (M with field i as a).

2. Let Mw ≡ (M with field i as a) be well-typed. Then, Mw ≤ M (i.e.,
Mw = M or Mw <c M for some c).

Proof. (1a) is proved by induction on n, using the coercion ξ. (1b) is a
corollary of (1a) and proved using the fact that, by type uniqueness, m.i = a
if and only if M with field i as m.i = M with field i as a. The proof of
(2) uses coercions ξ and diΣ. �

3. Dependent Record Types and Intensional Manifest Fields

Dependent record types are labelled Σ-types. For instance,

⟨n : Nat, v : V ect(n)⟩

is the dependent record type with objects (called records) such as

⟨n = 2, v = [5, 6]⟩,
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where the dependency has to be respected: [5, 6] must be of type V ect(2).
It can be argued that record types are more natural than Σ-types to be
considered as types of modules. For example, the labels in dependent record
types play a role in making a finer distinction between record types, which
is useful in some of the applications where Σ-types are not suitable (see, for
example, [29]).

There have been several research works on dependently-typed records,
with applications to the study of module mechanisms for both programming
and proof languages. Some introduced dependent record types (at the level of
types such as Nat and Σ-types) [40] and some dependent record kinds (at the
level of kinds of a logical framework such as Type) [5, 12] (cf., Footnote 1). It
is worth remarking that types have a richer structure than kinds and record
types are more powerful than record kinds. However, on the other hand, it is
easier to study record kinds than record types in, for example, meta-theoretic
studies. (See [29] for a further discussion with application examples.)

In this section, we shall give an improved formulation of dependent record
types, study intensional manifest fields in record types, and illustrate their
uses in expressing the module mechanism with ML-sharing.

3.1. Dependent Record Types

Formally, we formulate dependent record types as an extension of the
intensional type theory such as Martin-Löf’s type theory or UTT, as specified
in the logical framework LF. The syntax is extended with those for record
types and records:

R : = ⟨⟩ | ⟨R, l : A⟩
r : = ⟨⟩ | ⟨r, l = a : A⟩

where we overload ⟨⟩ to stand for both the empty record type and the empty
record. Records are associated with two operations:

• restriction (or first projection) [r] that removes the last component of
record r;

• field selection r.l that selects the field labelled by l.

The labels form a new category of symbols. For every finite set of labels L,
we introduce a kind RType[L], the kind of the record types whose (top-level)
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labels are all in L, together with the kind RType of all record types:

Γ valid

Γ ⊢ RType[L] kind

Γ valid

Γ ⊢ RType kind

These kinds obey obvious subkinding relationships:

Γ ⊢ R : RType[L] L ⊆ L′

Γ ⊢ R : RType[L′]

Γ ⊢ R : RType[L]

Γ ⊢ R : RType

Γ ⊢ R : RType

Γ ⊢ R : Type

In particular, they are all subkinds of Type. Equalities are also inherited by
superkinds in the sense that, if Γ ⊢ k = k′ : K and K is a subkind of K ′,
then Γ ⊢ k = k′ : K ′. The obvious rules are omitted.

The main inference rules for dependent record types are given in Figure 2.
Note that, in record type ⟨R, l : A⟩, A is a family of types of kind (R)Type,
indexed by the objects of R, and this is how dependency is embodied in the
formulation.

There are also congruence rules for record types and their objects, as
given in Figure 3. It is worth remarking that we pay special attention to
the equality between record types. In particular, record types with different
labels are not equal. For example, ⟨n : Nat⟩ ̸= ⟨n′ : Nat⟩ if n ̸= n′.

Notation We shall adopt the following notational conventions.

• For record types, we write

⟨l1 : A1, ..., ln : An⟩ for ⟨⟨⟨⟩, l1 : A1⟩, ..., ln : An⟩

and often use label occurrences and label non-occurrences to express
dependency and non-dependency, respectively. For instance, we write

⟨n : Nat, v : V ect(n)⟩ for ⟨⟨⟨⟩, n : NAT ⟩, v : [x:⟨n : NAT ⟩]V ect(x.n)⟩,

where NAT ≡ [ :⟨⟩]Nat, and

⟨R, l : V ect(2)⟩ for ⟨R, l : [ :R]V ect(2)⟩.

• For records, we often omit the type information to write

⟨r, l = a⟩

for
either ⟨r, l = a : [ :R]A(r)⟩ or ⟨r, l = a : A⟩.

Such a simplification is possible thanks to coercive subtyping. A further
explanation is given in Appendix B. �
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Formation rules

Γ valid

Γ ⊢ ⟨⟩ : RType[∅]
Γ ⊢ R : RType[L] Γ ⊢ A : (R)Type l ̸∈ L

Γ ⊢ ⟨R, l : A⟩ : RType[L ∪ {l}]

Introduction rules

Γ valid

Γ ⊢ ⟨⟩ : ⟨⟩
Γ ⊢ ⟨R, l : A⟩ : RType Γ ⊢ r : R Γ ⊢ a : A(r)

Γ ⊢ ⟨r, l = a : A⟩ : ⟨R, l : A⟩

Elimination rules

Γ ⊢ r : ⟨R, l : A⟩
Γ ⊢ [r] : R

Γ ⊢ r : ⟨R, l : A⟩
Γ ⊢ r.l : A([r])

Γ ⊢ r : ⟨R, l : A⟩ Γ ⊢ [r].l′ : B l ̸= l′

Γ ⊢ r.l′ : B

Computation rules

Γ ⊢ ⟨r, l = a : A⟩ : ⟨R, l : A⟩
Γ ⊢ [⟨r, l = a : A⟩] = r : R

Γ ⊢ ⟨r, l = a : A⟩ : ⟨R, l : A⟩
Γ ⊢ ⟨r, l = a : A⟩.l = a : A(r)

Γ ⊢ ⟨r, l = a : A⟩ : R Γ ⊢ r.l′ : B l ̸= l′

Γ ⊢ ⟨r, l = a : A⟩.l′ = r.l′ : B

Figure 2: The main inference rules for dependent record types
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Congruence rules for record types

Γ valid

Γ ⊢ ⟨⟩ = ⟨⟩ : RType[∅]

Γ ⊢ R = R′ : RType[L] Γ ⊢ A = A′ : (R)Type l /∈ L

Γ ⊢ ⟨R, l : A⟩ = ⟨R′, l : A′⟩ : RType[L ∪ {l}]
Congruence rules for records

Γ valid

Γ ⊢ ⟨⟩ = ⟨⟩ : ⟨⟩

Γ ⊢ R : RType[L] l /∈ L
Γ ⊢ r = r′ : R Γ ⊢ a = a′ : A(r) Γ ⊢ A = A′ : (R)Type

Γ ⊢ ⟨r, l = a : A⟩ = ⟨r′, l = a′ : A′⟩ : ⟨R, l : A⟩
Γ ⊢ r = r′ : ⟨R, l : A⟩

Γ ⊢ [r] = [r′] : R

Γ ⊢ r = r′ : ⟨R, l : A⟩
Γ ⊢ r.l = r′.l : A([r])

Figure 3: Congruence rules
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3.2. Remarks: Meta-theoretic Properties and Beyond

Some brief remarks are necessary to explain the above formulation of
dependent record types (DRTs for short).

Meta-theoretic properties. First, we mention that the above system of DRTs
enjoys nice proof-theoretic properties such as Church-Rosser, Subject Reduc-
tion and Strong Normalization. Feng has developed the typed operational
semantics for the DRTs in her PhD work [15, 14] and proved that the LF-
extension by DRTs has those nice properties.

Record types vs. record kinds. It is important to emphasise that we have
formulated record types, not record kinds. Record types are at the same
level as the other types such as Nat and A×B; they are not at the level of
kinds such as Type. (For those familiar with previous work on dependently-
typed records, both [5] and [12] study record kinds — their ‘record types’ are
studied at the level of kinds in the logical framework, while only [40] studies
record types.) Record types are much more powerful than record kinds. For
example, one may introduce type universes to reflect record types, which can
then be used to represent module types in a more flexible way than record
kinds in many useful applications. (See [29] for a more detailed explanation
with examples.) Since kinds have a much simpler structure than types, it
is much easier to add record kinds to a type theory than record types. For
example, a record kind must be of the form ⟨R, l : A⟩ and cannot be of other
forms such as f(k), but this is not the case for a record type. For example,
a record type may be of the form f(k), say

([x:Type]x)(⟨n : Nat, v : V ect(n)⟩)

that is equal to ⟨n : Nat, v : V ect(n)⟩. As a consequence, it is much easier
to study (e.g., to formulate) record kinds. The issue of label distinctness
discussed below is an example.

Label distinctness in record types. It is easy to ensure that the labels in a
record kind are distinct (as in, e.g., [12]), but when considering record types,
how can one ensure that the (top-level) labels in a record type are distinct?
Thinking of this carefully, one would find that it is not clear how it could
be done in a straightforward way.6 It is probably because of this difficulty

6There is a problem in [5], where the freshness condition of label occurrence in a
formation rule of record kinds has not been clearly defined – its definition is not easy, if
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that, when record types are studied in [40], a special strategy called ‘label
shadowing’ is adopted; that is, label repetition is allowed and, if two labels
are the same, the latter ‘shadows’ the earlier. For example, for r ≡ ⟨n =
3, n = 5⟩, r.n is equal to 5 but not 3. This, however, is not natural and may
cause problems in some applications.

In our formulation of dependent record types, we have introduced the
kinds RType[L] of record types whose (top-level) labels occur in L. This has
solved the problem of ensuring label distinctness in a satisfactory way. (See
the second formation rule in Figure 2.)

Independence on subtyping. Many previous formulations of dependently-typed
records make essential use of subtyping in typing selection terms [18, 5, 12].
In this respect, [40] is different and our formulation follows it in that it is
independent of subtyping. We consider this independence as a significant
advantage, mainly because it allows one to adopt more flexible subtyping
relations in formalisation and modelling.

As a final remark, we should mention that, in the context of extensional
type theory, people have studied encodings of record types by means of other
constructs. For example, in NuPRL, ‘very dependent function types’ and
intersection types have been studied to encode dependent record types [8, 2].
However, it is difficult to see how this can be done in intensional type theories.

3.3. Intensional Manifest Fields in Record Types

Intensional manifest fields can be defined for record types similarly as
we did for Σ-types in Section 2.2. In record types, for A : (R)Type and
a : (r:R)A(r),

l ∼ a : A stands for l : [r:R]1(A(r), a(r)).

In the simpler situation, for A : Type and a : A, l ∼ a : A stands for
l : 1(A, a). In records, for b : B,

l ∼B b stands for l = ∗(B, b).

possible at all, because there are functional terms that result in record kinds as values.
This is similar to the problem with record types.
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Example 3.1. Let R = ⟨S : U, op : S → S⟩ and r : R. The S-field of the
following record type

Rw ≡ ⟨S ∼ r.S : U, op : S → S⟩

is manifest. Intuitively, it insists that, for any record of type Rw, its S-field
must be the same as the S-field of r. �

The IMFs in record types work as intended under the assumption that
we have the following two coercions:

• The coercion ξ as defined in Figure 1 in Section 2.2.3.

• The component-wise coercions diR (i = 1, 2, 3) for dependent record
types as given in Figure 4. These coercions propagate subtyping through
record types. For instance, in (d3R), d

3
R maps ⟨r, l = a⟩ to ⟨c(r), l =

c′{r}(a)⟩.

Remark Note that a component-wise coercion only exists between the record
types that have the same corresponding labels. For example, if l ̸= l′, there
is no component-wise coercion between ⟨l : A⟩ and ⟨l′ : B⟩ even if we have
A <c B. �

The coercion rule (ξ) and the component-wise rules in Figure 4 are co-
herent together, as the following proposition shows. (See [14] for a detailed
proof.)

Proposition 3.2 (Coherence). Let R = {(ξ), (d1R), (d2R), (d3R)}. Then R
is coherent. �

Note that different applications employ different coercions and, thanks
to the independence of the formulation of record types with subtyping, it is
flexible to use different coercions. For example, in modelling classes in an
object-oriented style, as illustrated in [30], we also employ record projections
as coercions, with the following rules:

Γ ⊢ ⟨R, l : A⟩ : RType

Γ ⊢ ⟨R, l : A⟩ <[ ] R : RType

Γ ⊢ A : Type Γ ⊢ ⟨R, l : A⟩ : RType

Γ ⊢ ⟨R, l : A⟩ <Snd ⟨l : A⟩ : RType
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(d1R)

Γ ⊢ R : RType[L] Γ ⊢ R′ : RType[L]
Γ ⊢ A′ : (R′)Type Γ ⊢ R <c R

′ : RType

Γ ⊢ ⟨R, l : A′ ◦ c⟩ <d1R
⟨R′, l : A′⟩ : RType

(l ̸∈ L)

where d1R = [x : ⟨R, l : A⟩]⟨c([x]), l = x.l⟩.

(d2R)

Γ ⊢ R : RType[L] Γ ⊢ A, A′ : (R)Type
Γ, x:R ⊢ A(x) <c′{x} A′(x) : Type

Γ ⊢ ⟨R, l : A⟩ <d2R
⟨R, l : A′⟩ : RType

(l ̸∈ L)

where d2R = [x : ⟨R, l : A⟩]⟨[x], l = c′{[x]}(x.l)⟩.

(d3R)

Γ ⊢ R : RType[L] Γ ⊢ R′ : RType[L]
Γ ⊢ A : (R)Type Γ ⊢ A′ : (R′)Type

Γ ⊢ R <c R
′ : RType Γ, x:R ⊢ A(x) <c′{x} A′(c(x)) : Type

Γ ⊢ ⟨R, l : A⟩ <d3R
⟨R′, l : A′⟩ : RType

(l ̸∈ L)

where d3R = [x : ⟨R, l : A⟩]⟨c([x]), l = c′{[x]}(x.l)⟩.

Figure 4: Component-wise coercions for dependent record types
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where, in the second rule, A is a type, ⟨R, l : A⟩ stands for ⟨R, l : [ :R]A⟩,
and the kind of the second projection Snd is the non-dependent kind (⟨R, l :
A⟩)⟨l : A⟩.7

Remark It is worth remarking that the labels in record types play an impor-
tant role in distinguishing between record types and this can be explained
by means of the coherence issue of projections. As is known from Y. Luo’s
thesis [23] that the projections together are not coherent coercions for Σ-
types. However, the coercions [ ] and Snd together are coherent. Also, if one
allowed label repetitions in record types, as in [40], the projection coercions
[ ] and Snd would be incoherent together. �

As for Σ-types, we can modify a record type by means of a with-clause.
For R ≡ ⟨l1 : A1, ..., ln : An⟩, i ∈ {1, ..., n} and a : (x : Ri−1)Ai(x), where
Ri−1 ≡ ⟨l1 : A1, ..., li−1 : Ai−1⟩,

R with li as a

=df ⟨ l1 : A1, ..., li−1 : Ai−1, li ∼ a : Ai, li+1 : Ai+1, ..., ln : An ⟩.

And, for r : R,

r|li =df ⟨l1 = r.l1, ..., li−1 = r.li−1, li ∼Ai(ri−1) r.li, li+1 = r.li+1, ..., ln = r.ln⟩,

where ri−1 ≡ ⟨l1 = r.l1, ..., li−1 = r.li−1⟩.

Remark Similar to Proposition 2.6, one can show that the above definitions
are adequate. It is also easy to see that the with-clauses and the |-operations
can be nested. �

3.4. ML-style Sharing in Intensional Type Theory

Dependent record types with intensional manifest fields are useful in var-
ious applications. In this subsection, we use record types to show how to

7In general, Snd : (r:⟨R, l : A⟩)⟨l : A([r])⟩ maps r to ⟨l = r.l⟩. First, note that the
kind of Snd is different from that of field selection: the codomain of Snd is ⟨l : A([r])⟩,
rather than simply A([r]). This makes an important difference: Snd is coherent with the
first projection and the component-wise coercion, while field selection is not. Secondly,
only non-dependent coercions (and, in this case, the non-dependent second projection)
are studied in this paper. (Dependent coercions, where the codomain of a coercion may
depend on its argument, are studied in [34].)
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use the module types with intensional manifest fields to capture ML-style
sharing [35, 22].8

In the language design for programming and formalisation, an important
topic has been the development of a suitable and powerful module mecha-
nism. Modules that support structure sharing have been of particular inter-
est. For example, one may want to share a point of a circle and a point of
a rectangle in developing a facility for bit-mapped graphics or to share the
carrier set of a semigroup and that of an abelian group when constructing
rings in a formal development of abstract mathematics.

For functional programming languages, two approaches to sharing have
been studied: one is sharing by parameterisation or the Pebble-style sharing
[6, 21] and the other sharing by equations or the ML-style sharing [35, 38].
Both have been studied in the context of formalisation of mathematics as
well, especially in designing and using type theory based proof assistants.

It is known that ML-style sharing cannot be captured in an intensional
type theory by the propositional equality, since it is not equivalent to the
computational equality in a non-empty context [24]. Contrary to a common
belief that one needs some extensional notion of equality to express ML-style
sharing in type theory, it can be captured using the IMFs that are studied
in this paper, as the following example illustrates.

Example 3.3. A ring R is composed of an abelian group (R,+) and a semi-
group (R, ∗), with extra distributive laws. One can construct a ring from an
abelian group and a semigroup. When doing this, one must make sure that
the abelian group and the semigroup share the same carrier set. One of the
ways to specify such sharing is to use an ‘equation’ to indicate that the carrier
sets are the same. This example shows that this can be done by means of the
IMFs.

The signature types of abelian groups, semigroups and rings can be repre-
sented as the following record types, respectively, where U is a type universe:

AG ≡ ⟨A : U, + : A → A → A, 0 : A, inv : A → A⟩
SG ≡ ⟨B : U, ∗ : B → B → B⟩

Ring ≡ ⟨C : U, + : C → C → C, 0 : C, inv : C → C, ∗ : C → C → C⟩

8Another application is to use the record types and IMFs to model OO-like programs
and conduct verification in proof assistants. This application has been sketched in [30]
and further experiments have been done in [17].
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Note that an abelian group and a semigroup do not have to share their carrier
sets. In order to make the sharing happen, we introduce the following record
type, which is parameterised by an AG-signature and defined by means of a
with-clause that specifies an IMF to ensure the sharing of the carrier sets:

SGw(ag) = SG with B as ag.A

= ⟨B ∼ ag.A : U, ∗ : B → B → B⟩,

where ag : AG. Then, the function that generates the Ring-signature from
those of abelian groups and semigroups can now be defined as:

ringGen(ag, sg)

=df ⟨C = ag.A, + = ag.+, 0 = ag.0, inv = ag.inv, ∗ = sg.∗⟩,

where the arguments ag : AG and sg : SGw(ag) share their carrier set. �
Experiments in proof assistants. Experiments on the above application have
been done in the proof assistants Plastic [7] and Coq [10], both supporting
the use of coercions. In Plastic, one can define parameterised coercions such
as ξ and coercion rules for the structural coercions: we only have to declare
ξ and the component-wise coercions, then Plastic obtains automatically all
of the derivable coercions, as intended. However, Plastic does not support
record types; so Σ-types were used for our experiments in Plastic, at the risk
of incoherence of the coercions!

Coq supports a macro for dependent record types9 and a limited form of
coercions. In Coq, we have to use the identity ID(A) = A on types to force
Coq to accept the coercion ξ and to use type-casting as a trick to make it
happen. Also, since Coq does not support user-defined coercion rules, we
cannot implement the rules for the component-wise coercions; instead, we
have to specify its effects on the record types individually. The Coq code for
the Ring example in Example 3.3 can be found in Appendix C.

4. Conclusion

We have shown that manifest fields can be expressed in intensional type
theories with the help of coercive subtyping. The intensional manifest fields

9It is a macro in the sense that dependent record types are actually implemented as
inductive types with labels defined as global names (and, therefore, the labels of different
‘record types’ must be different). Coq [10] also supports a preliminary form of ‘manifest
fields’ by means of the let-construct, which we do not use in our experiments.
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strengthen the module types such as record types and provide higher-order
module mechanisms for modular development of proofs and dependently-
typed programs.

After developing the IMFs as reported in [30], the author became aware
of the work by Sacerdoti-Coen and Tassi [41] who, in studying formalisation
of mathematical structures, have attempted to represent R with l as a by
means of Σr : R. (r.l = a), where = is the Leibniz equality, and to employ
the so-called ‘manifesting coercions’ in order to approximate manifest fields.
We remark that using an equality relation in this way is not completely sat-
isfactory and seems unnecessarily complicated. Our notion of IMF is simple
and, coupled with the record types as formulated in this paper, provides us
a powerful tool in intensional type theory.

The dependent record types studied in this paper are intensional in the
sense that we do not have the following extensional equality rules [5, 30],
which say that two records are computationally equal if their components
are:

Γ ⊢ r : ⟨⟩
Γ ⊢ r = ⟨⟩ : ⟨⟩

Γ ⊢ r : ⟨R, l : A⟩ Γ ⊢ r′ : ⟨R, l : A⟩
Γ ⊢ [r] = [r′] : R Γ ⊢ r.l = r′.l : A([r])

Γ ⊢ r = r′ : ⟨R, l : A⟩
For instance, from the second rule above, we would have ⟨r, l = r.l⟩ = r
for any r of type ⟨R, l : A⟩. It is unclear whether the above extensionality
rules are essentially useful. It may also be interesting to conduct research to
see whether the approach of typed operational semantics (TOS) as reported
in [15, 14] can be extended for such extensional record types. It would be
obviously problematic if one considered the reduction relation for the records
as follows:

⟨r, l = r.l⟩◃ r

for, together with the η-reduction for λ-terms, the Church-Rosser property
would fail to hold. A question arises here: would it possible if one takes the
TOS-approach by considering a reduction relation that treats η-long normal
forms (e.g., by taking the above reduction in the other direction)? This
involves the development of the TOS-approach to incorporate η-long normal
forms and research is needed to see whether it is possible.

Acknowledgement I am grateful to Robin Adams who, among other things,
has suggested the phrase ‘intensional manifest field’ to me.
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Appendix A. The inference rules of LF [25]

Contexts, assumptions and equality rules

⟨⟩ valid

Γ ⊢ K kind x /∈ FV (Γ)

Γ, x:K valid

Γ, x:K,Γ′ valid

Γ, x:K,Γ′ ⊢ x : K

Γ ⊢ K kind

Γ ⊢ K = K

Γ ⊢ K = K ′

Γ ⊢ K ′ = K

Γ ⊢ K = K ′ Γ ⊢ K ′ = K ′′

Γ ⊢ K = K ′′

Γ ⊢ k : K

Γ ⊢ k = k : K

Γ ⊢ k = k′ : K

Γ ⊢ k′ = k : K

Γ ⊢ k = k′ : K Γ ⊢ k′ = k′′ : K

Γ ⊢ k = k′′ : K

Γ ⊢ k : K Γ ⊢ K = K ′

Γ ⊢ k : K ′
Γ ⊢ k = k′ : K Γ ⊢ K = K ′

Γ ⊢ k = k′ : K ′

The kind Type

Γ valid

Γ ⊢ Type kind

Γ ⊢ A : Type

Γ ⊢ El(A) kind

Γ ⊢ A = B : Type

Γ ⊢ El(A) = El(B)

Dependent product kinds

Γ ⊢ K kind Γ, x:K ⊢ K ′ kind

Γ ⊢ (x:K)K ′ kind

Γ ⊢ K1 = K2 Γ, x:K1 ⊢ K ′
1 = K ′

2

Γ ⊢ (x:K1)K ′
1 = (x:K2)K ′

2

Γ, x:K ⊢ k : K ′

Γ ⊢ [x:K]k : (x:K)K ′ (∗) Γ ⊢ K1 = K2 Γ, x:K1 ⊢ k1 = k2 : K

Γ ⊢ [x:K1]k1 = [x:K2]k2 : (x:K1)K

Γ ⊢ f : (x:K)K ′ Γ ⊢ k : K

Γ ⊢ f(k) : [k/x]K ′
Γ ⊢ f = f ′ : (x:K)K ′ Γ ⊢ k1 = k2 : K

Γ ⊢ f(k1) = f ′(k2) : [k1/x]K ′

Γ, x:K ⊢ k′ : K ′ Γ ⊢ k : K

Γ ⊢ ([x:K]k′)(k) = [k/x]k′ : [k/x]K ′ (η)
Γ ⊢ f : (x:K)K ′ x /∈ FV (f)

Γ ⊢ [x:K]f(x) = f : (x:K)K ′

Appendix B. Untyped notations for pairs and records

Coercive subtyping can be used to explain and facilitate overloading [27,
4, 28]. The adoption of the untyped notations for pairs and records is a
typical example.

Formally, the notations for pairs in Martin-Löf’s type theory or UTT and
for records in Section 3.1 are fully annotated with type information: they
are of the ‘typed’ forms pair(A,B, a, b) and ⟨r, l = a : A⟩, rather than the
‘untyped’ (a, b) and ⟨r, l = a⟩, respectively. A reason for this is that, in a
dependent type theory, a pair or a record without type information may have
two or more incompatible types. For example, the record ⟨n = 2, v = [5, 6]⟩
has both ⟨n : Nat, v : V ect(2)⟩ and ⟨n : Nat, v : V ect(n)⟩ as its types. The
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presence of the type information in the typed forms allows a straightforward
algorithm for type-checking, but it is clumsy and impractical.

Can we use the simpler untyped notations instead? The answer is yes:
this can be done with the help of coercive subtyping. We illustrate it for
records (see Section 5.4 of [27] for a treatment of pairs). Let r′ be the
‘intended typed version’ of r. We want to use ⟨r, l = a⟩ to stand for either
of the following records:

r1 ≡ ⟨r′, l = a : [ :R]A(r′)⟩ : ⟨R, l : [ :R]A(r′)⟩
r2 ≡ ⟨r′, l = a : A⟩ : ⟨R, l : A⟩

and to be able to decide which it stands for in the context. This can be done
as follows. Let L be any finite set of labels such that l ̸∈ L. Consider the
family

UL : (R : RType[L])(A : (R)Type)(x : R)(a : A(x))Type

of inductive unit types UL(R,A, x, a) with the only object uL(R,A, x, a). We
then declare coercions δL1 and δL2 :

UL(R,A, x, a) <δL1
⟨R, l : [ :R]A(x)⟩

UL(R,A, x, a) <δL2
⟨R, l : A⟩

inductively defined as: δL1 (uL(R,A, x, a)) = ⟨x, l = a : [ :R]A(x)⟩ and
δL2 (uL(R,A, x, a)) = ⟨x, l = a : A⟩. Then the notation ⟨r, l = a⟩ can
be used to denote the object uL(R,A, r′, a) and, in a context, it will be co-
erced into the appropriate record r1 or r2 according to the contextual typing
requirement.

Appendix C. Coq code for the Ring example

The following is the Coq code for the Ring example – the construction
of rings from abelian groups and semi-groups that share the domains. Note
that we have only formalised the signatures of the algebras, omitting their
axiomatic parts.

(* The parameterised unit type -- Unit/unit for 1/* *)

Inductive Unit (A:Type)(a:A) : Type := unit : Unit A a.

(* Coercion for the unit type; Use ID as trick to define it in Coq *)

Definition ID (A:Type) : Type := A.
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Coercion unit_c (A:Type)(a:A)(_:Unit A a) := a : ID A.

(* Abelian Groups, Semi-groups and Rings -- signatures only *)

Record AG : Type := mkAG

{ A : Set; plus : A->A->A; zero : A; inv : A->A }.

Record SG : Type := mkSG

{ B : Set; times : B->B->B }.

Record Ring : Type := mkRing

{ C : Set; plus’ : C->C->C; zero’ : C; inv’ : C->C; times’ : C->C->C }.

(* Domain-sharing semi-groups; type-casting to make unit_c happen in Coq *)

Record SGw (ag : AG) : Type := mkSGw

{ B’ : Unit Set ag.(A); times’’ : let B’ := (B’ : ID Set) in B’->B’->B’ }.

Implicit Arguments B’. Implicit Arguments times’’.

(* function to generate rings from abelian/semi-groups with shared domain *)

Definition ringGen (ag : AG)(sg : SGw ag) : Ring :=

mkRing ag.(A) ag.(plus) ag.(zero) ag.(inv) sg.(times’’).
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