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Abstract
Multi-stack pushdown systems are a well-studied model of concurrent computation using

threads with first-order procedure calls. While, in general, reachability is undecidable, there are
numerous restrictions on stack behaviour that lead to decidability. To model higher-order proced-
ures calls, a generalisation of pushdown stacks called collapsible pushdown stacks are required.
Reachability problems for multi-stack collapsible pushdown systems have been little studied.
Here, we study ordered, phase-bounded and scope-bounded multi-stack collapsible pushdown
systems using saturation techniques, showing decidability of control state reachability and giving
a regular representation of all configurations that can reach a given control state.
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1 Introduction
Pushdown systems augment a finite-state machine with a stack and accurately model first-
order recursion. Such systems then are ideal for the analysis of sequential first-order pro-
grams and several successful tools, such as Moped [27] and SLAM [3], exist for their analysis.
However, the domination of multi- and many-core machines means that programmers must
be prepared to work in concurrent environments, with several interacting execution threads.

Unfortunately, the analysis of concurrent pushdown systems is well-known to be un-
decidable. However, most concurrent programs don’t interact pathologically and many
restrictions on interaction have been discovered that give decidability (e.g. [5, 6, 28, 15, 16]).

One particularly successful approach is context-bounding. This underapproximates a
concurrent system by bounding the number of context switches that may occur [26]. It is
based on the observation that most real-world bugs require only a small number of thread
interactions [25]. Additionally, a number of more relaxed restrictions on stack behaviour
have been introduced. In particular phase-bounded [31], scope-bounded [32], and ordered [7]
(corrected in [2]) systems. There are also generic frameworks — that bound the tree- [22]
or split-width [10] of the interactions between communication and storage — that give
decidability for all communication architectures that can be defined within them.

Languages such as C++, Haskell, Javascript, Python, or Scala increasingly embrace
higher-order procedure calls, which present a challenge to verification. A popular ap-
proach to modelling higher-order languages for verification is that of (higher-order recursion)
schemes [11, 23, 17]. Collapsible pushdown systems (CPDS) are an extension of pushdown
systems [14] with a “stack-of-stacks” structure. The “collapse” operation allows a CPDS
to retrieve information about the context in which a stack character was created. These
features give CPDS equivalent modelling power to schemes [14].

These two formalisms have good model-checking properties. E.g, it is decidable whether
a µ-calculus formula holds on the execution graph of a scheme [23] (or CPDS [14]). Al-
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2 Saturation of Concurrent Pushdown Systems

though, the complexity of such analyses is high, it has been shown by Kobayashi [16] (and
Broadbent et al. for CPDS [8]) that they can be performed in practice on real code examples.

However concurrency for these models has been little studied. Work by Seth considers
phase-bounding for CPDS without collapse [29] by reduction to a finite state parity game.
Recent work by Kobayashi and Igarashi studies context-bounded recursion schemes [19].

Here, we study global reachability problems for ordered, phase-bounded, and scope-
bounded CPDS. We use saturation methods, which have been successfully implemented by
e.g. Moped [27] for pushdown systems and C-SHORe [8] for CPDS. Saturation was first
applied to model-checking by Bouajjani et al. [4] and Finkel et al. [12]. We presented a
saturation technique for CPDS in ICALP 2012 [9]. Here, we present the following advances.
1. Global reachability for ordered CPDSs (§5). This is based on Atig’s algorithm [1] for

ordered PDSs and requires a non-trivial generalisation of his notion of extended PDSs
(§3). For this we introduce the notion of transition automata that encapsulate the
behaviour of the saturation algorithm. In the full article we show how to use the same
machinery to solve the global reachability problem for phase-bounded CPDSs.

2. Global reachability for scope-bounded CPDSs (§6). This is a backwards analysis based
upon La Torre and Napoli’s forwards analysis for scope-bounded PDSs, requiring new
insights to complete the proofs.

Because the naive encoding of a single second-order stack has an undecidable MSO theory
(we show this folklore result in the full paper) it remains a challenging open problem to
generalise the generic frameworks above ([22, 10]) to CPDSs, since these frameworks rely on
MSO decidability over graph representations of the storage and communication structure.

A full version of this paper with all definitions and proofs is available [13].

2 Preliminaries
Before defining CPDSs, we define 2 ↑0 (x) = x and 2 ↑i+1 (x) = 22↑i(x).

2.1 Collapsible Pushdown Systems (CPDS)
For a readable introduction to CPDS we defer to a survey by Ong [24]. Here, we can only
briefly describe higher-order collapsible stacks and their operations. We use a notion of
collapsible stacks called annotated stacks (which we refer to as collapsible stacks). These
were introduced in ICALP 2012, and are essentially equivalent to the classical model [9].

Higher-Order Collapsible Stacks An order-1 stack is a stack of symbols from a stack
alphabet Σ, an order-n stack is a stack of order-(n−1) stacks. A collapsible stack of order n

is an order-n stack in which the stack symbols are annotated with collapsible stacks which
may be of any order ≤ n. Note, often in examples we will omit annotations for clarity. We
fix the maximal order to n, and use k to range between n and 1. We simultaneously define
for all 1 ≤ k ≤ n, the set Stacksn

k of order-k stacks whose symbols are annotated by stacks of
order at most n. Note, we use subscripts to indicate the order of a stack. Furthermore, the
definition below uses a least fixed-point. This ensures that all stacks are finite. An order-k
stack is a collapsible stack in Stacksn

k .

▶ Definition 2.1 (Collapsible Stacks). The family of sets (Stacksn
k )1≤k≤n is the smallest

family (for point-wise inclusion) such that:
1. for all 2 ≤ k ≤ n, Stacksn

k is the set of all (possibly empty) sequences [w1 . . . wℓ]k with
w1, . . . , wℓ ∈ Stacksn

k−1.
2. Stacksn

1 is all sequences [a1
w1 . . . aℓ

wℓ ]1 with ℓ ≥ 0 and for all 1 ≤ i ≤ ℓ, ai is a stack
symbol in Σ and wi is a collapsible stack in

∪
1≤k≤n

Stacksn
k .
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An order-n stack can be represented naturally as an edge-labelled tree over the alphabet
{[n−1, . . . , [1, ]1, . . . , ]n−1} ⊎ Σ, with Σ-labelled edges having a second target to the tree
representing the annotation. We do not use [n or ]n since they would appear uniquely at
the beginning and end of the stack. An example order-3 stack is given below, with only a
few annotations shown (on a and c). The annotations are order-3 and order-2 respectively.

• • • • • • • • • • • • • • • • •
[2 [1 a b ]1 ]2 [2 [1 c ]1 ]2 [1 d ]1

Given an order-n stack w = [w1 . . . wℓ]n, we define topn+1(w) = w and

topn([w1 . . . wℓ]n) = w1 when ℓ > 0
topn([]n) = []n−1 otherwise

topk([w1 . . . wℓ]n) = topk(w1) when k < n and ℓ > 0

noting that topk(w) is undefined if topk′(w) = []k′−1 for any k′ > k.
We write u :k v — where u is order-(k − 1) — to denote the stack obtained by placing

u on top of the topk stack of v. That is, if v = [v1 . . . vℓ]k then u :k v = [uv1 . . . vℓ]k, and
if v = [v1 . . . vℓ]k′ with k′ > k, u :k v = [(u :k v1) v2 . . . vℓ]k′ . This composition associates
to the right. E.g., the stack [[[awb]1]2]3 above can be written u :3 v where u is the order-2
stack [[awb]1]2 and v is the empty order-3 stack []3. Then u :3 u :3 v is [[[awb]1]2[[awb]1]2]3.

Operations on Order-n Collapsible Stacks The following operations can be performed on
an order-n stack where noop is the null operation noop(w) = w.

On = {noop, pop1} ∪
{

rewa, pushk
a, copyk, popk | a ∈ Σ ∧ 2 ≤ k ≤ n

}
We define each o ∈ On for an order-n stack w. Annotations are created by pushk

a, which
pushes a character onto w and annotates it with topk+1(popk(w)). This, in essence, attaches
a closure to a new character.
1. We set popk(u :k v) = v.
2. We set copyk(u :k v) = u :k u :k v.
3. We set collapsek

(
au′ :1 u :(k+1) v

)
= u′ :(k+1) v when u is order-k and 1 ≤ k < n; and

collapsen(au :1 v) = u when u is order-n.
4. We set pushk

b (w) = bu :1 w where u = topk+1(popk(w)).
5. We set rewb(au :1 v) = bu :1 v.
For example, beginning with [[a]1[b]1]2 and applying push2

c we obtain [[c[[b]1]2a]1[b]1]2. In this
setting, the order-2 context information for the new character c is [[b]1]2. We can then apply
copy2; collapse2 to get [[c[[b]1]2a]1[c[[b]1]2a]1[b]1]2 then [[b]1]2. That is, collapsek replaces the
current topk+1 stack with the annotation attached to c.

Collapsible Pushdown Systems We are now ready to define collapsible PDS.

▶ Definition 2.2 (Collapsible Pushdown Systems). An order-n collapsible pushdown system
(n-CPDS) is a tuple C = (P, Σ, R) where P is a finite set of control states, Σ is a finite stack
alphabet, and R ⊆ (P × Σ × On × P) is a set of rules.

We write configurations of a CPDS as a pair ⟨p, w⟩ ∈ P × Stacksn
n. We have a transition

⟨p, w⟩ −→ ⟨p′, w′⟩ via a rule (p, a, o, p′) when top1(w) = a and w′ = o(w).

Consuming and Generating Rules We distinguish two kinds of rule or operation: a rule
(p, a, o, p′) or operation o is consuming if o = popk or o = collapsek for some k. Otherwise,
it is generating. We write RP,Σ

Gn
for the set of generating rules of the form (p, a, o, p′) such

that p, p′ ∈ P and a ∈ Σ, and o ∈ On. We simply write RGn when no confusion may arise.
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2.2 Saturation for CPDS
Our algorithms for concurrent CPDSs build upon the saturation technique for CPDSs [9]. In
essence, we represent sets of configurations C using a P-stack automaton A reading stacks.
We define such automata and their languages L(A) below. Saturation adds new transitions
to A — depending on rules of the CPDS and existing transitions in A — to obtain A′ repres-
enting configurations with a path to a configuration in C. I.e., given a CPDS C with control
states P and a P-stack automaton A0, we compute Pre∗

C(A0) which is the smallest set s.t.
Pre∗

C(A0) ⊇ L(A0) and Pre∗
C(A0) ⊇ {⟨p, w⟩ | ∃⟨p, w⟩ −→ ⟨p′, w′⟩ s.t. ⟨p′, w′⟩ ∈ Pre∗

C(A0)}.

Stack Automata Sets of stacks are represented using order-n stack automata. These are
alternating automata with a nested structure that mimics the nesting in a higher-order
collapsible stack. We recall the definition below.

▶ Definition 2.3 (Order-n Stack Automata). An order-n stack automaton is a tuple A =
(Qn, . . . ,Q1, Σ, ∆n, . . . , ∆1, Fn, . . . , F1) where Σ is a finite stack alphabet, Qn, . . . ,Q1 are
disjoint, and
1. for all 2 ≤ k ≤ n, we have Qk is a finite set of states, Fk ⊆ Qk is a set of accepting

states, and ∆k ⊆ Qk ×Qk−1 × 2Qk is a transition relation such that for all q and Q there
is at most one q′ with (q, q′, Q) ∈ ∆k, and

2. Q1 is a finite set of states, F1 ⊆ Q1 is a set of accepting states, and the transition relation
is ∆1 ⊆

∪
2≤k≤n

(
Q1 × Σ × 2Qk × 2Q1

)
.

States in Qk recognise order-k stacks. Stacks are read from “top to bottom”. A stack
u :k v is accepted from q if there is a transition (q, q′, Q) ∈ ∆k, written q

q′

−→ Q, such that
u is accepted from q′ ∈ Q(k−1) and v is accepted from each state in Q. At order-1, a stack
au :1 v is accepted from q if there is a transition (q, a, Qcol, Q) where u is accepted from all
states in Qcol and v is accepted from all states in Q. An empty order-k stack is accepted
by any state in Fk. We write w ∈ Lq(A) to denote the set of all stacks w accepted from q.
Note that a transition to the empty set is distinct from having no transition.

We show a part run using q3
q2−→ Q3 ∈ ∆3, q2

q1−→ Q2 ∈ ∆2, q1
a−−−→

Qcol

Q1 ∈ ∆1.

q3 q2 q1 Q1 · · · Q2 Q3 Qcol · · ·
[2 [1 a b ]1 ]2 [2

Long-form Transitions We will often use a long-form notation (defined below) that cap-
tures nested sequences of transitions. E.g. we can write q3

a−−−→
Qcol

(Q1, Q2, Q3) to represent

the use of q3
q2−→ Q3, q2

q1−→ Q2, and q1
a−−−→

Qcol

Q1 for the first three transitions of the run
above. Note that this latter long-form transition starts at the very beginning of the stack
and reads its top1 character. Formally, for a sequence of transitions q

qk−1−−−→ Qk, qk−1
qk−2−−−→

Qk−1, . . . , q1
a−−−→

Qcol

Q1 in ∆k to ∆1 respectively, we write q
a−−−→

Qcol

(Q1, . . . , Qk).

P-Stack Automata We define P-automata [4] for CPDSs. Given control states P, an
order-n P-stack automaton is an order-n stack automaton such that for each p ∈ P there
exists a state qp ∈ Qn. We set L(A) =

{
⟨p, w⟩

∣∣ w ∈ Lqp(A)
}

.

The Saturation Algorithm We recall the saturation algorithm. For a detailed explanation
of the saturation function complete with examples, we refer the reader to our ICALP pa-
per [9]. Here we present an abstracted view of the algorithm, relegating details that are not
directly relevant to the remainder of the main article to the full version.



M. Hague 5

The saturation algorithm iterates a saturation function Π that adds new transitions to a
given automaton. Beginning with A0 representing a target set of configurations, we iterate
Ai+1 = Π(Ai) until Ai+1 = Ai. Once this occurs, we have that L(Ai) = Pre∗

C(A0).
We define Π in terms of a family of auxiliary saturation functions Πr (defined in the full

article) which return a set of long-form transitions to be added by saturation. When r is
consuming, Πr(A) returns the set of long-form transitions to be added to A due to the rule
r. When r is generating Πr also takes as an argument a long-form transition t of A. Thus
Πr(t, A) returns the set of long-form transitions that should be added to A as a result of the
rule r combined with the transition t (and possibly other transitions of A).

For example, if r = (p, a, rewb, p′) and t = qp′
b−−−→

Qcol

(Q1, . . . , Qn) is a transition of A,

then Πr(t, A) contains only the long-form transition t′ = qp
a−−−→

Qcol

(Q1, . . . , Qn). The idea is

if ⟨p′, bu :1 w⟩ is accepted by A via a run whose first (sequence of) transition(s) is t, then by
adding t′ we will be able to accept ⟨p, au :1 w⟩ via a run beginning with t′ instead of t. We
have ⟨p, au :1 w⟩ ∈ Pre∗

C(A) since it can reach ⟨p′, bu :1 w⟩ via the rule r.

▶ Definition 2.4 (The Saturation Function Π). For a CPDS with rules R, and given an
order-n stack automaton Ai we define Ai+1 = Π(Ai). The state-sets of Ai+1 are defined
implicitly by the transitions which are those in Ai plus, for each r = (p, a, o, p′) ∈ R, when
1. o is consuming and t ∈ Πr(Ai), then add t to Ai+1,
2. o is generating, t is in Ai, and t′ ∈ Πr(t, A), then add t′ to Ai+1.

In ICALP 2012 we showed that saturation adds up to O(2 ↑n (f(|P|))) transitions, for
some polynomial f , and that this can be reduced to O(2 ↑n−1 (f(|P|))) (which is optimal)
by restricting all Qn to have size 1 when A0 is “non-alternating at order-n”. Since this
property holds of all A0 used here, we use the optimal algorithm for complexity arguments.

3 Extended Collapsible Pushdown Systems
To analyse concurrent systems, we extend CPDS following Atig [1]. Atig’s extended PDSs
allow words from arbitrary languages to be pushed on the stack. Our notion of extended
CPDSs allows sequences of generating operations from a language Lg to be applied, rather
than a single operation per rule. We can specify Lg by any system (e.g. a Turing machine).

▶ Definition 3.1 (Extended CPDSs). An order-n extended CPDS (n-ECPDS) is a tuple
C = (P, Σ, R) where P is a finite set of control states, Σ is a finite stack alphabet, and
R ⊆ (P × Σ × On × P) ∪

(
P × Σ × 2(RP,Σ

Gn
)∗

× P
)

is a set of rules.

As before, we have a transition ⟨p, w⟩ −→ ⟨p′, w′⟩ of an n-ECPDS via a rule (p, a, o, p′)
with top1(w) = a and w′ = o(w). Additionally, we have a transition ⟨p, w⟩ −→ ⟨p′, w′⟩ when
we have a rule (p, a, Lg, p′), a sequence (p, a, o1, p1) (p1, a2, o2, p2) . . . (pℓ−1, aℓ, oℓ, p′) ∈ Lg

and w′ = oℓ(· · · o1(w)). That is, a single extended rule may apply a sequence of stack
updates in one step. A run of an ECPDS is a sequence ⟨p0, w0⟩ −→ ⟨p1, w1⟩ −→ · · · .

3.1 Reachability Analysis
We adapt saturation for ECPDSs. In Atig’s algorithm, an essential property is the decid-
ability of Lg ∩ L(A) for some order-1 P-stack automaton A and a language Lg appearing
in a rule of the extended PDS. We need analogous machinery in our setting. For this, we
first define a class of finite automata called transition automata, written T . The states of
these automata will be long-form transitions of a stack automaton t = q

a−−−→
Qcol

(Q1, . . . , Qn).

Transitions t
r−→ t′ are labelled by rules. We write t

−→r−→∗ t′ to denote a run over −→r ∈ (RGn)∗.
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During the saturation algorithm we will build from Ai a transition automaton T . Then,
for each rule (p, a, Lg, p′) we add to Ai+1 a new long-form transition t if there is a word
−→r ∈ Lg such that t

−→r−→∗ t′ is a run of T and t′ is already a transition of Ai.
For example, consider (p, a, Lg, p′) where Lg = {(p, a, rewb, p′)}. A transition(

qp
a−−−→

Qcol

(Q1, . . . , Qn)
) (p,a,rewb,p′)

−−−−−−−−→
(

qp′
b−−−→

Qcol

(Q1, . . . , Qn)
)

will correspond to the fact that the presence of qp′
b−−−→

Qcol

(Q1, . . . , Qn) in Ai causes qp
a−−−→

Qcol

(Q1, . . . , Qn) to be added by Π. A run t1
r1−→ t2

r2−→ t3 comes into play when e.g. Lg = {r1r2}.
If the rule were split into two ordinary rules with intermediate control states, Π would first
add t2 derived from t3, and then from t2 derive t1. In the case of extended CPDSs, the
intermediate transition t2 is not added to Ai+1, but its effect is still present in the addition
of t1. Below, we repeat the above intuition more formally. Fix a n-ECPDS C = (P, Σ, R).

Transition Automata We build a transition automaton from a given P-stack automaton
A. Let A have order-n to order-1 state-sets Qn, . . . , Q1 and alphabet Σ, let TA be the set
of all q

a−−−→
Qcol

(Q1, . . . , Qn) with q ∈ Qn, for all k, Qk ⊆ Qk, and for some k, Qcol ⊆ Qk.

▶ Definition 3.2 (Transition Automata). Given an order-n P-stack automaton A with al-
phabet Σ, and t, t′ ∈ TA, we define the transition automaton T A

t,t′ =
(

TA, RP,Σ
Gn

, δ, t, t′
)

such

that δ ⊆ TA × RP,Σ
Gn

× TA is the smallest set such that t1
r−→ t2 ∈ δ if t1 ∈ Πr(t2, A).

We define L
(
T A

t,t′

)
=

{−→r
∣∣∣ t

−→r−→∗ t′
}

.

Extended Saturation Function We now extend the saturation function following the in-
tuition explained above. For t = qp

a−−−→
Qcol

(Q1, . . . , Qn), let top1(t) = a and control(t) = p.

▶ Definition 3.3 (Extended Saturation Function Π). The extended Π is Π from Defini-
tion 2.4 plus for each extended rule (p, a, Lg, p′) ∈ R and t, t′, we add t to Ai+1 whenever
1. control(t) = p and top1(t) = a, 2. t′ is a transition of Ai with control(t′) = p′, and
3. Lg ∩ L

(
T Ai

t,t′

)
̸= ∅.

▶ Theorem 3.4 (Global Reachability of ECPDS). Given an ECPDS C and a P-stack auto-
maton A0, the fixed point A of the extended saturation procedure accepts Pre∗

C(A0).

In order for the saturation algorithm to be effective, we need to be able to decide Lg ∩
L

(
T Ai

t,t′

)
̸= ∅. We argue in the full paper that number of transitions added by extended

saturation has the same upper bound as the unextended case.

4 Multi-Stack CPDSs
We define a general model of concurrent collapsible pushdown systems, which we later
restrict. In the sequel, assume a bottom-of-stack symbol ⊥ and define the “empty” stacks
⊥0=⊥ and ⊥k+1= [⊥k]k+1. As standard, we assume that ⊥ is neither pushed onto, nor
popped from, the stack (though may be copied by copyk).

▶ Definition 4.1 (Multi-Stack Collapsible Pushdown Systems). An order-n multi-stack col-
lapsible pushdown system (n-MCPDS) is a tuple C = (P, Σ, R1, . . . , Rm) where P is a finite
set of control states, Σ is a finite stack alphabet, and for each 1 ≤ i ≤ m we have a set of
rules Ri ⊆ P × Σ × On × P.
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A configuration of C is a tuple ⟨p, w1, . . . , wm⟩. There is a transition ⟨p, w1, . . . , wm⟩ −→
⟨p′, w1, . . . , wi−1, w′

i, wi+1, . . . , wm⟩ via (p, a, o, p′) ∈ Ri when a = top1(wi) and w′
i = o(wi).

We also need MCPDAutomata, which are MCPDSs defining languages over an input
alphabet Γ. For this, we add labelling input characters to the rules. Thus, a rule (p, a, γ, o, p′)
reads a character γ ∈ Γ. This is defined formally in the full paper.

We are interested in two problems for a given n-MCPDS C.

▶ Definition 4.2 (Control State Reachability Problem). Given control states pin, pout of C,
decide if there is for some w1, . . . , wm a run ⟨pin, ⊥n, . . . , ⊥n⟩ −→ · · · −→ ⟨pout, w1, . . . , wm⟩.

▶ Definition 4.3 (Global Control State Reachability Problem). Given a control state pout of C,
construct a representation of the set of configurations ⟨p, w1, . . . , wm⟩ such that there exists
for some w′

1, . . . , w′
m a run ⟨p, w1, . . . , wm⟩ −→ · · · −→ ⟨pout, w′

1, . . . , w′
m⟩.

We represent sets of configurations as follows. In the full paper we show it forms an
effective boolean algebra, membership is linear time, and emptiness is in PSPACE.

▶ Definition 4.4 (Regular Set of Configurations). A regular set R of configurations of a multi-
stack CPDS C is definable via a finite set χ of tuples (p, A1, . . . , Am) where p is a control
state of C and Ai is a stack automaton with designated initial state qi for each i. We have
⟨p, w1, . . . , wm⟩ ∈ R iff there is some (p, A1, . . . , Am) ∈ χ such that wi ∈ Lqi(Ai) for each i.

Finally, we often partition runs of an MCPDS σ = σ1 . . . σℓ where each σi is a sequence
of configurations of the MCPDS. A transition from c to c′ occurs in segment σi if c′ is a
configuration in σi. Thus, transitions from σi to σi+1 are said to belong to σi+1.

5 Ordered CPDS
We generalise ordered multi-stack pushdown systems [7]. Intuitively, we can only remove
characters from stack i whenever all stacks j < i are empty.

▶ Definition 5.1 (Ordered CPDS). An order-n ordered CPDS (n-OCPDS) is an n-MCPDS
C = (P, Σ, R1, . . . , Rm) such that a transition from ⟨p, w1, . . . , wm⟩ using the rule r on stack
i is permitted iff, when r is consuming, for all 1 ≤ j < i we have wj =⊥n.

▶ Theorem 5.2 (Decidability of Reachability Problems). For n-OCPDSs the control state
reachability problem and the global control state reachability problem are decidable.

We outline the proofs below. In the full paper we show control state reachability uses
O

(
2 ↑m(n−1) (ℓ)

)
time, where ℓ is polynomial in the size of the OCPDS, and we have at most

O(2 ↑mn (ℓ)) tuples in the solution to the global problem. First observe that reachability
can be reduced to reaching ⟨pout, ⊥n, . . . , ⊥n⟩ by clearing the stacks at the end of the run.

Control State Reachability Using our notion of ECPDS, we may adapt Atig’s inductive
algorithm for ordered PDSs [1] for the control state reachability problem. The induction is
over the number of stacks. W.l.o.g. we assume that all rules (p, ⊥, o, p′) of C have o = pushn

a .
In the base case, we have an n-OCPDS with a single stack, for which the global reach-

ability problem is known to be decidable (e.g. [4]).
In the inductive case, we have an n-OCPDS C with m stacks. By induction, we can

decide the reachability problem for n-OCPDSs with fewer than m stacks. We first show
how to reduce the problem to reachability analysis of an extended CPDS, and then finally
we show how to decide Lg ∩ L

(
T Ai

t,t′

)
̸= ∅ using an n-OCPDS with (m − 1) stacks.
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Consider the mth stack of C. A run of C can be split into σ1τ1σ2τ2 . . . σℓτℓ. During the
subruns σi, the first (m − 1) stacks are non-empty, and during τi, the first (m − 1) stacks
are empty. Moreover, during each σi, only generating operations may occur on stack m.

We build an extended CPDS that directly models the mth stack during the τi segments
where the first (m−1) stacks are empty, and uses rules of the form (p, a, Lg, p′) to encapsulate
the behaviour of the σi sections where the first (m−1) stacks are non-empty. The Lg attached
to such a rule is the sequence of updates applied to the mth stack during σi.

We begin by defining, from the OCPDS C with m stacks, an OCPDA CL with (m − 1)
stacks. This OCPDA will be used to define the Lg described above. CL simulates a segment
σi. Since all updates to stack m in σi are generating, CL need only track its top character,
hence only keeps (m − 1) stacks. The top character of stack m is kept in the control state,
and the operations that would have occurred on stack m are output.

▶ Definition 5.3 (CL). Given an n-OCPDS C = (P, Σ, R1, . . . , Rm), we define CL to be an
n-OCPDA with (m−1) stacks

(
P × Σ, Σ, R′

1 ∪ R′, R′
2, . . . , R′

m−1
)

over input alphabet RGn

where for all i

R′
i = {((p, a), b, (p, a, noop, p′), o, (p′, a)) | a ∈ Σ ∧ (p, b, o, p′) ∈ Ri } , and

R′ = {((p, a), b, r, noop, (p′, c)) | b ∈ Σ ∧ r = (p, a, rewc, p′) ∈ Rm } ∪
{((p, a), b, r, noop, (p′, a)) | b ∈ Σ ∧ r = (p, a, copyk, p′) ∈ Rm } ∪{

((p, a), b, r, noop, (p′, c))
∣∣ b ∈ Σ ∧ r =

(
p, a, pushk

c , p′) ∈ Rm

}
∪

{((p, a), b, r, noop, (p′, a)) | b ∈ Σ ∧ r = (p, a, noop, p′) ∈ Rm } .

We define the language Lb,i
p,a,p′

(
CL

)
to be the set of words γ1 . . . γℓ such that there exists

a run of CL over input γ1 . . . γℓ from ⟨(p, a), w1, . . . , wm−1⟩ to ⟨(p′, c), ⊥n, . . . , ⊥n⟩ for some
c, where wi = pushn

b (⊥n) and wj =⊥n for all j ̸= i. This language describes the effect on
stack m of a run σj from p to p′. (Note, by assumption, all σj start with some pushn

b .)
We now define the extended CPDS CR that simulates C by keeping track of stack m in

its stack and using extended rules based on CL to simulate parts of the run where the first
(m − 1) stacks are not all empty. Note, since all rules operating on ⊥ (i.e. (p, ⊥, o, p′)) have
o = pushn

b , rules from R1, . . . , Rm−1 may only fire during (or at the start of) the segments
where the first (m − 1) stacks are non-empty (and thus appear in RLg below).

▶ Definition 5.4 (CR). Given an n-OCPDS C = (P × Σ, Σ, R1, . . . , Rm) with m stacks, we
define CR to be an n-ECPDS such that CR = (P, Σ, R′) where R′ = Rm ∪ RLg and

RLg
=

{(
p, a, Lb,i

p1,a,p2

(
CL

)
, p2

)
| a ∈ Σ ∧ (p, ⊥, pushn

b , p1) ∈ Ri ∧ 1 ≤ i < m
}

▶ Lemma 5.5 (CR simulates C). Given an n-OCPDS C and control states pin, pout, we have
⟨pin, w⟩ ∈ Pre∗

CR(A), where A is the P-stack automaton accepting only the configuration
⟨pout, ⊥n⟩ iff ⟨pin, ⊥n, . . . , ⊥n, w⟩ −→ · · · −→ ⟨pout, ⊥n, . . . , ⊥n⟩.

Lemma 5.5 only gives an effective decision procedure if we can decide Lg ∩ L
(

T Ai

t,t′

)
̸= ∅

for all rules (p, a, Lg, p′) appearing in CR. For this, we use a standard product construction
between the CL associated with Lg, and T Ai

t,t′ . This gives an ordered CPDS with (m − 1)
stacks, for which, by induction over the number of stacks, reachability (and emptiness) is
decidable. Note, the initial transition of the construction sets up the initial stacks of CL.

▶ Definition 5.6 (C∅). Given the non-emptiness problem Lb,i
p1,a,p2

(
CL

)
∩L

(
T Ai

t,t′

)
̸= ∅, where

top1(t) = a, CL = (P × Σ, Σ, R1, . . . , Rm−1) and T Ai

t,t′ = (TAi , RGn , δ, t, t′), we define an
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n-OCPDS C∅ =
(
P∅, Σ, R∅

1, . . . , R∅
i ∪ RI/O, . . . , R∅

m−1
)

where, for all 1 ≤ i ≤ (m − 1),

P∅ = {p1, p2} ⊎ {(p, t1) | t1 ∈ TAi
∧ control(t1) = p} ,

RI/O = {(p1, ⊥, pushn
b , (p1, t))} ∪ {((p2, t), ⊥, noop, p2) | t ∈ TAi

} , and

R∅
i = {((p, t1), c, o, (p′, t2)) | ((p, top1(t1)), c, r, o, (p′, top1(t2))) ∈ Ri ∧ (t1, r, t2) ∈ ∆}

▶ Lemma 5.7 (Language Emptiness for OCPDS). We have Lb,i
p1,a,p2

(
CL

)
∩ L

(
T Ai

t,t′

)
̸= ∅ iff,

in C∅ from Definition 5.6, we have that ⟨p2, ⊥n, . . . ⊥n⟩ is reachable from ⟨p1, ⊥n, . . . , ⊥n⟩.

Global Reachability We sketch a solution to the global reachability problem, giving a
full proof in the full paper. From Lemma 5.5 (CR simulates C) we gain a representa-
tion Am = Pre∗

CR(A) of the set of configurations ⟨p, ⊥n, . . . , ⊥n, wm⟩ that have a run to
⟨pout, ⊥n, . . . , ⊥n⟩. Now take any ⟨p, ⊥n, . . . , ⊥n, wm−1, wm⟩ that reaches ⟨pout, ⊥n, . . . , ⊥n⟩.
The run must pass some ⟨p′, ⊥n, . . . , ⊥n, w′

m⟩ with ⟨p′, w′
m⟩ accepted by Am. From the

product construction above, one can (though not immediately) extract a tuple (p, Am−1, A′
m)

such that wm−1 is accepted by Am−1 and wm is accepted by A′
m. We repeat this reasoning

down to stack 1 and obtain a tuple of the form (p, A1, . . . , Am). We can only obtain a finite
set of tuples in this manner, giving a solution to the global reachability problem.

6 Scope-Bounded CPDS
Recently, scope-bounded multi-pushdown systems were introduced [32] and their reachab-
ility problem was shown to be decidable. Furthermore, reachability for scope- and phase-
bounding was shown to be incomparable [32]. Here we consider scope-bounded CPDS.

A run σ = σ1 . . . σℓ of an MCPDS is context-partitionable when, for each σi, if a transition
in σi is via r ∈ Rj on stack j, then all transitions of σi are via rules in Rj on stack j. A round
is a context-partitioned run σ1 . . . σm, where during σi only Ri is used. A round-partitionable
run can be partitioned σ1 . . . σℓ where each σi is a round. A run of an SBCPDS is such that
any character or stack removed from a stack must have been created at most ζ rounds
earlier. For this, we define pop- and collapse-rounds for stacks. That is, we mark each stack
and character with the round in which it was created. When we copy a stack via copyk,
the pop-round of the new copy of the stack is the current round. However, all stacks and
characters within the copy of u keep the same pop- and collapse-round as in the original u.

E.g. take [u]2 where u = [ab]1, u and a have pop-round 2, and b has pop-round 1.
Suppose in round 3 we use copy2 to obtain [uu]2. The new copy of u has pop-round 3 (the
current round), but the a and b appearing in the copy of u still have pop-rounds 2 and 1
respectively. If the scope-bound is 2, the latest each a and the original u could be popped
is in round 4, but the new u may be popped in round 5.

We will write pw for a stack w with pop-round p and p,ca for a character with pop-round
p and collapse-round c. Pop- and collapse-rounds will be sometimes omitted for clarity.
Note, the outermost stack will always have pop-round 0. In particular, for all u :k v in the
definition below, the pop-round of v is 0.

▶ Definition 6.1 (Pop- and Collapse-Round). Given a round-partitioned run σ1 . . . σℓ we
define inductively the pop- and collapse-rounds. The pop- and collapse-round of each stack
and character in the first configuration of σ1 is 0. Take a transition ⟨p, w⟩ −→ ⟨p′, w′⟩ with
⟨p′, w′⟩ in σz via a rule (p, a, o, p′). If o = noop then w = w′, otherwise when
1. o = copyk and w = pu :k v, then w′ = zu :k (pu :k v) where zu = z[p1u1 . . . pℓ

uℓ]k−1 when
pu = p[p1u1 . . . pℓ

uℓ]k−1.
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2. o = pushk
b , then w′ = z,cb

(p′ u) :1 w where p′u = topk+1(popk(w)) and c is the pop-round
of topk(w). (Note, when k = n, we know p′ = 0 since the topn+1 stack is outermost.)

3. o = popk, when w = u :k v then w′ = v.
4. We set collapsek

(
a(pu′) :1 u :(k+1) v

)
= pu′ :(k+1) v when u is order-k and 1 ≤ k < n;

and collapsen

(
a(0u) :1 v

)
= 0u when u is order-n.

5. o = rewb and w = p,ca
(p′ u) :1 v, then w′ = p,cb

(p′ u) :1 v.

▶ Definition 6.2 (Scope-Bounded CPDS). A ζ-scope-bounded n-CPDS (n-SBCPDS) C is an
order-n MCPDS whose runs are all runs of C that are round-partitionable, that is σ1 . . . σℓ,
such that for all z, if a transition in σz from ⟨p, w⟩ to ⟨p′, w′⟩ is
1. a popk transition with 1 < k ≤ n and w = pu :k v, then z − ζ ≤ p,
2. a pop1 transition with w = p,ca

u :1 v, then z − ζ ≤ p, or
3. a collapsek transition with w = p,ca

u :1 v, then z − ζ ≤ c.

La Torre and Napoli’s decidability proof for the order-1 case already uses the saturation
method [32]. However, while La Torre and Napoli use a forwards-reachability analysis, we
must use a backwards analysis. This is because the forwards-reachable set of configurations
is in general not regular. We thus perform a backwards analysis for CPDS, resulting in a
similar approach. However, the proofs of correctness of the algorithm are quite different.

▶ Theorem 6.3 (Decidability of Reachability Problems). For n-OCPDSs the control state
reachability problem and the global control state reachability problem are decidable.

In the full paper we show our non-global algorithm requires O(2 ↑n−1 (ℓ)) space, where
ℓ is polynomial in ζ and the size of the SBCPDS, and we have at most O(2 ↑n (ℓ)) tuples
in the global reachability solution. La Torre and Parlato give an alternative control state
reachability algorithm at order-1 using thread interfaces, which allows sequentialisation [21]
and should generalise order-n, but, does not solve the global reachability problem.

Control State Reachability Fix initial and target control states pin and pout. The algorithm
first builds a reachability graph, which is a finite graph with a certain kind of path iff pout
can be reached from pin. To build the graph, we define layered stack automata. These have
states qi

p for each 1 ≤ i ≤ ζ which represent the stack contents i rounds later. Thus, a layer
automaton tracks the stack across ζ rounds, which allows analysis of scope-bounded CPDSs.

▶ Definition 6.4 (ζ-Layered Stack Automata). A ζ-layered stack automaton is a stack auto-
maton A such that Qn =

{
qi

p | p ∈ P ∧ 1 ≤ i ≤ ζ
}

.

A state qi
p is of layer i. A state q′ labelling q

q′

−→ Q has the same layer as q. We require

that there is no q
q′

−→ Q with q′′ ∈ Q where q is of layer i and q′′ is of layer j < i. Similarly,
there is no q

a−−−→
Qcol

Q with q′ ∈ Q ∪ Qcol where q is of layer i and q′ is of layer j < i.
Next, we define several operations from which the reachability graph is constructed. The

Predecessorj operation connects stack j between two rounds. We define for stack j

Predecessorj(A, qp, qp′) = Saturatej

(
EnvMove

(
Shift(A), q1

p1
, q2

p2

))
where definitions of Shift, EnvMove and Saturatej are given in the full paper. Shift moves
transitions in layer i to layer (i + 1). E.g. q1

p
q−→

{
q2

p′

}
would become q2

p
q−→

{
q3

p′

}
. Moreover,

transitions involving states in layer ζ are removed. This is because the stack elements in layer
ζ will “go out of scope”. EnvMove adds a new transition (analogously to a (p1, a, rewa, p2)
rule) corresponding to the control state change from p1 to p2 effected by the runs over the
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other stacks between the current round and the next (hence layers 1 and 2 in the definition
above). Saturatej gets by saturation all configurations of stack j that can reach via Rj the
stacks accepted from the layer-1 states of its argument (i.e. saturation using initial states{

q1
p | p ∈ P

}
, which accept stacks from the next round).

The current layer automaton represents a stack across up to ζ rounds. The predecessor
operation adds another round on to the front of this representation. A key new insight in
our proofs is that if a transition goes to a layer i state, then it represents part of a run where
the stack read by the transition is removed in i rounds time. Thus, if we add a transition
at layer 0 (were it to exist) that depends on a transition of layer ζ, then the push or copy
operation would have a corresponding pop (ζ +1) scopes away. Scope-bounding forbids this.

The Reachability Graph The reachability graph Gpout
C = (V, E) has vertices V and edges

E . Firstly, V contains some initial vertices (p0, A1, p1, . . . , pm−1, Am, pm) where pm = pout,
and for all 1 ≤ i ≤ m we have that Ai is the layer automaton Saturatei(A) where for all w,
A accepts ⟨pi, w⟩ from q1

pi
. Furthermore, we require that there is some w such that ⟨pi−1, w⟩

is accepted by Ai from q1
pi

. That is, there is a run from ⟨pi−1, w⟩ to pi. Intuitively, initial
vertices model the final round of a run to pout with context switches at p0, . . . , pm.

The complete set V is the set of all tuples (p0, A1, p1, . . . , pm−1, Am, pm) where there is
some w such that ⟨pi−1, w⟩ is accepted by Ai from state q1

pi−1
. To ensure finiteness, we can

bound Ai to at most N states. The value of N is O(2 ↑n−1 (ℓ)) where ℓ is polynomial in ζ

and the size of C. We give a full definition of N and proof in the full paper.
We have an edge from a vertex (p0, A1, . . . , Am, pm) to (p′

0, A′
1, . . . , A′

m, p′
m) whenever

pm = p′
0 and for all i we have Ai = Predecessori

(
A′

i, qpi , qp′
i−1

)
. An edge means the two

rounds can be concatenated into a run since the control states and stack contents match up.

▶ Lemma 6.5 (Simulation by Gpout
C ). Given a scope-bounded CPDS C and control states

pin, pout, there is a run of C from ⟨pin, w1, . . . , wm⟩ to ⟨pout, w′
1, . . . , w′

m⟩ for some w′
1, . . . , w′

m

iff there is a path in Gpout
C to a vertex (p0, A1, . . . , Am, pm) with p0 = pin from an initial vertex

where for all i we have ⟨pi−1, wi⟩ accepted from q1
pi

of Ai.

Global Reachability The (p0, A1, p1, . . . , pm−1, Am, pm) in Gpout
C reachable from an initial

vertex are finite in number. We know by Lemma 6.5 that there is such a vertex accepting all
⟨pi−1, wi⟩ iff ⟨p0, w1, . . . , wm⟩ can reach the target control state. Let χ be the set of tuples
(p0, A1, . . . , Am) for each reachable vertex as above, where Ai is restricted to the initial state
q1

pi−1
. This is a regular solution to the global control state reachability problem.

7 Conclusion
We have shown decidability of global reachability for ordered and scope-bounded collapsible
pushdown systems (and phase-bounded in the full article). This leads to a challenge to find a
general framework capturing these systems. Furthermore, we have only shown upper-bound
results. Although, in the case of phase-bounded systems, our upper-bound matches that of
Seth for CPDSs without collapse [29], we do not know if it is optimal. Obtaining matching
lower-bounds is thus an interesting though non-obvious problem. Recently, a more relaxed
notion of scope-bounding has been studied [20]. It would be interesting to see if we can
extend our results to this notion. We are also interested in developing and implementing
algorithms that may perform well in practice.
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